87,874 research outputs found

    Sparse representation based stereoscopic image quality assessment accounting for perceptual cognitive process

    Get PDF
    In this paper, we propose a sparse representation based Reduced-Reference Image Quality Assessment (RR-IQA) index for stereoscopic images from the following two perspectives: 1) Human visual system (HVS) always tries to infer the meaningful information and reduces uncertainty from the visual stimuli, and the entropy of primitive (EoP) can well describe this visual cognitive progress when perceiving natural images. 2) Ocular dominance (also known as binocularity) which represents the interaction between two eyes is quantified by the sparse representation coefficients. Inspired by previous research, the perception and understanding of an image is considered as an active inference process determined by the level of “surprise”, which can be described by EoP. Therefore, the primitives learnt from natural images can be utilized to evaluate the visual information by computing entropy. Meanwhile, considering the binocularity in stereo image quality assessment, a feasible way is proposed to characterize this binocular process according to the sparse representation coefficients of each view. Experimental results on LIVE 3D image databases and MCL database further demonstrate that the proposed algorithm achieves high consistency with subjective evaluation

    Image Fusion via Sparse Regularization with Non-Convex Penalties

    Full text link
    The L1 norm regularized least squares method is often used for finding sparse approximate solutions and is widely used in 1-D signal restoration. Basis pursuit denoising (BPD) performs noise reduction in this way. However, the shortcoming of using L1 norm regularization is the underestimation of the true solution. Recently, a class of non-convex penalties have been proposed to improve this situation. This kind of penalty function is non-convex itself, but preserves the convexity property of the whole cost function. This approach has been confirmed to offer good performance in 1-D signal denoising. This paper demonstrates the aforementioned method to 2-D signals (images) and applies it to multisensor image fusion. The problem is posed as an inverse one and a corresponding cost function is judiciously designed to include two data attachment terms. The whole cost function is proved to be convex upon suitably choosing the non-convex penalty, so that the cost function minimization can be tackled by convex optimization approaches, which comprise simple computations. The performance of the proposed method is benchmarked against a number of state-of-the-art image fusion techniques and superior performance is demonstrated both visually and in terms of various assessment measures

    Recovery of Missing Samples Using Sparse Approximation via a Convex Similarity Measure

    Full text link
    In this paper, we study the missing sample recovery problem using methods based on sparse approximation. In this regard, we investigate the algorithms used for solving the inverse problem associated with the restoration of missed samples of image signal. This problem is also known as inpainting in the context of image processing and for this purpose, we suggest an iterative sparse recovery algorithm based on constrained l1l_1-norm minimization with a new fidelity metric. The proposed metric called Convex SIMilarity (CSIM) index, is a simplified version of the Structural SIMilarity (SSIM) index, which is convex and error-sensitive. The optimization problem incorporating this criterion, is then solved via Alternating Direction Method of Multipliers (ADMM). Simulation results show the efficiency of the proposed method for missing sample recovery of 1D patch vectors and inpainting of 2D image signals

    Compressive Sensing for PAN-Sharpening

    Get PDF
    Based on compressive sensing framework and sparse reconstruction technology, a new pan-sharpening method, named Sparse Fusion of Images (SparseFI, pronounced as sparsify), is proposed in [1]. In this paper, the proposed SparseFI algorithm is validated using UltraCam and WorldView-2 data. Visual and statistic analysis show superior performance of SparseFI compared to the existing conventional pan-sharpening methods in general, i.e. rich in spatial information and less spectral distortion. Moreover, popular quality assessment metrics are employed to explore the dependency on regularization parameters and evaluate the efficiency of various sparse reconstruction toolboxes
    • …
    corecore