4,654 research outputs found

    Sparse seismic imaging using variable projection

    Full text link
    We consider an important class of signal processing problems where the signal of interest is known to be sparse, and can be recovered from data given auxiliary information about how the data was generated. For example, a sparse Green's function may be recovered from seismic experimental data using sparsity optimization when the source signature is known. Unfortunately, in practice this information is often missing, and must be recovered from data along with the signal using deconvolution techniques. In this paper, we present a novel methodology to simultaneously solve for the sparse signal and auxiliary parameters using a recently proposed variable projection technique. Our main contribution is to combine variable projection with sparsity promoting optimization, obtaining an efficient algorithm for large-scale sparse deconvolution problems. We demonstrate the algorithm on a seismic imaging example.Comment: 5 pages, 4 figure

    Iterative algorithms for total variation-like reconstructions in seismic tomography

    Full text link
    A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seismic recovery problems are treated. A number of simple iterative recovery algorithms applicable to these problems are described. The convergence speed of these algorithms is compared numerically in this setting. For the constrained formulation a new algorithm is proposed and its convergence is proven.Comment: 28 pages, 8 figures. Corrected sign errors in formula (25

    A Primal-Dual Proximal Algorithm for Sparse Template-Based Adaptive Filtering: Application to Seismic Multiple Removal

    Get PDF
    Unveiling meaningful geophysical information from seismic data requires to deal with both random and structured "noises". As their amplitude may be greater than signals of interest (primaries), additional prior information is especially important in performing efficient signal separation. We address here the problem of multiple reflections, caused by wave-field bouncing between layers. Since only approximate models of these phenomena are available, we propose a flexible framework for time-varying adaptive filtering of seismic signals, using sparse representations, based on inaccurate templates. We recast the joint estimation of adaptive filters and primaries in a new convex variational formulation. This approach allows us to incorporate plausible knowledge about noise statistics, data sparsity and slow filter variation in parsimony-promoting wavelet frames. The designed primal-dual algorithm solves a constrained minimization problem that alleviates standard regularization issues in finding hyperparameters. The approach demonstrates significantly good performance in low signal-to-noise ratio conditions, both for simulated and real field seismic data

    Basis Pursuit Receiver Function

    Get PDF
    Receiver functions (RFs) are derived by deconvolution of the horizontal (radial or transverse) component of ground motion from the vertical component, which segregates the PS phases. Many methods have been proposed to employ deconvolution in frequency as well as in time domain. These methods vary in their approaches to impose regularization that addresses the stability problem. Here, we present application of a new time-domain deconvolution technique called basis pursuit deconvolution (BPD) that has recently been applied to seismic exploration data. Unlike conventional deconvolution methods, the BPD uses an L1 norm constraint on model reflectivity to impose sparsity. In addition, it uses an overcomplete wedge dictionary based on a dipole reflectivity series to define model constraints, which can achieve higher resolution than that obtained by the traditional methods. We demonstrate successful application of BPD based RF estimation from synthetic data for a crustal model with a near-surface thin layer of thickness 5, 7, 10, and 15 km. The BPD can resolve these thin layers better with much improved signal-to-noise ratio than the conventional methods. Finally, we demonstrate application of the BPD receiver function (BPRF) method to a field dataset from Kutch, India, where near-surface sedimentary layers are known to be present. The BPRFs are able to resolve reflections from these layers very well.Jackson Chair funds at the Jackson School of Geosciences, University of Texas, AustinCouncil of Scientific and Industrial Research twelfth five year plan project at the Council of Scientific and Industrial Research National Geophysical Research Institute (CSIR-NGRI), HyderabadInstitute for Geophysic

    Seismic Ray Impedance Inversion

    Get PDF
    This thesis investigates a prestack seismic inversion scheme implemented in the ray parameter domain. Conventionally, most prestack seismic inversion methods are performed in the incidence angle domain. However, inversion using the concept of ray impedance, as it honours ray path variation following the elastic parameter variation according to Snell’s law, shows the capacity to discriminate different lithologies if compared to conventional elastic impedance inversion. The procedure starts with data transformation into the ray-parameter domain and then implements the ray impedance inversion along constant ray-parameter profiles. With different constant-ray-parameter profiles, mixed-phase wavelets are initially estimated based on the high-order statistics of the data and further refined after a proper well-to-seismic tie. With the estimated wavelets ready, a Cauchy inversion method is used to invert for seismic reflectivity sequences, aiming at recovering seismic reflectivity sequences for blocky impedance inversion. The impedance inversion from reflectivity sequences adopts a standard generalised linear inversion scheme, whose results are utilised to identify rock properties and facilitate quantitative interpretation. It has also been demonstrated that we can further invert elastic parameters from ray impedance values, without eliminating an extra density term or introducing a Gardner’s relation to absorb this term. Ray impedance inversion is extended to P-S converted waves by introducing the definition of converted-wave ray impedance. This quantity shows some advantages in connecting prestack converted wave data with well logs, if compared with the shearwave elastic impedance derived from the Aki and Richards approximation to the Zoeppritz equations. An analysis of P-P and P-S wave data under the framework of ray impedance is conducted through a real multicomponent dataset, which can reduce the uncertainty in lithology identification.Inversion is the key method in generating those examples throughout the entire thesis as we believe it can render robust solutions to geophysical problems. Apart from the reflectivity sequence, ray impedance and elastic parameter inversion mentioned above, inversion methods are also adopted in transforming the prestack data from the offset domain to the ray-parameter domain, mixed-phase wavelet estimation, as well as the registration of P-P and P-S waves for the joint analysis. The ray impedance inversion methods are successfully applied to different types of datasets. In each individual step to achieving the ray impedance inversion, advantages, disadvantages as well as limitations of the algorithms adopted are detailed. As a conclusion, the ray impedance related analyses demonstrated in this thesis are highly competent compared with the classical elastic impedance methods and the author would like to recommend it for a wider application

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page
    corecore