12,842 research outputs found

    Sparse Variation Dictionary Learning for Face Recognition with a Single Training Sample per Person

    Full text link
    Face recognition (FR) with a single training sample per person (STSPP) is a very challenging problem due to the lack of information to predict the variations in the query sample. Sparse representation based classification has shown interesting results in robust FR, however, its performance will deteriorate much for FR with STSPP. To address this issue, in this paper we learn a sparse variation dictionary from a generic training set to improve the query sample representation by STSPP. Instead of learning from the generic training set independently w.r.t. the gallery set, the proposed sparse variation dictionary learning (SVDL) method is adaptive to the gallery set by jointly learning a projection to connect the generic training set with the gallery set. The learnt sparse variation dictionary can be easily integrated into the framework of sparse representation based classification so that various variations in face images, including illumination, expression, occlusion, pose, etc., can be better handled. Experiments on the large-scale CMU Multi-PIE, FRGC and LFW databases demonstrate the promising performance of SVDL on FR with STSPP.Department of ComputingRefereed conference pape

    KCRC-LCD: Discriminative Kernel Collaborative Representation with Locality Constrained Dictionary for Visual Categorization

    Full text link
    We consider the image classification problem via kernel collaborative representation classification with locality constrained dictionary (KCRC-LCD). Specifically, we propose a kernel collaborative representation classification (KCRC) approach in which kernel method is used to improve the discrimination ability of collaborative representation classification (CRC). We then measure the similarities between the query and atoms in the global dictionary in order to construct a locality constrained dictionary (LCD) for KCRC. In addition, we discuss several similarity measure approaches in LCD and further present a simple yet effective unified similarity measure whose superiority is validated in experiments. There are several appealing aspects associated with LCD. First, LCD can be nicely incorporated under the framework of KCRC. The LCD similarity measure can be kernelized under KCRC, which theoretically links CRC and LCD under the kernel method. Second, KCRC-LCD becomes more scalable to both the training set size and the feature dimension. Example shows that KCRC is able to perfectly classify data with certain distribution, while conventional CRC fails completely. Comprehensive experiments on many public datasets also show that KCRC-LCD is a robust discriminative classifier with both excellent performance and good scalability, being comparable or outperforming many other state-of-the-art approaches
    corecore