1,398 research outputs found

    Binding and Normalization of Binary Sparse Distributed Representations by Context-Dependent Thinning

    Get PDF
    Distributed representations were often criticized as inappropriate for encoding of data with a complex structure. However Plate's Holographic Reduced Representations and Kanerva's Binary Spatter Codes are recent schemes that allow on-the-fly encoding of nested compositional structures by real-valued or dense binary vectors of fixed dimensionality. In this paper we consider procedures of the Context-Dependent Thinning which were developed for representation of complex hierarchical items in the architecture of Associative-Projective Neural Networks. These procedures provide binding of items represented by sparse binary codevectors (with low probability of 1s). Such an encoding is biologically plausible and allows a high storage capacity of distributed associative memory where the codevectors may be stored. In contrast to known binding procedures, Context-Dependent Thinning preserves the same low density (or sparseness) of the bound codevector for varied number of component codevectors. Besides, a bound codevector is not only similar to another one with similar component codevectors (as in other schemes), but it is also similar to the component codevectors themselves. This allows the similarity of structures to be estimated just by the overlap of their codevectors, without retrieval of the component codevectors. This also allows an easy retrieval of the component codevectors. Examples of algorithmic and neural-network implementations of the thinning procedures are considered. We also present representation examples for various types of nested structured data (propositions using role-filler and predicate-arguments representation schemes, trees, directed acyclic graphs) using sparse codevectors of fixed dimension. Such representations may provide a fruitful alternative to the symbolic representations of traditional AI, as well as to the localist and microfeature-based connectionist representations

    Towards Lifelong Reasoning with Sparse and Compressive Memory Systems

    Get PDF
    Humans have a remarkable ability to remember information over long time horizons. When reading a book, we build up a compressed representation of the past narrative, such as the characters and events that have built up the story so far. We can do this even if they are separated by thousands of words from the current text, or long stretches of time between readings. During our life, we build up and retain memories that tell us where we live, what we have experienced, and who we are. Adding memory to artificial neural networks has been transformative in machine learning, allowing models to extract structure from temporal data, and more accurately model the future. However the capacity for long-range reasoning in current memory-augmented neural networks is considerably limited, in comparison to humans, despite the access to powerful modern computers. This thesis explores two prominent approaches towards scaling artificial memories to lifelong capacity: sparse access and compressive memory structures. With sparse access, the inspection, retrieval, and updating of only a very small subset of pertinent memory is considered. It is found that sparse memory access is beneficial for learning, allowing for improved data-efficiency and improved generalisation. From a computational perspective - sparsity allows scaling to memories with millions of entities on a simple CPU-based machine. It is shown that memory systems that compress the past to a smaller set of representations reduce redundancy and can speed up the learning of rare classes and improve upon classical data-structures in database systems. Compressive memory architectures are also devised for sequence prediction tasks and are observed to significantly increase the state-of-the-art in modelling natural language

    Dynamic Virtual Page-based Flash Translation Layer with Novel Hot Data Identification and Adaptive Parallelism Management

    Get PDF
    Solid-state disks (SSDs) tend to replace traditional motor-driven hard disks in high-end storage devices in past few decades. However, various inherent features, such as out-of-place update [resorting to garbage collection (GC)] and limited endurance (resorting to wear leveling), need to be reduced to a large extent before that day comes. Both the GC and wear leveling fundamentally depend on hot data identification (HDI). In this paper, we propose a hot data-aware flash translation layer architecture based on a dynamic virtual page (DVPFTL) so as to improve the performance and lifetime of NAND flash devices. First, we develop a generalized dual layer HDI (DL-HDI) framework, which is composed of a cold data pre-classifier and a hot data post-identifier. Those can efficiently follow the frequency and recency of information access. Then, we design an adaptive parallelism manager (APM) to assign the clustered data chunks to distinct resident blocks in the SSD so as to prolong its endurance. Finally, the experimental results from our realized SSD prototype indicate that the DVPFTL scheme has reliably improved the parallelizability and endurance of NAND flash devices with improved GC-costs, compared with related works.Peer reviewe

