Understanding nonlinear dynamical systems (NLDSs) is challenging in a variety
of engineering and scientific fields. Dynamic mode decomposition (DMD), which
is a numerical algorithm for the spectral analysis of Koopman operators, has
been attracting attention as a way of obtaining global modal descriptions of
NLDSs without requiring explicit prior knowledge. However, since existing DMD
algorithms are in principle formulated based on the concatenation of scalar
observables, it is not directly applicable to data with dependent structures
among observables, which take, for example, the form of a sequence of graphs.
In this paper, we formulate Koopman spectral analysis for NLDSs with structures
among observables and propose an estimation algorithm for this problem. This
method can extract and visualize the underlying low-dimensional global dynamics
of NLDSs with structures among observables from data, which can be useful in
understanding the underlying dynamics of such NLDSs. To this end, we first
formulate the problem of estimating spectra of the Koopman operator defined in
vector-valued reproducing kernel Hilbert spaces, and then develop an estimation
procedure for this problem by reformulating tensor-based DMD. As a special case
of our method, we propose the method named as Graph DMD, which is a numerical
algorithm for Koopman spectral analysis of graph dynamical systems, using a
sequence of adjacency matrices. We investigate the empirical performance of our
method by using synthetic and real-world data.Comment: 34 pages with 4 figures, Published in Neural Networks, 201