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Abstract: This study aimed to explore and compare the application of current state-of-the-art machine
learning techniques, including bagging (Bag) and rotation forest (RF), to assess landslide susceptibility
with the base classifier best-first decision tree (BFT). The proposed two novel ensemble frameworks,
BagBFT and RFBFT, and the base model BFT, were used to model landslide susceptibility in Zhashui
County (China), which suffers from landslides. Firstly, we identified 169 landslides through field
surveys and image interpretation. Then, a landslide inventory map was built. These 169 historical
landslides were randomly classified into two groups: 70% for training data and 30% for validation
data. Then, 15 landslide conditioning factors were considered for mapping landslide susceptibility.
The three ensemble outputs were estimated with a receiver operating characteristic (ROC) curve and
statistical tests, as well as a new approach, the improved frequency ratio accuracy. The areas under
the ROC curve (AUCs) for the training data (success rate) of the three algorithms were 0.722 for BFT,
0.869 for BagBFT, and 0.895 for RFBFT. The AUCs for the validating groups (prediction rates) were
0.718, 0.834, and 0.872, respectively. The frequency ratio accuracy of the three models was 0.76163 for
the BFT model, 0.92220 for the BagBFT model, and 0.92224 for the RFBFT model. Both BagBFT and
RFBFT ensembles can improve the accuracy of the BFT base model, and RFBFT was relatively better.
Therefore, the RFBFT model is the most effective approach for the accurate modeling of landslide
susceptibility mapping (LSM). All three models can improve the identification of landslide-prone
areas, enhance risk management ability, and afford more detailed information for land-use planning
and policy setting.

Keywords: machine learning; susceptibility mapping; integration model; landslide

1. Introduction

Natural hazards jeopardize infrastructure, human security, and properties. Landslides
are one of the most common geological hazards, threatening the safety of people all
over the world. Multiple factors control landslide events [1], including natural factors
(crustal movement), human engineering activities (construction, mining, and farming), and
groundwater. The damage caused by landslides to humans cannot be ignored and may be
severe; it is, therefore, necessary for policymakers to control and mitigate regional landslides
to safeguard the sustainable development of mountainous areas and hilly terrains. For
instance, the direct and indirect economic losses caused by landslides can reach as much
as CNY 2 billion every year in China, which severely impedes the economic development
of disaster-stricken areas [2]. Around the world, almost 66.3 million people live in areas
with a high risk of landslides [3]. The key is to work out a regional landslide control and
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prevention plan. In any of these cases, it is vital to be able to conduct landslide susceptibility
mapping (LSM) of a certain area, which is considered a worthwhile countermeasure to
reduce and mitigate the impact of landslide hazards [4,5].

In recent decades, many models have been proposed and applied to landslide suscepti-
bility based on Geographic Information Systems (GISs) and data mining technology. In the
early stages, many researchers adopted statistical analysis [6,7]. Statistical models are based
on the connections between factors causing landslides and existing hazards [8,9]. Currently,
bivariate and multivariate statistical analyses are most commonly applied in statistical
approaches for landslide susceptibility mapping. For instance, frequency ratio [10,11],
statistical index [12,13], weight of evidence [14,15], index of entropy [16,17], evidential
belief function [18,19], certainty factor [20,21], and logistic regression [19,22] models have
been widely used in LSM.

However, carrying out landslide susceptibility mapping in a specific region is not an
easy task, since it is a relatively complex non-linear issue. Therefore, models with higher
accuracy need to be created. Most recently, with advances in various software programs based
on machine learning (ML) and data mining (DM), various models have been designed for
LSM, including artificial neural networks [23,24], Bayesian logistic regression [25], multivariate
adaptive regression spline [26,27], decision tree [28,29], support vector machine [30,31], adaptive
neuro-fuzzy inference system [32,33], random forest [34–36], logistic model tree [23,37], and
alternate decision tree [38,39]. These models produced different results with various data
types in a specific study area. Each model has its advantages and disadvantages. Therefore,
the best method to map landslide susceptibility is currently under discussion.

Although these models generated by machine learning and data mining have enabled
researchers to identify landslide-prone areas, the complexity of landslide formation has led
to the exploration of more accurate and efficient integrated models. A literature review of
recent publications reveals some ensemble frameworks such as function tree with random
subspace and bagging [40], alternating decision tree with AdaBoost and bagging [38],
multiboosting with credal decision tree and radial basis function network [41], multiple
perception neural networks with AdaBoost, bagging, dagging, multiboosting, rotation for-
est, random subspace [42], and Bayesian optimization [43]. More recently, some researchers
have also proposed more advanced boosting algorithms, such as categorical boosting, light
gradient boosting, extreme gradient boosting [44–46], and natural gradient boosting [47,48].
All these studies have demonstrated that hybrid and ensemble frameworks tend to generate
more reliable and accurate LSM than individual machine learning techniques in a specific
region. Despite such promising results, there remains no agreement on the optimum hybrid
or ensemble method for regional landslide susceptibility prediction. Therefore, efforts to
develop more hybrid/ensemble models are essential for different areas.

