4,654 research outputs found
Sparse seismic imaging using variable projection
We consider an important class of signal processing problems where the signal
of interest is known to be sparse, and can be recovered from data given
auxiliary information about how the data was generated. For example, a sparse
Green's function may be recovered from seismic experimental data using sparsity
optimization when the source signature is known. Unfortunately, in practice
this information is often missing, and must be recovered from data along with
the signal using deconvolution techniques.
In this paper, we present a novel methodology to simultaneously solve for the
sparse signal and auxiliary parameters using a recently proposed variable
projection technique. Our main contribution is to combine variable projection
with sparsity promoting optimization, obtaining an efficient algorithm for
large-scale sparse deconvolution problems. We demonstrate the algorithm on a
seismic imaging example.Comment: 5 pages, 4 figure
Iterative algorithms for total variation-like reconstructions in seismic tomography
A qualitative comparison of total variation like penalties (total variation,
Huber variant of total variation, total generalized variation, ...) is made in
the context of global seismic tomography. Both penalized and constrained
formulations of seismic recovery problems are treated. A number of simple
iterative recovery algorithms applicable to these problems are described. The
convergence speed of these algorithms is compared numerically in this setting.
For the constrained formulation a new algorithm is proposed and its convergence
is proven.Comment: 28 pages, 8 figures. Corrected sign errors in formula (25
A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal
Unveiling meaningful geophysical information from seismic data requires to
deal with both random and structured "noises". As their amplitude may be
greater than signals of interest (primaries), additional prior information is
especially important in performing efficient signal separation. We address here
the problem of multiple reflections, caused by wave-field bouncing between
layers. Since only approximate models of these phenomena are available, we
propose a flexible framework for time-varying adaptive filtering of seismic
signals, using sparse representations, based on inaccurate templates. We recast
the joint estimation of adaptive filters and primaries in a new convex
variational formulation. This approach allows us to incorporate plausible
knowledge about noise statistics, data sparsity and slow filter variation in
parsimony-promoting wavelet frames. The designed primal-dual algorithm solves a
constrained minimization problem that alleviates standard regularization issues
in finding hyperparameters. The approach demonstrates significantly good
performance in low signal-to-noise ratio conditions, both for simulated and
real field seismic data
Basis Pursuit Receiver Function
Receiver functions (RFs) are derived by deconvolution of the horizontal (radial or transverse) component of ground motion from the vertical component, which segregates the PS phases. Many methods have been proposed to employ deconvolution in frequency as well as in time domain. These methods vary in their approaches to impose regularization that addresses the stability problem. Here, we present application of a new time-domain deconvolution technique called basis pursuit deconvolution (BPD) that has recently been applied to seismic exploration data. Unlike conventional deconvolution methods, the BPD uses an L1 norm constraint on model reflectivity to impose sparsity. In addition, it uses an overcomplete wedge dictionary based on a dipole reflectivity series to define model constraints, which can achieve higher resolution than that obtained by the traditional methods. We demonstrate successful application of BPD based RF estimation from synthetic data for a crustal model with a near-surface thin layer of thickness 5, 7, 10, and 15 km. The BPD can resolve these thin layers better with much improved signal-to-noise ratio than the conventional methods. Finally, we demonstrate application of the BPD receiver function (BPRF) method to a field dataset from Kutch, India, where near-surface sedimentary layers are known to be present. The BPRFs are able to resolve reflections from these layers very well.Jackson Chair funds at the Jackson School of Geosciences, University of Texas, AustinCouncil of Scientific and Industrial Research twelfth five year plan project at the Council of Scientific and Industrial Research National Geophysical Research Institute (CSIR-NGRI), HyderabadInstitute for Geophysic
Seismic Ray Impedance Inversion
This thesis investigates a prestack seismic inversion scheme implemented in the ray
parameter domain. Conventionally, most prestack seismic inversion methods are
performed in the incidence angle domain. However, inversion using the concept of
ray impedance, as it honours ray path variation following the elastic parameter
variation according to Snell’s law, shows the capacity to discriminate different
lithologies if compared to conventional elastic impedance inversion.
The procedure starts with data transformation into the ray-parameter domain and then
implements the ray impedance inversion along constant ray-parameter profiles. With
different constant-ray-parameter profiles, mixed-phase wavelets are initially estimated
based on the high-order statistics of the data and further refined after a proper well-to-seismic
tie. With the estimated wavelets ready, a Cauchy inversion method is used to
invert for seismic reflectivity sequences, aiming at recovering seismic reflectivity
sequences for blocky impedance inversion. The impedance inversion from reflectivity
sequences adopts a standard generalised linear inversion scheme, whose results are
utilised to identify rock properties and facilitate quantitative interpretation. It has also
been demonstrated that we can further invert elastic parameters from ray impedance
values, without eliminating an extra density term or introducing a Gardner’s relation
to absorb this term.
Ray impedance inversion is extended to P-S converted waves by introducing the
definition of converted-wave ray impedance. This quantity shows some advantages in
connecting prestack converted wave data with well logs, if compared with the shearwave
elastic impedance derived from the Aki and Richards approximation to the
Zoeppritz equations. An analysis of P-P and P-S wave data under the framework of
ray impedance is conducted through a real multicomponent dataset, which can reduce
the uncertainty in lithology identification.Inversion is the key method in generating those examples throughout the entire thesis
as we believe it can render robust solutions to geophysical problems. Apart from the
reflectivity sequence, ray impedance and elastic parameter inversion mentioned above,
inversion methods are also adopted in transforming the prestack data from the offset
domain to the ray-parameter domain, mixed-phase wavelet estimation, as well as the
registration of P-P and P-S waves for the joint analysis.
The ray impedance inversion methods are successfully applied to different types of
datasets. In each individual step to achieving the ray impedance inversion, advantages,
disadvantages as well as limitations of the algorithms adopted are detailed. As a
conclusion, the ray impedance related analyses demonstrated in this thesis are highly
competent compared with the classical elastic impedance methods and the author
would like to recommend it for a wider application
Optimization Methods for Inverse Problems
Optimization plays an important role in solving many inverse problems.
Indeed, the task of inversion often either involves or is fully cast as a
solution of an optimization problem. In this light, the mere non-linear,
non-convex, and large-scale nature of many of these inversions gives rise to
some very challenging optimization problems. The inverse problem community has
long been developing various techniques for solving such optimization tasks.
However, other, seemingly disjoint communities, such as that of machine
learning, have developed, almost in parallel, interesting alternative methods
which might have stayed under the radar of the inverse problem community. In
this survey, we aim to change that. In doing so, we first discuss current
state-of-the-art optimization methods widely used in inverse problems. We then
survey recent related advances in addressing similar challenges in problems
faced by the machine learning community, and discuss their potential advantages
for solving inverse problems. By highlighting the similarities among the
optimization challenges faced by the inverse problem and the machine learning
communities, we hope that this survey can serve as a bridge in bringing
together these two communities and encourage cross fertilization of ideas.Comment: 13 page
- …
