141,578 research outputs found

    Exogenous spatial precuing reliably modulates object processing but not object substitution masking

    Get PDF
    Object substitution masking (OSM) is used in behavioral and imaging studies to investigate processes associated with the formation of a conscious percept. Reportedly, OSM occurs only when visual attention is diffusely spread over a search display or focused away from the target location. Indeed, the presumed role of spatial attention is central to theoretical accounts of OSM and of visual processing more generally (Di Lollo, Enns, & Rensink, Journal of Experimental Psychology: General 129:481–507, 2000). We report a series of five experiments in which valid spatial precuing is shown to enhance the ability of participants to accurately report a target but, in most cases, without affecting OSM. In only one experiment (Experiment 5) was a significant effect of precuing observed on masking. This is in contrast to the reliable effect shown across all five experiments in which precuing improved overall performance. The results are convergent with recent findings from Argyropoulos, Gellatly, and Pilling (Journal of Experimental Psychology: Human Perception and Performance 39:646–661, 2013), which show that OSM is independent of the number of distractor items in a display. Our results demonstrate that OSM can operate independently of focal attention. Previous claims of the strong interrelationship between OSM and spatial attention are likely to have arisen from ceiling or floor artifacts that restricted measurable performance

    Investigating interactions between search mechanisms in the control of visual attention

    Get PDF
    Olds, Cowan and Jolicoeur (2000) showed that although the mechanisms underlying visual search have traditionally been assumed to be independent. in fact they interact. Using coloured disk stimuli, they interrupted pop-out search (target plus Dl distractors) by adding more distractors (D2s) of a different colour to the display before pop-out processes were able to ïŹnd the target. In short, partially completed pop-out processes facilitated subsequent difficult search processes (“search assistance ). The present study investigated hypotheses for this interaction. In Experiments 1 and 2, we used methods aimed at determining where the bulk of attentional resources are allocated during search of a visual display assumed to produce search assistance (by measuring the effect of inhibition of return [IOR] between DI and D2 locations). In Experiment 1, we ïŹrst presented observers with a search task that has been shown to produce search assistance (using coloured disks: see Olds et al., 2000). Immediately following target response, observers had to determine as quickly and accurately as possible whether a small probe-dot (that appeared on one of the disks) was present or absent. The results of Experiment 1 provided tentative support for a negative prioritisation hypothesis which proposed that some initial distractors (Dls) are eliminated from consideration during the second portion of the display. The sequence of events in Experiment 2 were identical to that of Experiment 1 except that, following target response, observers had to make a temporal order judgement (TOJ) as to which of two physically simultaneous lines (one on a Dl, and one on a D2) appeared ïŹrst. The results of Experiment 2 did not support either of the hypotheses regarding the nature of search assistance. Experiment 3 examined the effect of spatial cues on difficult search by attempting to eliminate the effect of negative prioritisation while measuring the effect of positive prioritisation. The results of Experiment 3 provided evidence in support of a positive prioritisation hypothesis which proposed that the initial items are more likely to be searched in the second portion of the display. Future research is discussed