Decision tree is among the most widely used classification algorithms in machine
learning and data mining, and is regarded as a potentially powerful predictor. A decision
tree classifier can explicitly reflect the structure of a dataset. Best-first decision tree (BFT)
is built based on the decision tree [49]. Unlike standard decision tree classifiers such as
the C5.0 which expands nodes in depth-first order, the BFT classification algorithm first
expands the ‘best’ node in the splitting process. This algorithm is effective in decreasing
overfitting and variance problems. With this advantage, BFT has been utilized by some
researchers for landslide and flood susceptibility assessment, such as a solely used BFT
model in LSM [50] and BFT integrated with bagging, decoration, and a random subspace
in flood susceptibility mapping (FSM) [51]. All these works have denoted that BFT is a
superior approach for landslide susceptibility prediction.

It is relevant to note that, although various landslide susceptibility hybrid/ensemble
models have been proposed, there is a gap in integrating advanced rotation forest and
BFT. RFBFT is a novel ensemble model in landslide prediction analysis. BagBFT has only
been used to predict flood susceptibility, as mentioned in [51], and its application remains
poorly constrained and requires further investigation. Therefore, BFT is selected as the
base classifier, combined with bagging [52] and rotation forest [53], to predict landslide
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susceptibility in Zhashui County, where landslides frequently occur. No related studies
have been performed in this area, making it a meaningful case to carry out LSM. More
specifically, this study aims to survey and evaluate the performance of BFT, BagBFT, and
RFBFT for identifying landslide-prone areas on a regional scale. The results of the three
models are assessed and analyzed thoroughly through operating characteristic curves
(ROCs), the area under the curve (AUC), the improved frequency ratio accuracy method,
and statistical tests.

2. Study Area

The geographic coordinates of Zhashui County are between 108◦50′E and 109◦36′E and
between 33◦25′N and 33◦56′N, with an area of 2322 km2, located in Shaanxi Province, China
(Figure 1). The study area is a transitional climate region between the warm temperature
region and the cool subtropical region, and the mean annual rainfall is 759.4 mm. Most
precipitation in the area occurs from summer to autumn, with a seasonal precipitation of
276.7 mm and 334.2 mm, respectively. It is relevant to note that precipitation is one of the
main factors triggering geological disasters (mainly landslides), which mostly occur in
August and September. Therefore, Zhashui County indeed requires evaluation of landslides,
and is thus a good case for LSM. Topographically, Zhashui County is part of the Qinba
Mountain region. The general trend is high in the northwest and low in the southeast. The
elevation varies from 516 m to 2763 m above sea level.
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3. Materials and Methodologies
3.1. Data Preparation

Three separate activities were included: (1) mapping landslides; (2) modeling land-
slides based on BFT, BagBFT, and RFBFT methods; and (3) validating the modeling methods.
The details of these steps are shown in Figure 2.
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Figure 2. Flowchart of the landslide susceptibility modeling.

Landslide inventories are important for determining the relationship between land-
slide areas and landslide-prone areas. The distribution of past and recent landslides is the
fundamental unit for landslide forecasting. In the study area, 169 landslide locations were
identified from field investigations of geological hazards and image interpretation at a scale
of 1:50,000, which then were randomly bifurcated into two groups, namely 118 (70%) for
training and 51 (30%) for validation [14,54]. Therefore, a landslide-inventory map of the
study area was produced, as shown in Figure 1.

3.2. Landslide Conditioning Factors

Geological, topographic, hydrological, and environmental factors can trigger a land-
slide. Fifteen specific factors were selected as the most relevant factors leading to landslide
occurrence: elevation, slope angle, slope aspect, profile curvature, plan curvature, topo-
graphic wetness index (TWI), stream power index (SPI), sediment transport index (STI),
distance to faults, distance to roads, distance to rivers, normalized difference vegetation
index (NDVI), rainfall, land use, and lithology.

Elevation is a key landslide conditioning factor, which is highly relevant to landslide
occurrence [35,55]. It is relevant to note that landslides are more likely to form in high-
elevation areas than in low-elevation areas [56]. In Figure 3a, the elevation was reclassified
into eleven classes with a defined interval of 200 m: 516–700 m, 700–900 m, 900–1100 m,
1100–1300 m, 1300–1500 m, 1500–1700 m), 1700–1900 m, 1900–2100 m, 2100–2300 m, (2300–
2500 m, and 2500–2763 m.
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Slope angle may be the foremost landslide conditioning factor, dominating the concen-
tration of surface flow and surface runoff [57]. Zhashui County has a steep terrain with a
slope of 0–74◦ (Figure 3b), which was further classified into eight categories with a defined
interval of 10◦, i.e., 0–10◦, 10–20◦, 20–30◦, 30–40◦, 40–50◦, 50–60◦, 60–70◦, and 70–74◦.

