53 research outputs found

    Performance of FFT-OFDM versus DWT-OFDM under compressive sensing

    Get PDF
    In this work, we present a comparative study on the performance of Fourier-based OFDM (FFT-OFDM) and wavelet-based OFDM (DWT-OFDM) under compressive sensing (CS). Transmission over FFT-OFDM and DWT-OFDM, which has been made under different baseband modulation schemes such as Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Key (QPSK), Quadrature amplitude modulation (16QAM) and (64QAM) has been considered. From numerical simulation results, it is observed that the Wavelet-based OFDM system outperforms Fourier based OFDM when the Quadrature Amplitude Modulation is 16QAM and 64QAM within the signal to noise ratios range 30 to 40 dB. Although CS is more efficient in compression than classical compression techniques, it introduces more errors over OFDM transmission. Future directions of this work are also suggested

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Source localization via time difference of arrival

    Get PDF
    Accurate localization of a signal source, based on the signals collected by a number of receiving sensors deployed in the source surrounding area is a problem of interest in various fields. This dissertation aims at exploring different techniques to improve the localization accuracy of non-cooperative sources, i.e., sources for which the specific transmitted symbols and the time of the transmitted signal are unknown to the receiving sensors. With the localization of non-cooperative sources, time difference of arrival (TDOA) of the signals received at pairs of sensors is typically employed. A two-stage localization method in multipath environments is proposed. During the first stage, TDOA of the signals received at pairs of sensors is estimated. In the second stage, the actual location is computed from the TDOA estimates. This later stage is referred to as hyperbolic localization and it generally involves a non-convex optimization. For the first stage, a TDOA estimation method that exploits the sparsity of multipath channels is proposed. This is formulated as an f1-regularization problem, where the f1-norm is used as channel sparsity constraint. For the second stage, three methods are proposed to offer high accuracy at different computational costs. The first method takes a semi-definite relaxation (SDR) approach to relax the hyperbolic localization to a convex optimization. The second method follows a linearized formulation of the problem and seeks a biased estimate of improved accuracy. A third method is proposed to exploit the source sparsity. With this, the hyperbolic localization is formulated as an an f1-regularization problem, where the f1-norm is used as source sparsity constraint. The proposed methods compare favorably to other existing methods, each of them having its own advantages. The SDR method has the advantage of simplicity and low computational cost. The second method may perform better than the SDR approach in some situations, but at the price of higher computational cost. The l1-regularization may outperform the first two methods, but is sensitive to the choice of a regularization parameter. The proposed two-stage localization approach is shown to deliver higher accuracy and robustness to noise, compared to existing TDOA localization methods. A single-stage source localization method is explored. The approach is coherent in the sense that, in addition to the TDOA information, it utilizes the relative carrier phases of the received signals among pairs of sensors. A location estimator is constructed based on a maximum likelihood metric. The potential of accuracy improvement by the coherent approach is shown through the Cramer Rao lower bound (CRB). However, the technique has to contend with high peak sidelobes in the localization metric, especially at low signal-to-noise ratio (SNR). Employing a small antenna array at each sensor is shown to lower the sidelobes level in the localization metric. Finally, the performance of time delay and amplitude estimation from samples of the received signal taken at rates lower than the conventional Nyquist rate is evaluated. To this end, a CRB is developed and its variation with system parameters is analyzed. It is shown that while with noiseless low rate sampling there is no estimation accuracy loss compared to Nyquist sampling, in the presence of additive noise the performance degrades significantly. However, increasing the low sampling rate by a small factor leads to significant performance improvement, especially for time delay estimation

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC
    • …
    corecore