    Dynamics of perceptual learning in visual search

    Get PDF
    The present work is concerned with a phenomenon referred to as contextual cueing. In visual search, if a searched-for target object is consistently encountered within a stable spatial arrangement of distractor objects, detecting the target becomes more efficient over time, relative to non-repeated, random arrangements. This effect is attributed to learned target-distractor spatial associations stored in long-term memory, which expedite visual search. This Thesis investigates four aspects of contextual cueing: Study 1 tackled the implicit-explicit debate of contextual cueing from a new perspective. Previous studies tested explicit access to learned displays by applying a recognition test, asking observers whether they have seen a given display in the previous search task. These tests, however, typically yield mixed findings and there is an on-going controversy whether contextual cueing can be described as an implicit or an explicit effect. The current study applied the new perspective of metacognition to contextual cueing and combined a contextual cueing task with metacognitive ratings about the clarity of the visual experience, either of the display configuration or the target stimulus. Bayesian analysis revealed that there was an effect of repeated context on metacognitive sensitivity for configuration, but not target, ratings. It was concluded that effects of contextual memory on metacognition are content-specific and lead to increased metacognitive access to the display configuration, but not to the target stimulus. The more general implication is that from the perspective of metacognition, contextual cueing can be considered as an explicit effect. Study 2 aimed at testing how explicit knowledge affects memory-guided visual search. Two sets of search displays were shown to participants: explicit and implicit displays. Explicit displays were introduced prior to the search experiment, in a dedicated learning session, and observers should deliberately learn these displays. Implicit displays, on the other hand, were first shown in the search experiment and learning was incidental through repeated exposure to these displays. Contextual cueing arising from explicit and implicit displays was assessed relative to a baseline condition of non-repeated displays. The results showed a standard contextual cueing effect for explicit displays and, interestingly, a negative cueing effect for implicit displays. Recognition performance was above chance for both types of repeated displays; however, it was higher for explicit displays. This pattern of results confirmed – in part – the predictions of a single memory model of attention-moderated associative learning, in which different display types compete for behavior and explicit representations block the retrieval of implicit representations. Study 3 investigates interactions between long-term contextual memory with short-term perceptual hypotheses. Both types of perceptual memory share high similarities with respect to their content, therefore the hypothesis was formulated that they share a common memory resource. In three experiments of interrupted search with repeated and non-repeated displays, it was shown that contextual cueing expedites performance in interrupted search; however, there was no interaction of contextual cueing with the generation or the confirmation of perceptual hypotheses. Rather, the analysis of fixational eye movements showed that long-term memory exerts its influence on search performance upon the first glance of a given display, essentially affecting the starting point of the search process. The behavior of approaching the target stimulus is then a product of generating and confirming perceptual hypotheses with these processes being unaffected by long-term contextual memory. It was concluded that long-term and short-term memory representations of the same search display are independent and exhibit additive effects on search performance. Study 4 is concerned with the effects of reward on perceptual learning. It was argued that rewarding repeated displays in a contextual cueing paradigm leads to an acceleration of the learning effect; however, it was not considered whether reward also has an effect in non-repeated displays. In these displays, at least the target position is kept constant while distractor configurations are random across repetitions. Usually this is done in order to account for target position-specific probability learning in contextual cueing. However, it is possible that probability learning itself is modulated by reward. The current experiment introduced high or low reward to repeated and importantly, also non-repeated displays. It was shown that reward had a huge effect on non-repeated displays, indicating that rewarding certain target positions, irrespective of the distractor layout, facilitates RT performance. Interestingly, reward effects were even larger for non-repeated compared to repeated displays. It was concluded that reward has a strong effect on probability-, and not context learning

    The role of crowding in parallel search

    Get PDF
    Crowding is the deleterious effect of nearby objects on object recognition in the peripheral (Pelli, 2008). In three visual search experiments the contribution of visual crowding to reaction time performance in an efficient search task was evaluated by varying the factors known to affect the strength of crowding: spacing between objects and similarity. Traditionally, pop-out search is believed to isolate the first stage of visual processing and has been characterized as producing shallow search slopes (<10 ms/item), which are independent of set size. Recent results from our lab suggest discrimination pop-out search has a logarithmic relationship between reaction time and set size, which is modulated by the lure-target similarity (Buetti et al., in press). These results have been interpreted as resulting from the first stage of visual processing that is exhaustive, unlimited-in-capacity and resolution limited. Items sufficiently dissimilar to the target are rejected by stage-one processing, and items sufficiently similar to the target are inspected with focused attention. Here we ask if the limitation in resolution in stage-one processing is a result of crowding and evaluate the contribution of crowding to our previous logarithmic search slope findings. In three experiments reaction time performance was compared on two possible display types which differed in the spatial arrangements. The results from three experiments converge on the same pattern of results: reaction times increased logarithmically with set size and were modulated by lure-target similarity for both display types

    A secondary task is not always costly: context-based guidance of visual search survives interference from a demanding working memory task

    Get PDF
    Repeatedly encountering a visual search display with the target located at a fixed position relative to the distractors facilitates target detection, relative to novel displays – which is attributed to search guidance by (acquired) long‐term memory (LTM) of the distractor ‘context’ of the target. Previous research has shown that this ‘contextual cueing’ effect is severely impeded during learning when participants have to perform a demanding spatial working memory (WM) task concurrently with the search task, though it does become manifest when the WM task is removed. This has led to the proposal that search guidance by LT context memories critically depends on spatial WM to become ‘expressed’ in behaviour. On this background, this study, of two experiments, asked: (1) Would contextual cueing eventually emerge under dual‐task learning conditions if the practice on the task(s) is extended beyond the short training implemented in previous studies? and given sufficient practice, (2) Would performing the search under dual‐task conditions actually lead to an increased cueing effect compared to performing the visual search task alone? The answer is affirmative to both questions. In particular, Experiment 1 showed that a robust contextual cueing effect emerges within 360–720 dual‐task trials as compared to some 240 single‐task trials. Further, Experiment 2 showed that when dual‐ and single‐task conditions are performed in alternating trials blocks, the cueing effect for the very same set of repeated displays is significantly larger in dual‐task blocks than in single‐task blocks. This pattern of effects suggests that dual‐task practice eventually leads to direct, or ‘automatic’, guidance of visual search by learnt spatial LTM representations, bypassing WM processes. These processes are normally engaged in single‐task performance might actually interfere with direct LTM‐based search guidance

    The effect of task-irrelevant objects in spatial contextual cueing

    Get PDF
    During visual search, the spatial configuration of the stimuli can be learned when the same displays are presented repeatedly, thereby guiding attention more efficiently to the target location (contextual cueing effect). This study investigated how the presence of a task-irrelevant object influences the contextual cueing effect. Experiment 1 used a standard T/L search task with “old” display configurations presented repeatedly among “new” displays. A green-filled square appeared at unoccupied locations within the search display. The results showed that the typical contextual cueing effect was strongly reduced when a square was added to the display. In Experiment 2, the contextual cueing effect was reinstated by simply including trials where the square could appear at an occupied location (i.e., underneath the search stimuli). Experiment 3 replicated the previous experiment, showing that the restored contextual cueing effect did not depend on whether the square was actually overlapping with a stimulus or not. The final two experiments introduced a display change in the last epoch. The results showed that the square does not only hinder the acquisition of contextual information but also its manifestation. These findings are discussed in terms of an account where effective contextual learning depends on whether the square is perceived as part of the search display or as part of the display background

    Dynamics of perceptual learning in visual search

    Get PDF
    The present work is concerned with a phenomenon referred to as contextual cueing. In visual search, if a searched-for target object is consistently encountered within a stable spatial arrangement of distractor objects, detecting the target becomes more efficient over time, relative to non-repeated, random arrangements. This effect is attributed to learned target-distractor spatial associations stored in long-term memory, which expedite visual search. This Thesis investigates four aspects of contextual cueing: Study 1 tackled the implicit-explicit debate of contextual cueing from a new perspective. Previous studies tested explicit access to learned displays by applying a recognition test, asking observers whether they have seen a given display in the previous search task. These tests, however, typically yield mixed findings and there is an on-going controversy whether contextual cueing can be described as an implicit or an explicit effect. The current study applied the new perspective of metacognition to contextual cueing and combined a contextual cueing task with metacognitive ratings about the clarity of the visual experience, either of the display configuration or the target stimulus. Bayesian analysis revealed that there was an effect of repeated context on metacognitive sensitivity for configuration, but not target, ratings. It was concluded that effects of contextual memory on metacognition are content-specific and lead to increased metacognitive access to the display configuration, but not to the target stimulus. The more general implication is that from the perspective of metacognition, contextual cueing can be considered as an explicit effect. Study 2 aimed at testing how explicit knowledge affects memory-guided visual search. Two sets of search displays were shown to participants: explicit and implicit displays. Explicit displays were introduced prior to the search experiment, in a dedicated learning session, and observers should deliberately learn these displays. Implicit displays, on the other hand, were first shown in the search experiment and learning was incidental through repeated exposure to these displays. Contextual cueing arising from explicit and implicit displays was assessed relative to a baseline condition of non-repeated displays. The results showed a standard contextual cueing effect for explicit displays and, interestingly, a negative cueing effect for implicit displays. Recognition performance was above chance for both types of repeated displays; however, it was higher for explicit displays. This pattern of results confirmed – in part – the predictions of a single memory model of attention-moderated associative learning, in which different display types compete for behavior and explicit representations block the retrieval of implicit representations. Study 3 investigates interactions between long-term contextual memory with short-term perceptual hypotheses. Both types of perceptual memory share high similarities with respect to their content, therefore the hypothesis was formulated that they share a common memory resource. In three experiments of interrupted search with repeated and non-repeated displays, it was shown that contextual cueing expedites performance in interrupted search; however, there was no interaction of contextual cueing with the generation or the confirmation of perceptual hypotheses. Rather, the analysis of fixational eye movements showed that long-term memory exerts its influence on search performance upon the first glance of a given display, essentially affecting the starting point of the search process. The behavior of approaching the target stimulus is then a product of generating and confirming perceptual hypotheses with these processes being unaffected by long-term contextual memory. It was concluded that long-term and short-term memory representations of the same search display are independent and exhibit additive effects on search performance. Study 4 is concerned with the effects of reward on perceptual learning. It was argued that rewarding repeated displays in a contextual cueing paradigm leads to an acceleration of the learning effect; however, it was not considered whether reward also has an effect in non-repeated displays. In these displays, at least the target position is kept constant while distractor configurations are random across repetitions. Usually this is done in order to account for target position-specific probability learning in contextual cueing. However, it is possible that probability learning itself is modulated by reward. The current experiment introduced high or low reward to repeated and importantly, also non-repeated displays. It was shown that reward had a huge effect on non-repeated displays, indicating that rewarding certain target positions, irrespective of the distractor layout, facilitates RT performance. Interestingly, reward effects were even larger for non-repeated compared to repeated displays. It was concluded that reward has a strong effect on probability-, and not context learning