Slope aspect is another significant topographic parameter, which plays a key part in
the formation of landslides by affecting vegetation coverage, soil water retention, and soil
strength [58]. Therefore, slope aspect is considered a conditioning factor and is obtained
from the digital elevation model (DEM) within ArcGIS 10.5. In this paper, the slope
aspect was divided into nine groups, including flat, north, northeast, east, southeast, south,
southwest, west, and northeast (Figure 3c).

Profile curvature indicates the slope morphology, which can control the surface hydro-
logical conditions, erosion, sedimentation rate, and soil characteristics of the slope, and all
of these elements are relevant to slope stability [59]. In this study, profile curvature was
calculated and grouped into five classes with the natural breaks (Jenks) method (Figure 3d).
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Plan curvature is another index that embodies topographic characteristics and the
steepness of the slope. The interrelation of plan curvature and profile curvature is close-
knit, and both of them control the acceleration or deceleration of surface flow, which can
influence the process of land sliding [60]. Here, the plan curvature values were reclassified
into five groups based on the natural breaks (Jenks) method (Figure 3e).

The Topographic Wetness Index (TWI) is also an important landslide conditioning
factor, which is utilized to measure the topographic domination over hydrological pro-
cesses [61]. The TWI values of Zhashui County can be derived from DEM data, ranging
from 1.41 to 23.74, which were then further manually reclassified into the following cate-
gories: 1.41–6, 6–9, 9–12, 12–15, and 15–23.74 (Figure 3f).

The Stream Power Index (SPI) expresses the erosion capacity of the concentrated flow.
The higher the SPI value, the stronger the erosion caused by the flow. It can be computed
as [14,62]:

SPI = AS × tan β (1)

where As is the slope contributing area and β represents the slope angle (radian) [63]. The
SPI values were computed by ArcGIS 10.5 and classified into five categories with a defined
interval of 20, i.e., <20, 20–40, 40–60, 60–80, >80, as shown in Figure 3g.

Similarly, the sediment transport index (STI) measures the erosive force of the surface
flow. Equation (2) calculates the sediment transport caused by the slope angle on the basis
of As and β [64]. Here, STI values included five groups with an equal interval of 10, as
illustrated in Figure 3h.

STI = (
AS

22.13
)

0.6
(

sin β

0.0896
)

1.3
(2)

The three distance-related factors, namely distance to faults (Figure 3i), roads (Figure 3j),
and rivers (Figure 3k), are also prominent conditioning factors for LSM [65]. The distribu-
tion of landslides can be affected by fault structure in a specific region. Additionally, in
mountainous areas, road construction activities commonly generate engineering loads and
wreck the integrity of the slope structure, which can lead to slope instability [66]. Rivers
commonly have a negative impact on slope stability by eroding the foot of a slope and
affecting the water content distribution [67,68]. These three distance-related conditioning
factors were divided into five categories with equal intervals of 200 m, 100 m, and 100 m,
respectively.

It is relevant to note that vegetation is vital for maintaining slope stability, especially
in mountainous areas [69]. By means of root reinforcement, vegetated regions have advan-
tageous mechanical effects on the shear strength of soil, thereby decreasing the possibility
of slope instability. Therefore, a vegetation-covered slope tends to be more stable than a
barren one. NDVI indicates the vegetation characteristics and can be acquired from Landsat
8 Operational Land Imager (OLI) images. NDVI can be defined as [14]:

NDVI =
NIR− R
NIR + R

(3)

where NIR is the near-infrared band and R is the red band of the electromagnetic spectrum.
The values of NDVI vary from −1 to 1. A negative value indicates water bodies or barren
rocks and sand, while a positive one denotes that the corresponding area is covered by
vegetation. The NDVI values of the study area were further reclassified into five classes
through the natural breaks (Jenks) method (Figure 3l).

In the Qinba Mountain region, geological hazards are closely related to rainfall, espe-
cially landslides. Herein, rainfall is a crucial conditioning factor for landslide occurrence [4].
It needs to be noted that long-term or heavy rainfall raises the groundwater level, increases
pore water pressure, reduces the effective stress of soil, and then accelerates slope insta-
bility, which increases the possibility of landslides. A rainfall map was drawn using the
meteorological data with a defined interval of 20 mm/y (Figure 3m).
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Land use is another conditioning factor frequently utilized to create landslide suscep-
tibility maps [70]. In some agricultural areas, landslides frequently occur due to long-term
irrigation, such as in Jingyang County (China) [71]. The land-use types of the study area
included farmland, garden land, forestland, commercial land, and industrial and mining
storage land (Figure 3n).

