878 research outputs found

    Implicit Copulas from Bayesian Regularized Regression Smoothers

    Full text link
    We show how to extract the implicit copula of a response vector from a Bayesian regularized regression smoother with Gaussian disturbances. The copula can be used to compare smoothers that employ different shrinkage priors and function bases. We illustrate with three popular choices of shrinkage priors --- a pairwise prior, the horseshoe prior and a g prior augmented with a point mass as employed for Bayesian variable selection --- and both univariate and multivariate function bases. The implicit copulas are high-dimensional, have flexible dependence structures that are far from that of a Gaussian copula, and are unavailable in closed form. However, we show how they can be evaluated by first constructing a Gaussian copula conditional on the regularization parameters, and then integrating over these. Combined with non-parametric margins the regularized smoothers can be used to model the distribution of non-Gaussian univariate responses conditional on the covariates. Efficient Markov chain Monte Carlo schemes for evaluating the copula are given for this case. Using both simulated and real data, we show how such copula smoothing models can improve the quality of resulting function estimates and predictive distributions

    Copula-like Variational Inference

    Get PDF
    This paper considers a new family of variational distributions motivated by Sklar's theorem. This family is based on new copula-like densities on the hypercube with non-uniform marginals which can be sampled efficiently, i.e. with a complexity linear in the dimension of state space. Then, the proposed variational densities that we suggest can be seen as arising from these copula-like densities used as base distributions on the hypercube with Gaussian quantile functions and sparse rotation matrices as normalizing flows. The latter correspond to a rotation of the marginals with complexity O(dlogd)\mathcal{O}(d \log d). We provide some empirical evidence that such a variational family can also approximate non-Gaussian posteriors and can be beneficial compared to Gaussian approximations. Our method performs largely comparably to state-of-the-art variational approximations on standard regression and classification benchmarks for Bayesian Neural Networks.Comment: 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canad

    Multi-task Sparse Structure Learning With Gaussian Copula Models

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Multi-task learning (MTL) aims to improve generalization performance by learning multiple related tasks simultaneously. While sometimes the underlying task relationship structure is known, often the structure needs to be estimated from data at hand. In this paper, we present a novel family of models for MTL, applicable to regression and classification problems, capable of learning the structure of tasks relationship. In particular, we consider a joint estimation problem of the tasks relationship structure and the individual task parameters, which is solved using alternating minimization. The task relationship revealed by structure learning is founded on recent advances in Gaussian graphical models endowed with sparse estimators of the precision (inverse covariance) matrix. An extension to include flexible Gaussian copula models that relaxes the Gaussian marginal assumption is also proposed. We illustrate the e ff ectiveness of the proposed model on a variety of synthetic and benchmark data sets for regression and classi fi cation. We also consider the problem of combining Earth System Model (ESM) outputs for better projections of future climate, with focus on projections of temperature by combining ESMs in South and North America, and show that the proposed model outperforms several existing methods for the problem.17NSF [IIS-1029711, IIS-0916750, IIS-0953274, CNS-1314560, IIS-1422557, CCF-1451986, IIS-1447566]NASA [NNX12AQ39A]IBMYahooCNPqCNPq, BrazilConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Open TURNS: An industrial software for uncertainty quantification in simulation

    Full text link
    The needs to assess robust performances for complex systems and to answer tighter regulatory processes (security, safety, environmental control, and health impacts, etc.) have led to the emergence of a new industrial simulation challenge: to take uncertainties into account when dealing with complex numerical simulation frameworks. Therefore, a generic methodology has emerged from the joint effort of several industrial companies and academic institutions. EDF R&D, Airbus Group and Phimeca Engineering started a collaboration at the beginning of 2005, joined by IMACS in 2014, for the development of an Open Source software platform dedicated to uncertainty propagation by probabilistic methods, named OpenTURNS for Open source Treatment of Uncertainty, Risk 'N Statistics. OpenTURNS addresses the specific industrial challenges attached to uncertainties, which are transparency, genericity, modularity and multi-accessibility. This paper focuses on OpenTURNS and presents its main features: openTURNS is an open source software under the LGPL license, that presents itself as a C++ library and a Python TUI, and which works under Linux and Windows environment. All the methodological tools are described in the different sections of this paper: uncertainty quantification, uncertainty propagation, sensitivity analysis and metamodeling. A section also explains the generic wrappers way to link openTURNS to any external code. The paper illustrates as much as possible the methodological tools on an educational example that simulates the height of a river and compares it to the height of a dyke that protects industrial facilities. At last, it gives an overview of the main developments planned for the next few years

    Copula Ordinal Regression for Joint Estimation of Facial Action Unit Intensity

    Get PDF
    Joint modeling of the intensity of facial action units (AUs) from face images is challenging due to the large number of AUs (30+) and their intensity levels (6). This is in part due to the lack of suitable models that can efficiently handle such a large number of outputs/classes simultaneously, but also due to the lack of labelled target data. For this reason, majority of the methods proposed so far resort to independent classifiers for the AU intensity. This is suboptimal for at least two reasons: the facial appearance of some AUs changes depending on the intensity of other AUs, and some AUs co-occur more often than others. Encoding this is expected to improve the estimation of target AU intensities, especially in the case of noisy image features, head-pose variations and imbalanced training data. To this end, we introduce a novel modeling framework, Copula Ordinal Regression (COR), that leverages the power of copula functions and CRFs, to detangle the probabilistic modeling of AU dependencies from the marginal modeling of the AU intensity. Consequently, the COR model achieves the joint learning and inference of intensities of multiple AUs, while being computationally tractable. We show on two challenging datasets of naturalistic facial expressions that the proposed approach consistently outperforms (i) independent modeling of AU intensities, and (ii) the state-ofthe-art approach for the target task
    corecore