8,551 research outputs found

    Performance analysis of spatial modulation aided NOMA with full-duplex relay

    Get PDF
    A spatial modulation aided non-orthogonal multiple access with full-duplex relay (SM-NOMA-FDR) scheme is proposed for the coordinated direct and relay transmission in this paper. Specifically, the signal of the near user is mapped to an M-ary modulated symbol and the signal of the far user is mapped to an SM symbol. The base station first transmits signals to the near user and relay via SM-NOMA, and then the relay decodes and retransmits the signal of the far user. An SM-assisted FDR is used in this scheme to improve the spectral efficiency while reducing energy consumption and making full use of the antenna resources at the relay, since SM only activates one antenna in each transmission. We derive the ergodic capacity and bit error rate of the proposed scheme over independent Rayleigh fading channels. Numerical results validate the accuracy of the theoretical analysis and show the superior performance of the proposed SM-NOMA-FDR scheme

    Multi-Antenna Assisted Virtual Full-Duplex Relaying with Reliability-Aware Iterative Decoding

    Full text link
    In this paper, a multi-antenna assisted virtual full-duplex (FD) relaying with reliability-aware iterative decoding at destination node is proposed to improve system spectral efficiency and reliability. This scheme enables two half-duplex relay nodes, mimicked as FD relaying, to alternatively serve as transmitter and receiver to relay their decoded data signals regardless the decoding errors, meanwhile, cancel the inter-relay interference with QR-decomposition. Then, by deploying the reliability-aware iterative detection/decoding process, destination node can efficiently mitigate inter-frame interference and error propagation effect at the same time. Simulation results show that, without extra cost of time delay and signalling overhead, our proposed scheme outperforms the conventional selective decode-and-forward (S-DF) relaying schemes, such as cyclic redundancy check based S-DF relaying and threshold based S-DF relaying, by up to 8 dB in terms of bit-error-rate.Comment: 6 pages, 4 figures, conference paper has been submitte

    Nonreciprocal Metasurface with Space-Time Phase Modulation

    Full text link
    Creating materials with time-variant properties is critical for breaking reciprocity that imposes fundamental limitations to wave propagation. However, it is challenging to realize efficient and ultrafast temporal modulation in a photonic system. Here, leveraging both spatial and temporal phase manipulation offered by an ultrathin nonlinear metasurface, we experimentally demonstrated nonreciprocal light reflection at wavelengths around 860 nm. The metasurface, with traveling-wave modulation upon nonlinear Kerr building blocks, creates spatial phase gradient and multi-terahertz temporal phase wobbling, which leads to unidirectional photonic transitions in both momentum and energy spaces. We observed completely asymmetric reflections in forward and backward light propagations within a sub-wavelength interaction length of 150 nm. Our approach pointed out a potential means for creating miniaturized and integratable nonreciprocal optical components.Comment: 25 pages, 5 figure

    Dual-carrier Floquet circulator with time-modulated optical resonators

    Full text link
    Spatio-temporal modulation has shown great promise as a strong time-reversal symmetry breaking mechanism that enables integrated nonreciprocal devices and topological materials at optical frequencies. However, optical modulation has its own constraints in terms of modulation index and frequency, which limit the bandwidth and miniaturization of circulators and isolators, not unlike the magneto-optical schemes that it promises to replace. Here we propose and numerically demonstrate a Floquet circulator that leverages the untapped degrees of freedom unique to time-modulated resonators. Excited by sideband-selective waveguides, the system supports broadband nonreciprocal transmission without relying on the mirror or rotational symmetries required in conventional circulators. Cascading two resonators, we create a linear three-port circulator that exhibits complete and frequency-independent forward transmission between two of the ports. This approach enables wavelength-scale circulators that can rely on a variety of modulation mechanisms

    Simultaneous Bidirectional Link Selection in Full Duplex MIMO Systems

    Full text link
    In this paper, we consider a point to point full duplex (FD) MIMO communication system. We assume that each node is equipped with an arbitrary number of antennas which can be used for transmission or reception. With FD radios, bidirectional information exchange between two nodes can be achieved at the same time. In this paper we design bidirectional link selection schemes by selecting a pair of transmit and receive antenna at both ends for communications in each direction to maximize the weighted sum rate or minimize the weighted sum symbol error rate (SER). The optimal selection schemes require exhaustive search, so they are highly complex. To tackle this problem, we propose a Serial-Max selection algorithm, which approaches the exhaustive search methods with much lower complexity. In the Serial-Max method, the antenna pairs with maximum "obtainable SINR" at both ends are selected in a two-step serial way. The performance of the proposed Serial-Max method is analyzed, and the closed-form expressions of the average weighted sum rate and the weighted sum SER are derived. The analysis is validated by simulations. Both analytical and simulation results show that as the number of antennas increases, the Serial-Max method approaches the performance of the exhaustive-search schemes in terms of sum rate and sum SER
    • …
    corecore