7 research outputs found

    Spatial Diversity in Signal Strength Based WLAN Location Determination Systems

    Get PDF
    Literature indicates that spatial diversity can be utilized to compensate channel uncertainties such as multipath fading. Therefore, in this paper, spatial diversity is exploited for locating stationary and mobile objects in the indoor environment. First, space diversity technique is introduced for small scale motion and temporal variation compensation of received signal strength and it is demonstrated analytically that it enhances location accuracy. Small scale motion refers to movements of the transmitter and/or the receiver of the order of sub-wavelengths while temporal effects refer to environmental variations with time. A novel metric is introduced for selection combining in order to improve location accuracy through the addition of spatial diversity upon two available location determination schemes. The results are evaluated experimentally against single antenna system for reception by using low cost wireless RF devices such as motes. Alternatively, the impact of the number of location determination devices in a probabilistic WLAN network based on pre-profiling of signal strength is analyzed and it is demonstrated analytically that location accuracy improves with the number of receivers used. Spatial diversity in terms of the antenna spacing of 2lambda is evaluated and shown to provide a reduction in location determination error between 30 and 40% when compared to a single antenna system

    Real-time localization using received signal strength

    Get PDF
    Locating and tracking assets in an indoor environment is a fundamental requirement for several applications which include for instance network enabled manufacturing. However, translating time of flight-based GPS technique for indoor solutions has proven very costly and inaccurate primarily due to the need for high resolution clocks and the non-availability of reliable line of sight condition between the transmitter and receiver. In this dissertation, localization and tracking of wireless devices using radio signal strength (RSS) measurements in an indoor environment is undertaken. This dissertation is presented in the form of five papers. The first two papers deal with localization and placement of receivers using a range-based method where the Friis transmission equation is used to relate the variation of the power with radial distance separation between the transmitter and receiver. The third paper introduces the cross correlation based localization methodology. Additionally, this paper also presents localization of passive RFID tags operating at 13.56MHz frequency or less by measuring the cross-correlation in multipath noise from the backscattered signals. The fourth paper extends the cross-correlation based localization algorithm to wireless devices operating at 2.4GHz by exploiting shadow fading cross-correlation. The final paper explores the placement of receivers in the target environment to ensure certain level of localization accuracy under cross-correlation based method. The effectiveness of our localization methodology is demonstrated experimentally by using IEEE 802.15.4 radios operating in fading noise rich environment such as an indoor mall and in a laboratory facility of Missouri University of Science and Technology. Analytical performance guarantees are also included for these methods in the dissertation --Abstract, page iv

    Positioning in Indoor Mobile Systems

    Get PDF
    Non

    Space-partitioning with cascade-connected ANN structures for positioning in mobile communication systems

    Get PDF
    The world around us is getting more connected with each day passing by – new portable devices employing wireless connections to various networks wherever one might be. Locationaware computing has become an important bit of telecommunication services and industry. For this reason, the research efforts on new and improved localisation algorithms are constantly being performed. Thus far, the satellite positioning systems have achieved highest popularity and penetration regarding the global position estimation. In spite the numerous investigations aimed at enabling these systems to equally procure the position in both indoor and outdoor environments, this is still a task to be completed. This research work presented herein aimed at improving the state-of-the-art positioning techniques through the use of two highly popular mobile communication systems: WLAN and public land mobile networks. These systems already have widely deployed network structures (coverage) and a vast number of (inexpensive) mobile clients, so using them for additional, positioning purposes is rational and logical. First, the positioning in WLAN systems was analysed and elaborated. The indoor test-bed, used for verifying the models’ performances, covered almost 10,000m2 area. It has been chosen carefully so that the positioning could be thoroughly explored. The measurement campaigns performed therein covered the whole of test-bed environment and gave insight into location dependent parameters available in WLAN networks. Further analysis of the data lead to developing of positioning models based on ANNs. The best single ANN model obtained 9.26m average distance error and 7.75m median distance error. The novel positioning model structure, consisting of cascade-connected ANNs, improved those results to 8.14m and 4.57m, respectively. To adequately compare the proposed techniques with other, well-known research techniques, the environment positioning error parameter was introduced. This parameter enables to take the size of the test environment into account when comparing the accuracy of the indoor positioning techniques. Concerning the PLMN positioning, in-depth analysis of available system parameters and signalling protocols produced a positioning algorithm, capable of fusing the system received signal strength parameters received from multiple systems and multiple operators. Knowing that most of the areas are covered by signals from more than one network operator and even more than one system from one operator, it becomes easy to note the great practical value of this novel algorithm. On the other hand, an extensive drive-test measurement campaign, covering more than 600km in the central areas of Belgrade, was performed. Using this algorithm and applying the single ANN models to the recorded measurements, a 59m average distance error and 50m median distance error were obtained. Moreover, the positioning in indoor environment was verified and the degradation of performances, due to the crossenvironment model use, was reported: 105m average distance error and 101m median distance error. When applying the new, cascade-connected ANN structure model, distance errors were reduced to 26m and 2m, for the average and median distance errors, respectively. The obtained positioning accuracy was shown to be good enough for the implementation of a broad scope of location based services by using the existing and deployed, commonly available, infrastructure

    Spatial Diversity in Signal Strength based WLAN Location Determination Systems

    No full text

    Sensor Fusion for Location Estimation Technologies

    No full text
    Location estimation performance is not always satisfactory and improving it can be expensive. The performance of location estimation technology can be increased by refining the existing location estimation technologies. A better way of increasing performance is to use multiple technologies and combine the available data provided by them in order to obtain better results. Also, maintaining one's location privacy while using location estimation technology is a challenge. How can this problem be solved? In order to make it easier to perform sensor fusion on the available data and to speed up development, a flexible framework centered around a component-based architecture was designed. In order to test the performance of location estimation using the proposed sensor fusion framework, the framework and all the necessary components were implemented and tested. In order to solve the location estimation privacy issues, a comprehensive design that considers all aspects of the problem, from the physical aspects of using radio transmissions to communicating and using location data, is proposed. The experimental results of testing the location estimation sensor fusion framework show that by using sensor fusion, the availability of location estimation is always increased and the accuracy is always increased on average. The experimental results also allow the profiling of the sensor fusion framework's time and energy consumption. In the case of time consumption, there is a 0.32% - 17.06% - 5.05% - 77.58% split between results overhead, engine overhead, component communication time and component execution time on an average. The more measurements are gathered by the data gathering components, the more the component execution time increases relative to all the other execution times because component execution time is the only one that increases while the others remain constant

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore