2 research outputs found

    Dynamic mode decomposition in vector-valued reproducing kernel Hilbert spaces for extracting dynamical structure among observables

    Full text link
    Understanding nonlinear dynamical systems (NLDSs) is challenging in a variety of engineering and scientific fields. Dynamic mode decomposition (DMD), which is a numerical algorithm for the spectral analysis of Koopman operators, has been attracting attention as a way of obtaining global modal descriptions of NLDSs without requiring explicit prior knowledge. However, since existing DMD algorithms are in principle formulated based on the concatenation of scalar observables, it is not directly applicable to data with dependent structures among observables, which take, for example, the form of a sequence of graphs. In this paper, we formulate Koopman spectral analysis for NLDSs with structures among observables and propose an estimation algorithm for this problem. This method can extract and visualize the underlying low-dimensional global dynamics of NLDSs with structures among observables from data, which can be useful in understanding the underlying dynamics of such NLDSs. To this end, we first formulate the problem of estimating spectra of the Koopman operator defined in vector-valued reproducing kernel Hilbert spaces, and then develop an estimation procedure for this problem by reformulating tensor-based DMD. As a special case of our method, we propose the method named as Graph DMD, which is a numerical algorithm for Koopman spectral analysis of graph dynamical systems, using a sequence of adjacency matrices. We investigate the empirical performance of our method by using synthetic and real-world data.Comment: 34 pages with 4 figures, Published in Neural Networks, 201

    A Koopman Operator-Based Prediction Algorithm and its Application to COVID-19 Pandemic

    Full text link
    The problem of prediction of behavior of dynamical systems has undergone a paradigm shift in the second half of the 20th century with the discovery of the possibility of chaotic dynamics in simple, physical, dynamical systems for which the laws of evolution do not change in time. The essence of the paradigm is the long term exponential divergence of trajectories. However, that paradigm does not account for another type of unpredictability: the ``Black Swan" event. It also does not account for the fact that short-term prediction is often possible even in systems with exponential divergence. In our framework, the Black Swan type dynamics occurs when an underlying dynamical system suddenly shifts between dynamics of different types. A learning and prediction system should be capable of recognizing the shift in behavior, exemplified by ``confidence loss". In this paradigm, the predictive power is assessed dynamically and confidence level is used to switch between long term prediction and local-in-time prediction. Here we explore the problem of prediction in systems that exhibit such behavior. The mathematical underpinnings of our theory and algorithms are based on an operator-theoretic approach in which the dynamics of the system are embedded into an infinite-dimensional space. We apply the algorithm to a number of case studies including prediction of influenza cases and the COVID-19 pandemic. The results show that the predictive algorithm is robust to perturbations of the available data, induced for example by delays in reporting or sudden increase in cases due to increase in testing capability. This is achieved in an entirely data-driven fashion, with no underlying mathematical model of the disease
    corecore