28,990 research outputs found

    Feeling what you hear: tactile feedback for navigation of audio graphs

    Get PDF
    Access to digitally stored numerical data is currently very limited for sight impaired people. Graphs and visualizations are often used to analyze relationships between numerical data, but the current methods of accessing them are highly visually mediated. Representing data using audio feedback is a common method of making data more accessible, but methods of navigating and accessing the data are often serial in nature and laborious. Tactile or haptic displays could be used to provide additional feedback to support a point-and-click type interaction for the visually impaired. A requirements capture conducted with sight impaired computer users produced a review of current accessibility technologies, and guidelines were extracted for using tactile feedback to aid navigation. The results of a qualitative evaluation with a prototype interface are also presented. Providing an absolute position input device and tactile feedback allowed the users to explore the graph using tactile and proprioceptive cues in a manner analogous to point-and-click techniques

    Spatial audio in small display screen devices

    Get PDF
    Our work addresses the problem of (visual) clutter in mobile device interfaces. The solution we propose involves the translation of technique-from the graphical to the audio domain-for expliting space in information representation. This article presents an illustrative example in the form of a spatialisedaudio progress bar. In usability tests, participants performed background monitoring tasks significantly more accurately using this spatialised audio (a compared with a conventional visual) progress bar. Moreover, their performance in a simultaneously running, visually demanding foreground task was significantly improved in the eye-free monitoring condition. These results have important implications for the design of multi-tasking interfaces for mobile devices

    Model-based target sonification on mobile devices

    Get PDF
    We investigate the use of audio and haptic feedback to augment the display of a mobile device controlled by tilt input. We provide an example of this based on Doppler effects, which highlight the user's approach to a target, or a target's movement from the current state, in the same way we hear the pitch of a siren change as it passes us. Twelve participants practiced navigation/browsing a state-space that was displayed via audio and vibrotactile modalities. We implemented the experiment on a Pocket PC, with an accelerometer attached to the serial port and a headset attached to audio port. Users navigated through the environment by tilting the device. Feedback was provided via audio displayed via a headset, and by vibrotactile information displayed by a vibrotactile unit in the Pocket PC. Users selected targets placed randomly in the state-space, supported by combinations of audio, visual and vibrotactile cues. The speed of target acquisition and error rate were measured, and summary statistics on the acquisition trajectories were calculated. These data were used to compare different display combinations and configurations. The results in the paper quantified the changes brought by predictive or 'quickened' sonified displays in mobile, gestural interaction

    Crossmodal spatial location: initial experiments

    Get PDF
    This paper describes an alternative form of interaction for mobile devices using crossmodal output. The aim of our work is to investigate the equivalence of audio and tactile displays so that the same messages can be presented in one form or another. Initial experiments show that spatial location can be perceived as equivalent in both the auditory and tactile modalities Results show that participants are able to map presented 3D audio positions to tactile body positions on the waist most effectively when mobile and that there are significantly more errors made when using the ankle or wrist. This paper compares the results from both a static and mobile experiment on crossmodal spatial location and outlines the most effective ways to use this crossmodal output in a mobile context

    Presenting dynamic information on mobile computers

    Get PDF
    A problem with mobile computing devices is the output of dynamic information owing to their small screens. This paper describes an experiment to investigate the use of non-speech sounds to present dynamic information without using visual display space. Results showed that non-speech sound could be used in a simple share-dealing scenario to present a “sound graph” of share prices. This allowed participants to reduce the workload they had to invest in share-price monitoring as they could listen to the graph whilst they worked in a share accumulation window
    • …
    corecore