Lithology is another key factor that directly controls slope stability [72]. Usually,
landslides hit lithological units with lower strength and higher water content. The lithology
of the study area was redivided into ten lithological units accounting for their lithofacies
and geological ages. The detailed distribution of lithological units is shown in Figure 3o.
Table 1 describes the lithological categories in the study area. Table 2 lists the information
on the source and scale of the fifteen selected conditioning factors.

Table 1. Description of the groups of lithologies.

Group Code Lithology Geological Age

1 J2 Monzonitic granite, quartz monzonite, granodiorite, quartz diorite Middle Jurassic

2 T2, T3 Quartz monzonite, monzonitic granite, granodiorite Middle and late Triassic

3 C1, C2

Lower: carbonaceous phyllite; middle: siltstone, gray-green
phyllite; upper: medium-thin bedded limestone; carbonaceous slate

with quartz sandstone,
carbonaceous slate, slate sandwiched sandstone, quartz

conglomerate and limestone, breccia limestone

Early and middle
Carboniferous

4 D1, D2, D3

Lower: sandstone sandwiches slate, sandy argillaceous limestone,
and local siderite sandwiches; upper: slate and

phyllite-sandwich-sandstone. dolomite, limestone, sandstone,
siltstone with a small amount of slate, locally

intercalated argillaceous limestone, slate mixed with fine sandstone

Devonian

5 S Granite Silurian

6 O Quartz diorite, diorite, gabbro, gabbro-norite, alaskite Ordovician

7 Є1

Lower: black carbonaceous slate and siliceous rock; upper:
variegated (dark gray, gray-purple, light gray, gray-white)

limestone, dolomitic limestone;
dolomite with flint

Cambrian

8 Z1, Z2
Lower: conglomerate, sandstone, shale with limestone; upper:

dolomite, marl with sandstone, shale Early and middle Sinian

9 Pz2

Lower: mainly metamorphic quartz sandstone, meta granulite with
mica-quartz schist; upper: sandy conglomerate, meta-sandstone,
mica-quartz schist with a few marble layers from bottom to top

Upper paleozoic

10 Pt1, Qn
Biotite schist, graphite marble, clastic rock interbedded with basic

lava, volcanic rock with marble, clastic rock with basic lava,
volcanic rock with carbonaceous phyllite, marble, and siliceous rock

Lower Proterozoic,
Qingbaikouan

Table 2. Source and scale of conditioning factors.

Factors Data Source Format Resolution/Scale

Elevation, slope angle, slope aspect, plan
curvature, profile curvature, SPI, STI, TWI,

distance to faults, distance to roads, distance
to rivers

ASTER GDEM Raster, 30 m

NDVI Landsat 8 operational land imager Raster, 30 m
Rainfall National Earth System Science Data Center Raster, 30 m

Land use/cover Land use/cover maps Polygon, 1:100,000
Lithology Geological maps Polygon, 1:200,000
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3.3. Best-First Decision Trees (BFT)

BFT was initially introduced by Friedman, Hastie, and Tibshirani [73]. It is a de-
cision tree based on a learning algorithm, which utilizes multiple classifiers to create a
classification that can optimize results, making it superior to models with a sole classifier.
Structurally, BFT includes three kinds of nodes: a root node (topmost node), internal nodes
(decision nodes), and leaf nodes (terminal nodes). When processing a standard divide-and-
conquer classification, a decision tree algorithm starts with a root code with no incoming
branches; then, branches from the root node enter internal nodes; next, with the available
features, node types, are evaluated to form homogeneous subsets, which are represented by
leaf nodes. Leaf nodes illustrate every possible result in the dataset. The decision-making
process is repeated until no code can be spilled anymore and a terminal node is reached.

3.4. Bagging

Bagging, proposed by Breiman [52], comes from bootstrap aggregation [73]. Bagging
serves to reduce the variability of data based on the use of bootstrapping together with
a regression or classification model, such as a decision tree. Bagging is a straightforward
and intuitive algorithm. With the training data, we can train a model that is be used to
make a prediction. The process of averaging all previous predictions has two advantages:
simplifying the solution and reducing the variance. For regression trees, many trees are
grown (without pruning) and the mean of the predictions is calculated. In the case of
classification trees, the simplest thing is to substitute the mean for the mode and use the
majority vote criterion. Additionally, bagging allows the prediction error to be estimated
directly, without the need to use a test sample or to apply cross-validation or, again,
resampling [74].

