2 research outputs found

    GIS-Based landslide susceptibility modeling: a comparison between best-first decision tree and its two ensembles (BagBFT and RFBFT)

    Get PDF
    This study aimed to explore and compare the application of current state-of-the-art machine learning techniques, including bagging (Bag) and rotation forest (RF), to assess landslide susceptibility with the base classifier best-first decision tree (BFT). The proposed two novel ensemble frameworks, BagBFT and RFBFT, and the base model BFT, were used to model landslide susceptibility in Zhashui County (China), which suffers from landslides. Firstly, we identified 169 landslides through field surveys and image interpretation. Then, a landslide inventory map was built. These 169 historical landslides were randomly classified into two groups: 70% for training data and 30% for validation data. Then, 15 landslide conditioning factors were considered for mapping landslide susceptibility. The three ensemble outputs were estimated with a receiver operating characteristic (ROC) curve and statistical tests, as well as a new approach, the improved frequency ratio accuracy. The areas under the ROC curve (AUCs) for the training data (success rate) of the three algorithms were 0.722 for BFT, 0.869 for BagBFT, and 0.895 for RFBFT. The AUCs for the validating groups (prediction rates) were 0.718, 0.834, and 0.872, respectively. The frequency ratio accuracy of the three models was 0.76163 for the BFT model, 0.92220 for the BagBFT model, and 0.92224 for the RFBFT model. Both BagBFT and RFBFT ensembles can improve the accuracy of the BFT base model, and RFBFT was relatively better. Therefore, the RFBFT model is the most effective approach for the accurate modeling of landslide susceptibility mapping (LSM). All three models can improve the identification of landslide-prone areas, enhance risk management ability, and afford more detailed information for land-use planning and policy setting.National Natural Science Foundation of China | Ref. 41977228Key Research Program of Shaanxi | Ref. 2022SF-33

    Evaluation of Landslide Susceptibility of ÅžavÅŸat District of Artvin Province (Turkey) Using Machine Learning Techniques

    Get PDF
    The aim of this study is to produce landslide susceptibility maps of Şavşat district of Artvin Province using machine learning (ML) models and to compare the predictive performances of the models used. Tree-based ensemble learning models, including random forest (RF), gradient boosting machines (GBM), and extreme gradient boosting (XGBoost), were used in the study. A landslide inventory map consisting of 85 landslide polygons was used in the study. The inventory map comprises 32,777 landslide pixels at 30 m resolution. Randomly selected 70% of the landslide pixels were used for training the models and the remaining 30% were used for the validation of the models. In susceptibility analysis, altitude, aspect, curvature, distance to drainage network, distance to faults, distance to roads, land cover, lithology, slope, slope length, and topographic wetness index parameters were used. The validation of the models was conducted using success and prediction rate curves. The validation results showed that the success rates for the GBM, RF, and XGBoost models were 91.6%, 98.4%, and 98.6%, respectively, whereas the prediction rate were 91.4%, 97.9%, and 98.1%, respectively. Therefore, it was concluded that landslide susceptibility map produced with XGBoost model can help decision makers in reducing landslide-associated damages in the study area
    corecore