    Capacity Analysis of Vector Symbolic Architectures

    Full text link
    Hyperdimensional computing (HDC) is a biologically-inspired framework which represents symbols with high-dimensional vectors, and uses vector operations to manipulate them. The ensemble of a particular vector space and a prescribed set of vector operations (including one addition-like for "bundling" and one outer-product-like for "binding") form a *vector symbolic architecture* (VSA). While VSAs have been employed in numerous applications and have been studied empirically, many theoretical questions about VSAs remain open. We analyze the *representation capacities* of four common VSAs: MAP-I, MAP-B, and two VSAs based on sparse binary vectors. "Representation capacity' here refers to bounds on the dimensions of the VSA vectors required to perform certain symbolic tasks, such as testing for set membership i∈Si \in S and estimating set intersection sizes ∣X∩Y∣|X \cap Y| for two sets of symbols XX and YY, to a given degree of accuracy. We also analyze the ability of a novel variant of a Hopfield network (a simple model of associative memory) to perform some of the same tasks that are typically asked of VSAs. In addition to providing new bounds on VSA capacities, our analyses establish and leverage connections between VSAs, "sketching" (dimensionality reduction) algorithms, and Bloom filters

    Cleanup Memory in Biologically Plausible Neural Networks

    Get PDF
    During the past decade, a new class of knowledge representation has emerged known as structured distributed representation (SDR). A number of schemes for encoding and manipulating such representations have been developed; e. g. Pollack's Recursive Auto-Associative Memory (RAAM), Kanerva's Binary Spatter Code (BSC), Gayler's MAP encoding, and Plate's Holographically Reduced Representations (HRR). All such schemes encode structural information throughout the elements of high dimensional vectors, and are manipulated with rudimentary algebraic operations. Most SDRs are very compact; components and compositions of components are all represented as fixed-width vectors. However, such compact compositions are unavoidably noisy. As a result, resolving constituent components requires a cleanup memory. In its simplest form, cleanup is performed with a list of vectors that are sequentially compared using a similarity metric. The closest match is deemed the cleaned codevector. While SDR schemes were originally designed to perform cognitive tasks, none of them have been demonstrated in a neurobiologically plausible substrate. Potentially, mathematically proven properties of these systems may not be neurally realistic. Using Eliasmith and Anderson's (2003) Neural Engineering Framework, I construct various spiking neural networks to simulate a general cleanup memory that is suitable for many schemes. Importantly, previous work has not taken advantage of parallelization or the high-dimensional properties of neural networks. Nor have they considered the effect of noise within these systems. As well, additional improvements to the cleanup operation may be possible by more efficiently structuring the memory itself. In this thesis I address these lacuna, provide an analysis of systems accuracy, capacity, scalability, and robustness to noise, and explore ways to improve the search efficiency

    Extensible sparse functional arrays with circuit parallelism

    Get PDF
    A longstanding open question in algorithms and data structures is the time and space complexity of pure functional arrays. Imperative arrays provide update and lookup operations that require constant time in the Random Access Machine (RAM) theoretical model, but it is conjectured that there does not exist a RAM algorithm that achieves the same complexity for functional arrays, unless restrictions are placed on the operations. The main result of this paper is an algorithm that does achieve optimal unit time and space complexity for update and lookup on functional arrays. This algorithm does not run on a RAM, but instead it exploits the massive parallelism inherent in digital circuits. The algorithm also provides unit time operations that support storage management, as well as sparse and extensible arrays. The main idea behind the algorithm is to replace a RAM memory by a tree circuit that is more powerful than the RAM yet has the same asymptotic complexity in time (gate delays) and size (number of components). The algorithm uses an array representation that allows elements to be shared between many arrays with only a small constant factor penalty in space and time. This system exemplifies circuit parallelism, which exploits large numbers of transistors per chip in order to speed up key algorithms. Extensible Sparse Functional Arrays (ESFA) can be used with both functional and imperative programming languages. The system comprises a set of algorithms and a circuit specification, and it has been implemented on a GPGPU

    A Review of Findings from Neuroscience and Cognitive Psychology as Possible Inspiration for the Path to Artificial General Intelligence

    Full text link
    This review aims to contribute to the quest for artificial general intelligence by examining neuroscience and cognitive psychology methods for potential inspiration. Despite the impressive advancements achieved by deep learning models in various domains, they still have shortcomings in abstract reasoning and causal understanding. Such capabilities should be ultimately integrated into artificial intelligence systems in order to surpass data-driven limitations and support decision making in a way more similar to human intelligence. This work is a vertical review that attempts a wide-ranging exploration of brain function, spanning from lower-level biological neurons, spiking neural networks, and neuronal ensembles to higher-level concepts such as brain anatomy, vector symbolic architectures, cognitive and categorization models, and cognitive architectures. The hope is that these concepts may offer insights for solutions in artificial general intelligence.Comment: 143 pages, 49 figures, 244 reference
    • …
    corecore