3.5. Rotation Forest

Rotation forest was initially developed by Rodriguez, Kuncheva, and Alonso [53],
using principal component analysis (PCA) [75]. This approach extracts the features from
learning sets. Training sets are generated for learning base classifiers. Based on feature
transformation, rotation forest focuses on improving the discrepancy and accuracy of the
base classifiers. Before each sub-sample is drawn, the sample attribute set is randomly
divided and combined, and the principal component analysis method is used to perform
feature transformation on the data between the divided groups of sub-attribute sets. Pro-
cessing the sub-sample data in this way not only makes the sub-samples different but also
plays a role in data preprocessing, thereby improving the accuracy and difference of each
base classifier. The calculation process of PCA can be expressed as transforming a set of
observed variables into a set of uncorrelated variables through linear transformation and at
the same time, keeping the total variance of the original variables unchanged. The standard
error (generalization error) can be computed as follows:

GE = Px,y(mg(x, y) < 0) (4)

mg(x, y) = avk I(hk(x) = y)−maxj 6=yavk I(hk(x) = j) (5)

where x and y are related factors representing the spatial of x and y, and I and mg are
indicators and marginal functions, respectively [76].

4. Results
4.1. Spatial Relationship

The spatial relationship between the selected fifteen conditioning factors and historical
landslides was measured and quantified through the frequency ratio (FR) method [10,29,51].
The corresponding FR values denoted the relationship between the subclasses of each
factor and the landslide occurrence (Supplementary Table S1). Table S1 shows that the most
landslide-prone parts of the study area have an elevation of 516–700 m, with a highest FR
value of 22.86. Among other conditioning factors, the areas with higher FR values are those
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with an SPI of 60–80 (FR = 15.73), commercial land use (FR = 9.04), an NDVI of −0.13–0.28
(FR = 6.55), a TWI of 15–23.74 (FR = 6.48), a distance to a road of 0–100 m (FR = 4.06), a
distance to a river of 0–100 m (FR = 2.64), a lithology of group 9 (FR = 2.20), a distance to a
fault of 400–600 m (FR = 1.98), and rainfall of 693–713 mm/y (FR = 1.25), respectively. All
these areas were identified as the landslide-susceptible portions of the study area.

More specifically, for the elevation factor, the FR values drop dramatically with the
elevation increase. When the elevation is higher than 1500 m, the FR value is equal to 0,
showing that these areas are assessed as landslide-proof portions of the study area. In terms
of the land-use factor, the subclass of commercial land has the third-largest FR value of 9.04,
followed by farmland (FR = 1.93). The FR values of other land-use type are smaller than 1.
For the factor of distance to roads and rivers, the smaller the distance to a road, the higher
the occurrence of landslides. From the aforementioned analysis, it can be noted that human
activities play a crucial role in landslide occurrence since people tend to carry out activities
in low-altitude areas and live close to water bodies. Another important factor is NDVI,
demonstrating high FR values for the −0.13–0.28 (FR = 6.55) and 0.28–0.41 (FR = 5.47)
subclasses, indicating poor vegetation coverage in these areas, which justifies NDVI as a
vital conditioning factor since it is highly related to landslide occurrence. For the factor
of TWI, as the value rank increases, the corresponding FR values grow. The results of SPI
illustrate that it is highly related to landslide occurrence. The subclass of 60–80 has the
second largest FR value among all the subclasses, 15.73, followed by 0–20 (FR = 7.50), 20–40
(FR = 6.77), 40–60 (FR = 2.41), and >80 (FR = 0.86), which is consistent with the study [14],
showing that SPI is also an important factor. In terms of slope, as reported in [58], slope
angle is closely related to landslides. A slope of 0–10◦ has an FR value of 3.50, followed
by 50–60◦ (FR = 3.11), indicating that human activities tend to be performed in areas with
gentle slopes, and steep slopes are more prone to instability. As stated in [72], lithology
plays a role in landslide occurrence. In the study area, landslides frequently occurred in
groups 4 (FR = 1.87) and 9 (FR = 2.20), in which sandstones developed. The rainfall in
the study area was concentrated, and landslides occurred frequently in the rainy season.
Generally, FR values grow with increasing rainfall, which implies that rainfall is also an
important factor.