    Spatial Probability Aids Visual Stimulus Discrimination

    Get PDF
    We investigated whether the statistical predictability of a target's location would influence how quickly and accurately it was classified. Recent results have suggested that spatial probability can be a cue for the allocation of attention in visual search. One explanation for probability cuing is spatial repetition priming. In our two experiments we used probability distributions that were continuous across the display rather than relying on a few arbitrary screen locations. This produced fewer spatial repeats and allowed us to dissociate the effect of a high-probability location from that of short-term spatial repetition. The task required participants to quickly judge the color of a single dot presented on a computer screen. In Experiment 1, targets were more probable in an off-center hotspot of high-probability that gradually declined to a background rate. Targets garnered faster responses if they were near earlier target locations (priming) and if they were near the high-probability hotspot (probability cuing). In Experiment 2, target locations were chosen on three concentric circles around fixation. One circle contained 80% of targets. The value of this ring distribution is that it allowed for a spatially restricted high-probability zone in which sequentially repeated trials were not likely to be physically close. Participant performance was sensitive to the high-probability circle in addition to the expected effects of eccentricity and the distance to recent targets. These two experiments suggest that inhomogeneities in spatial probability can be learned and used by participants on-line and without prompting as an aid for visual stimulus discrimination and that spatial repetition priming is not a sufficient explanation for this effect. Future models of attention should consider explicitly incorporating the probabilities of targets locations and features

    Exogenous spatial precuing reliably modulates object processing but not object substitution masking.

    Get PDF
    Object substitution masking (OSM) is used in behavioral and imaging studies to investigate processes associated with the formation of a conscious percept. Reportedly, OSM occurs only when visual attention is diffusely spread over a search display or focused away from the target location. Indeed, the presumed role of spatial attention is central to theoretical accounts of OSM and of visual processing more generally (Di Lollo, Enns, & Rensink, Journal of Experimental Psychology: General 129:481-507, 2000). We report a series of five experiments in which valid spatial precuing is shown to enhance the ability of participants to accurately report a target but, in most cases, without affecting OSM. In only one experiment (Experiment 5) was a significant effect of precuing observed on masking. This is in contrast to the reliable effect shown across all five experiments in which precuing improved overall performance. The results are convergent with recent findings from Argyropoulos, Gellatly, and Pilling (Journal of Experimental Psychology: Human Perception and Performance 39:646-661, 2013), which show that OSM is independent of the number of distractor items in a display. Our results demonstrate that OSM can operate independently of focal attention. Previous claims of the strong interrelationship between OSM and spatial attention are likely to have arisen from ceiling or floor artifacts that restricted measurable performance
    • 

    corecore