5 research outputs found

    Fuzzy EOQ Model with Trapezoidal and Triangular Functions Using Partial Backorder

    Get PDF
    EOQ fuzzy model is EOQ model that can estimate the cost from existing information. Using trapezoid fuzzy functions can estimate the costs of existing and trapezoid membership functions has some points that have a value of membership . TR ̃C value results of trapezoid fuzzy will be higher than usual TRC value results of EOQ model . This paper aims to determine the optimal amount of inventory in the company, namely optimal Q and optimal V, using the model of partial backorder will be known optimal Q and V for the optimal number of units each time a message . EOQ model effect on inventory very closely by using EOQ fuzzy model with triangular and trapezoid membership functions with partial backorder. Optimal Q and optimal V values for the optimal fuzzy models will have an increase due to the use of trapezoid and triangular membership functions that have a different value depending on the requirements of each membership function value. Therefore, by using a fuzzy model can solve the company's problems in estimating the costs for the next term

    Spatial Clustering of Structured Objects

    No full text
    Clustering is a fundamental task in Spatial Data Mining where data consists of observations for a site (e.g. areal units) descriptive of one or more (spatial) primary units, possibly of different type, collected within the same site boundary. The goal is to group structured objects, i.e. data collected at different sites, such that data inside each cluster models the continuity of socio-economic or geographic environment, while separate clusters model variation over the space. Continuity is evaluated according to the spatial organization arising in data, namely discrete spatial structure, expressing the (spatial) relations between separate sites implicitly defined by their geometrical representation and positioning. Data collected within sites that are (transitively) connected in the discrete spatial structure are clustered together according to the similarity on multi-relational descriptions representing their internal structure. CORSO is a novel spatial data mining method that resorts to a multi-relational approach to learn relational spatial data and exploits the concept of neighborhood to capture relational constraints embedded in the discrete spatial structure. Relational data are expressed in a first-order formalism and similarity among structured objects is computed as degree of matching with respect to a common generalization. The application to real-world spatial data is reported

    On homogeneity evaluation and seed selection in spatial clustering of structured objects

    No full text
    CORSO is a method to discover clusters of structured objects related each other according to some spatial relation. Clusters are built by merging contiguous neighborhoods which are homogeneous. Hence, quality of clusters depends on evaluation of cluster homogeneity as well as selection of the seed objects. To face these issues, we illustrate some solutions whose validity is confirmed by experimental results
    corecore