4.2. Constructing Landslide Susceptibility Maps

The selected conditioning factors strictly control the accuracy of the landslide suscepti-
bility map. The fifteen factors used in this paper are typically chosen by other researchers
and are also highly related to the landslides in Zhashui County. The value of the landslide
susceptibility index (LSI) is computed by analyzing the spatial connections of historical
landslides and every conditioning factor. After normalization, LSI values between 0 and
1 are obtained. Then, a stepwise forward process is applied to reclassify the LSI values
into five classes from very low susceptibility to very high susceptibility on the basis of
the natural break classification method [77]. The application of BFT, BagBFT, and RFBFT
is summarized in Figures 4–6, where each susceptibility map is demonstrated. The area
percentage of each class within the three models is illustrated in Figure 7. For the BFT
model, the raster pixels are distributed in 54.76%, 9.39%, 1.61%, 0.88%, and 33.35% of the
area for the very low, low, moderate, high, and very high classes, respectively. The low
class output from the BagBFT accounts for the highest percentage (28.69%) of the pixels.
The very low, moderate, high, and very high classes cover 14.26%, 27.33%, 17.63%, and
12.08% of the area, respectively. Additionally, the RFBFT model classifications are 18.96%,
27.55%, 25.30%, 20.91%, and 7.28%, respectively.
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4.3. Validation of the LSM
4.3.1. AUC-ROC Analysis

In the present study, BFT and two hybrid models (BagBFT and RFBFT) are employed
to model landslide susceptibility. The datasets are divided into two parts, namely the
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training data and validation data, to evaluate the performance of each model. Presently,
the receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC)
are typically applied to assess the accuracy of landslide susceptibility models [78]. Each
model’s performance is assessed by the success rate curve in the training data, and the
corresponding predictive capability is measured using the prediction rate curve in the
validation data. Therefore, in order to evaluate the performance of the BFT, BagBFT, and
RFBFT models, the ROC curves of these three models with training and validation datasets
are illustrated in Figure 7.

The AUC values for the BFT, BagBFT, and RFBFT models generated by the training
dataset are 0.722, 0.869, and 0.895, respectively (Figure 8a and Table 3). It is relevant to
note that the RFBFT model has the lowest standard error (0.0199). Thus, both the BagBFT
and RFBFT models can improve the accuracy of the base classifier BFT, and the integrated
ensemble RFBFT model shows an outstanding performance.
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Table 3. Parameters of ROC curves with the training dataset.

Model AUC Standard Error 95% Confidence Interval

BFT 0.722 0.0347 0.660 to 0.778
BagBFT 0.869 0.0231 0.819 to 0.909
RFBFT 0.895 0.0199 0.849 to 0.931

In general, the optimal model is the model with the highest prediction rate. The AUC
values of the validation data are 0.718, 0.834, and 0.872 for the BFT, BagBFT, and RFBFT
models, respectively (Figure 8b and Table 4). It is relevant to note that the AUC values
of the three models decrease slightly when compared with the training ones. In terms of
standard error, the RFBFT is 0.0362, which is the lowest, followed by the BagBFT model
(0.0424) and the BFT model (0.0521). The thorough results show that the RFBFT model has
an outstanding predictive ability for landslide susceptibility mapping.
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Table 4. Parameters of ROC curves with the validation dataset.

Model AUC Standard Error 95% Confidence Interval

BFT 0.718 0.0521 0.620 to 0.803
BagBFT 0.834 0.0424 0.747 to 0.900
RFBFT 0.872 0.0362 0.791 to 0.930

4.3.2. Improved Frequency Ratio Accuracy Analysis

In order to further estimate the results of the landslide susceptibility mapping pro-
duced by the three models, the authors applied a new approach [78]. For each class from
very low to very high, the numbers of rasters and corresponding landslides are calculated.
Then, the raster and landslide ratios are computed and compared (Table 5).

Table 5. Frequency ratio accuracy analysis of susceptibility figures of BFT, BagBFT, and RFBFT models.

Model Susceptibility
Level Raster Raster Ratio (%) Landslides

Quantity
Ratio of Landslides

Quantity (%)
Frequency

Ratio

BFT

Very Low 1,443,878 54.76 22 13.02 0.238
Low 247,657 9.39 7 4.14 0.441

Moderate 42,362 1.61 3 1.78 1.105
High 23,237 0.88 5 2.96 3.357

Very High 879,388 33.35 132 78.11 2.342

BagBFT

Very Low 375,844 14.26 2 1.18 0.083
Low 756,527 28.69 2 1.18 0.041

Moderate 720,675 27.33 19 11.24 0.411
High 464,926 17.63 52 30.77 1.745

Very High 318,549 12.08 94 55.62 4.604

RFBFT

Very Low 499,855 18.96 0 0.00 0.000
Low 726,285 27.55 9 5.33 0.193

Moderate 667,082 25.30 21 12.43 0.491
High 551,333 20.91 60 35.50 1.698

Very High 191,966 7.28 79 46.75 6.420

As can be seen from Table 5, with the increase in the landslide susceptibility grade,
the ratio of landslide frequency in each class increases. The frequency ratio accuracy of
the landslide susceptibility results can be obtained by dividing the frequency ratio of the
extremely high and high classes by the sum of the frequency ratios for each model. For the
BFT model, the sum of the frequency ratio for very high and high classes is 5.699, and for
all five classes it is 7.482, meaning the frequency ratio accuracy of the BFT model is 0.76163.
Similarly, we can compute these values for the BagBFT and RFBFT models, demonstrating
that the frequency ratio accuracy of BagBFT and RFBFT is 0.92220 and 0.92224, respectively.

4.3.3. Statistical Significance Test

Assessment of the proposed models’ prediction accuracy is vital in LSM. Hence,
Wilcoxon signed-rank [79] statistical tests were applied in this study to evaluate the models’
prediction capability (Table 6). Applying the Wilcoxon signed-rank tests at a 5% significance
level, the Z and p values were utilized to identify whether to accept the hypothesis. In the
present study, the Z values and p values for each pairwise comparison of BFT~BagBFT
and BFT~RFBFT exceeded the critical values of ±1.96 and 0.05, respectively, denoting
significant differences between these models. In contrast, the Z values and p values of
BagBFT~RFBFT illustrate no significant differences between these two models. The results
show that BFT is significantly different from the other two models.
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Table 6. Wilcoxon signed-rank test of the models with the training dataset.

Pairwise Comparison Z Statistic p Significance

BFT~BagBFT 2.357 0.0184 Yes
BFT~RFBFT 3.148 0.0016 Yes

BagBFT~RFBFT 1.610 0.1073 No

Consequently, by means of AUC-ROC, the improved frequency ratio accuracy, and
statistical significance analysis, the results of these three approaches show good consistency.
BagBFT and RFBFT are acceptable for LSM in this study, and BFT performs worst among
the three models. Therefore, we can finally obtain the most effective model, RFBFT, for
mapping the landslide susceptibility in Zhashui County.

5. Discussions

With increasing human production activities and some environmental factors, the fre-
quency of geological hazards, especially landslides, has been increasing in recent decades.
These hazards can jeopardize infrastructure or even human security and property. There-
fore, it is necessary to figure out novel and efficient techniques for spatially evaluating
landslide occurrence. The ensemble-learning methods are regarded as excellent tools for
optimizing LSM ability. The aim of this study is to introduce and compare three ensembles
in predicting the spatial probability of landslide occurrence. Finally, integrated ensemble
BFT models with rotation forest and bagging are proposed and utilized to model and
anticipate landslide occurrence spatially. In this study, fifteen conditioning factors are
selected due to their strong association with landslide formation.

The proposed ensemble frameworks significantly outperformed the individual base
model, which is an important indicator and confirmation of how machine learning tech-
niques can improve the base classifier’s flexibility and efficiency. Among the three models,
they all have their advantages as widely used approaches in various publications. The
BFT model was initially proposed to solve problems involving classification. It is a su-
pervised learning classifier and is easy to implement, which allows the best node to be
extended first. This advantage allows for exploring new pruning approaches to identify
the number of expansions on the basis of cross-validation steps. The BFT model has been
successfully used for flood susceptibility prediction integrated with bagging, decoration,
and random subspace techniques [51]. For the Bagging-BFT (BagBFT) ensemble method,
bagging can combine different base classifiers. Therefore, bagging is advantageous in
reducing the classification variance to enhance the model’s performance. The application
of bagging integrated with other models, such as the LogitBoost alternating decision trees
and penalizing attributes, has justified its ability to improve the base model’s performance.
The rotation forest classifier has been highlighted as being a strong tool to boost the base
model’s performance [51]. It is an efficient method to improve wear classifiers based on
feature extraction. The randomly split feature set leads to different rotations and generates
diverse classifiers, which enable one to build more diverse and accurate individual classi-
fiers. Additionally, rotation forest can be combined with any basic classifier, making it a
promising machine-learning approach.

The FR approach was used to measure and quantify the spatial relationship between
the selected fifteen conditioning factors and historical landslides. In this study, the most
landslide-susceptible areas display an elevation of 516–700 m (FR = 22.86), an STI of 60–80
(FR = 15.73), commercial land use (FR = 9.04), an NDVI of −0.13–0.28 (FR = 6.55), a TWI
of 15–23.74 (FR = 6.48), a distance to a road of 0–100 m (FR = 4.06), a distance to a river of
0–100 m (FR = 2.64), a lithology of group 9 (FR = 2.20), a distance to a fault of 400–600 m
(FR = 1.98), and rainfall of 693–713 mm/y (FR = 1.25), respectively. This analysis shows the
effect of each factor on landslide occurrence.

