3 research outputs found

    Augmented Evolutionary Intelligence: Combining Human and Evolutionary Design for Water Distribution Network Optimisation

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via the DOI in this recordEvolutionary Algorithms (EAs) have been employed for the optimisation of both theoretical and real-world problems for decades. These methods although capable of producing near-optimal solutions, often fail to meet real-world application requirements due to considerations which are hard to define in an objective function. One solution is to employ an Interactive Evolutionary Algorithm (IEA), involving an expert human practitioner in the optimisation process to help guide the algorithm to a solution more suited to real-world implementation. This approach requires the practitioner to make thousands of decisions during an optimisation, potentially leading to user fatigue and diminishing the algorithm’s search ability. This work proposes a method for capturing engineering expertise through machine learning techniques and integrating the resultant heuristic into an EA through its mutation operator. The human-derived heuristic based mutation is assessed on a range of water distribution network design problems from the literature and shown to often outperform traditional EA approaches. These developments open up the potential for more effective interaction between human expert and evolutionary techniques and with potential application to a much larger and diverse set of problems beyond the field of water systems engineering.Engineering and Physical Sciences Research Council (EPSRC

    Unveiling evolutionary algorithm representation with DU maps

    Get PDF
    Evolutionary algorithms (EAs) have proven to be effective in tackling problems in many different domains. However, users are often required to spend a significant amount of effort in fine-tuning the EA parameters in order to make the algorithm work. In principle, visualization tools may be of great help in this laborious task, but current visualization tools are either EA-specific, and hence hardly available to all users, or too general to convey detailed information. In this work, we study the Diversity and Usage map (DU map), a compact visualization for analyzing a key component of every EA, the representation of solutions. In a single heat map, the DU map visualizes for entire runs how diverse the genotype is across the population and to which degree each gene in the genotype contributes to the solution. We demonstrate the generality of the DU map concept by applying it to six EAs that use different representations (bit and integer strings, trees, ensembles of trees, and neural networks). We present the results of an online user study about the usability of the DU map which confirm the suitability of the proposed tool and provide important insights on our design choices. By providing a visualization tool that can be easily tailored by specifying the diversity (D) and usage (U) functions, the DU map aims at being a powerful analysis tool for EAs practitioners, making EAs more transparent and hence lowering the barrier for their use

    Incorporating Domain Expertise into Evolutionary Algorithm Optimisation of Water Distribution Systems

    Get PDF
    Evolutionary Algorithms (EAs) have been widely used for the optimisation of both theoretical and real-world non-linear problems, although such optimisation methods have found reasonably limited utilisation in fields outside of the academic domain. While the causality of this limited uptake in non-academic fields falls outside the scope of this thesis, the core focus of this research remains strongly influenced by the notions of solution feasibility and making optimisation methods more accessible for engineers, both factors attributed to low EA adoption rates in the commercial space. This thesis focuses on the application of bespoke heuristic methods to the field of water distribution system optimisation. Water distribution systems are complex entities that are difficult to model and optimise as they consist of many interacting components each with a set of considerations to address, hence it is important for the engineer to understand and assess the behaviour of the system to enable its effective design and optimisation. The primary goal of this research is to assess the impact that incorporating water systems knowledge into an evolution algorithm has on algorithm performance when applied to water distribution network optimisation problems. This thesis describes the development of two heuristics influenced by the practices of water systems engineers when designing water distribution networks with the view to increasing an algorithm’s performance and resultant solution feasibility. By utilising heuristics based on engineering design principles and integrating them into existing EAs, it is found that both engineering feasibility and general algorithmic performance can be notably improved. Firstly the heuristics are applied to a standard single-objective EA and then to a multi-objective genetic algorithm. The algorithms are assessed on a number of water distribution network benchmarks from the literature including real-world based, large scale systems and compared to the standard variants of the algorithms. Following this, a set of extensive experiments are conducted to explore how the inclusion of water systems knowledge impacts the sensitivity of an evolutionary algorithm to parameter variance. It was found that the performance of both engineering inspired algorithms were less sensitive to parameter change than the standard genetic algorithm variant meaning that non-experts in the field of meta-heuristics will potentially be able to get much better performance out of the engineering heuristic based algorithms without the need for specialist evolutionary algorithm knowledge. In addition this research explores the notion that visualisation techniques can provide water system engineers with a greater insight into the operation and behaviour of an evolutionary algorithm. The final section of this thesis presents a novel three-dimensional representation of pipe based water systems and demonstrates a range of innovative methods to convey information to the user. The interactive visualisation system presented not only allows the engineer to visualise the various parameters of a network but also allows the user to observe the behaviour and progress of an iterative optimisation method. Examples of the combination of the interactive visualisation system and the EAs developed in this work are shown to enable the user to track and visualise the actions of the algorithm. The visualisation aggregates changes to the network over an EA run and grants significant insight into the operations of an EA as it is optimising a network. The research presented in this thesis demonstrates the effectiveness of integrating water system engineering expertise into evolutionary based optimisation methods. Not only is solution quality improved over standard methods utilising these new heuristic techniques, but the potential for greater interaction between engineer, problem and optimiser has been established
    corecore