To evaluate the performance of BFT, BagBFT, and RFBFT in LSM, ROC curves and
AUC values are obtained. The AUC values justify that all three of these models are efficient
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for LSM. The RFBFT model (AUC = 0.895 for training data; AUC = 0.872 for validating
data) serves as the best performer, meaning that the rotation forest algorithm integrates
well with the BFT model, followed by BagBFT (AUC = 0.869 for training data; AUC = 0.834
for validating data), and both outperform the BFT model (AUC = 0.722 for training data;
AUC = 0.718 for validating data) for spatial model accuracy. Among the ensemble methods,
the RFBFT performed slightly better than the BagBFT, making the RFBFT algorithm the
most reliable model for the present case. In previous studies, rotation forest has also been
shown to be among the most outstanding available classification algorithms, and enhances
the performance models with a sole classifier as well [53]. The reason for the less optimal
performance of BagBFT may be that the distribution of the data subset extracted by the
bagging approach is similar to that of the original dataset, making the discrepancy between
the base classifiers not as distinct, leading to the accuracy of the ensemble frameworks
becoming dependent on the selected base classifiers.

In addition, statistical tests and a novel approach are utilized further to estimate
the accuracy rate of the three proposed methods. All three models produce satisfactory
landslide susceptibility prediction for the improved frequency ratio accuracy approach.
The frequency ratio accuracy of the BagBFT (0.92220) and RFBFT (0.92224) models is much
higher than that of the BFT (0.76163) model, which shows good consistency with the results
of the ROC curves, also implying that the RFBFT model works slightly better than the
BagBFT model. Additionally, in Figures 5 and 6, it can be noted that LSMs of the BagBFT
and RFBFT ensemble models are similar on the whole. Therefore, the LSM generated
by the RFBFT ensemble model indicates a better prediction for the spatial aggregation
characteristics and distribution of regional landslides in Zhashui County.

According to the literature review, most ML-based models were proven to have
promising prediction abilities, but may also have certain limitations or challenges involving
hyperparameter tuning [80]. Discussions on hyperparameter optimization are commonly
performed in computer science, while few studies on machine learning-based landslide sus-
ceptibility have been carried out involving hyperparameter optimization [31]. Most LSM
models need to generate a non-landslide dataset [81]. When we use machine learning meth-
ods to assess landslide susceptibility, the ratio of landslide (or positive) to non-landslide (or
negative) input data is significant with regard to the models’ prediction accuracy. Therefore,
an appropriate positive/negative (P/N) ratio is required for ML-based landslide prediction.
This ratio is thought to be a hyperparameter of ML-based LSM models. In this regard, most
researchers tend to adopt the same number of non-landslide samples as landslide ones [14],
namely P/N is equal to 1:1, which is also the value we used in this study. However, some
researchers pointed out that this equal ratio may lead to the overstatement of the proportion
of landslide data in the corresponding area. Hence, different P/N ratios were tried, such as
1:1, 1:2, and 1:3 [82]. Overusing non-landslide samples may cause data pollution, which
deteriorates the model’s performance. Most recently, to overcome the limitation of parame-
ter settings, some researchers have tried to optimize this hyperparameter with different
methods [83], including the support vector regression model [84], the whale optimization
algorithm [85], and the Bayesian optimization algorithm [86]. Hyperparameter tuning
of ML-based models for the best output varies from one issue to another, and so further
studies are needed to aid in the ML model selection process.

Consequently, the results verify that the rotation forest model shows outstanding
performance in improving the generalization ability and accuracy of the base classifier.
Accordingly, the LSMs developed by the RFBFT and BagBFT models, to a certain extent,
indicate a reference meaning to the study area. Identification of landslide-prone areas
are significant and meaningful for land use and planning [87], and advanced techniques
are efficient for this kind of study. The process of factor selection and ensemble model
building has a certain value for similar studies. However, as these various models are
applied in a specific region, the applicability of the models should be tested and varied in
other mountainous areas.
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6. Conclusions

Spatial modeling of landslides is a common and hot topic, and many researchers
have studied this kind of study. The classic statistical approaches solely applied by many
researchers show non-optimal accuracy; however, the mapping capability can be improved
if they are integrated with artificial intelligence algorithms. In this paper, the aim is to build
a new hybrid model to map landslide susceptibility in Zhashui County, China. A best-first
decision (BFT) classifier with bagging (BagBFT) and rotation forest (RFBFT) ensembles
are employed to figure out multi-dimensional and non-linear issues involving landslide
hazards. The prediction ability of fifteen conditioning factors is estimated for the modeling
process with these three models. Finally, a landslide susceptibility map is constructed.
The ROC curve, improved frequency ratio accuracy, and Wilcoxon signed-rank tests are
utilized to assess and compare the performance and accuracy of the three algorithms.
The results illustrate that the RFBFT model has superior sensitivity. Accordingly, the
RFBFT model is the best optimization ensemble for the study area, and it can also be
utilized as a promising approach for spatially modeling the occurrence of landslides. This
study ultimately contributes to providing valuable information for land-use planning and
policymakers in the study area and other similar areas vulnerable to landslides.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15041007/s1, Table S1: Spatial relationship between conditioning factors
and historical landslides using frequency ratio method.
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