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ABSTRACT 
 

Based on compressive sensing framework and sparse 
reconstruction technology, a new pan-sharpening method, 
named Sparse Fusion of Images (SparseFI, pronounced as 
sparsify), is proposed in [1]. In this paper, the proposed 
SparseFI algorithm is validated using UltraCam and 
WorldView-2 data. Visual and statistic analysis show 
superior performance of SparseFI compared to the existing 
conventional pan-sharpening methods in general, i.e. rich in 
spatial information and less spectral distortion. Moreover, 
popular quality assessment metrics are employed to explore 
the dependency on regularization parameters and evaluate 
the efficiency of various sparse reconstruction toolboxes. 
 

Index Terms — compressive sensing, pan-sharpening, 
dictionary training, sparse coefficients estimation 
 

1. INTRODUCTION 
 

The optical images acquired by most topographic earth 
observation satellites such as IKONOS, Quick Bird and 
GeoEye are composed of a panchromatic channel of high 
spatial resolution (e.g. 0.5 – 1m) and several (typically 3 - 8) 
multispectral channels at a lower spatial resolution (e.g. 2 – 
4m). While the panchromatic image allows for accurate 
geometric analysis, the spectral channels provide the 
spectral information, necessary for thematic interpretation.  

In order to fulfill application requirements, intensive 
research has been carried out to develop efficient pan-
sharpening methods for generating multi-spectral images 
with spatial resolution of each channel as high as the 
panchromatic channel. Among a wide choice of pan-
sharpening methods, the most popular ones are Intensity-
Hue-Saturation technique (IHS) [2], Principal Components 
Analysis (PCA) [3], Brovey transform [4] and wavelet 
based fusion [5]. However, due to significantly different 
gray value between the panchromatic and the multispectral 
images caused by different observation wavelength ranges, 
these conventional methods may suffer from spectral 
distortion. Hence it calls for new sophisticated pan-
sharpening methods which can produce high resolution 
multispectral images which are rich in spatial information 
and suffer less from spectral distortion. 

Compressive sensing is a state-of-the-art signal 
processing technique. Its super-resolution capability and 
robustness have been demonstrated in different areas of 
signal and image processing [6][7]. This fact as well as the 
natural property of compressibility of remote sensing 
imagery inspired us to explore the potential of compressive 
sensing for pan-sharpening. Based on compressive sensing 
framework and sparse reconstruction technology, a new 
pan-sharpening method, named Sparse Fusion of Images 
(SparseFI, pronounced as sparsify), is proposed in [1]. With 
a given high-resolution (HR) panchromatic image and a 
corresponding low-resolution (LR) multispectral image as 
inputs, SparseFI works in three steps: a) dictionary learning; 
b) sparse coefficients estimation; c) HR multispectral image 
reconstruction to generate the desired HR multispectral 
image. 

In this paper, the SparseFI algorithm is validated using 
UltraCam and WorldView-2 data. Visual and statistic 
analysis show superior performance of our method 
compared to the existing conventional pan-sharpening 
methods in general. Moreover, popular quality assessment 
metrics are employed to explore the dependency on 
regularization parameters and evaluate the efficiency of 
various sparse reconstruction toolboxes 
 

2. THE SPARSEFI ALGORITHM FOR PAN-
SHARPENING 

 
Pan-sharpening requires a LR multispectral image Y 

and a HR panchromatic image X0, and aims at keeping the 
spectral information of Y and raising its spatial resolution, 
i.e. generating a HR multispectral image. SparseFI utilizes 
the HR spatial information of the pan image by generating a 
low resolution dictionary Dl and a HR dictionary Dh from 
small patches of the HR pan image and its appropriately 
down-sampled version. This strategy ensures Dl and Dh have 
the same coefficients while representing the identical HR 
and LR multispectral image patch, respectively. In addition, 
due to the fact that the dictionaries are built up from the pan 
image observing the same area, the multispectral image 
patches always can be described by a few non-zero or 
significant coefficients (i.e. a sparse representation) in these 
dictionary pair. Hence by means of an L1-L2 norm 
minimization, the sparse coefficients representing the LR 
multispectral image patches in the Dl can be accurately 
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reconstructed. Since the coupled dictionaries share the same 
sparse coefficients while representing the corresponding 
image patch pairs, the HR multispectral image patches can 
be recovered in Dh with these coefficients. Finally, overlap 
region processing adjust the adjacent area and produce a 
seamless high resolution multispectral image. The detailed 
steps of SparseFI algorithm are explained as below:  

a) Dictionary learning 

The coupled high-resolution dictionary Dh and low-
resolution dictionary Dl for reconstruction are produced by 
sampling the image patch pairs directly and simultaneously 
from the HR image X0 and its LR version Y0. LR image Y0 
is generated by employing a low-pass filter to down-sample 
X0 to the size of Y with defined down-sampling factor FDS 
(typically 4-10). Then the corresponding image X0 and Y0 
are partitioned into coupled image patch pairs x0 and y0 with 
defined overlapping rate and sampling window size.  For 
Y0, the window size is typically 3×3 to 9×9, depending on 
the image size and operational requirements; and for X0 is 
FDS times less so that each HR patch corresponds to a LR 
patch. Then the dictionaries Dl and Dh are formed by 
normalizing the pixel values of x0 and y0 and arranging them 
into matrix columns, respectively. 

b) Sparse Coefficients Estimation 

The patches of the LR multispectral image Y are 
processed in raster-scan order. For each LR multispectral 
patch y, a sparse coefficient vector  can be estimated by 
an L1-L2 minimization 
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The parameter  is a weighting factor that gives a trade-off 
between goodness of fit of the LR input and the consistency 
of reconstructed adjacent HR patches in overlapping area. In 
our experiment  is chosen to be 1/ FDS

2. The matrix P is a 
diagonal matrix that extracts the region of overlap between 
current target patch and previously reconstructed HR 
multispectral image. w contains the pixel values of the 
previously reconstructed HR multispectral image on the 
overlap region. λ is the standard Lagrangian multiplier, 
balancing the sparsity of the solution and the fidelity of 
approximation to y. 

c) HR multispectral image reconstruction 

The desired sharpened HR image can finally be 
generated by tiling all HR multispectral patches x which are 
recovered by: 
    (3) ˆˆ hx D α

 

3. PERFORMANCE ASSESSMENT WITH REAL 
DATA 

 
The proposed SparseFI algorithm is validated using 

two data sets provided by UltraCam and WorldView-2 both 
at the city of Roma. The results are compared to four 
conventional methods: the original IHS, adaptive IHS, PCA 
and Brovey transform. For quantitative comparison, several 
evaluation tests are carried out.  

a) Validation of SpaseFI Algorithm 

The data acquired by UltraCam is a multispectral image 
containing four channels (i.e. red, green, blue and near 
infrared) with a spatial resolution of 10 cm. In our 
experiment, the LR multispectral image Y is simulated by 
down-sampling the four channels, and the HR pan image X0 
is simulated by adding some model error (e.g. set to be 2.7% 
in figure 1) to a linear combination of the four bands. In 
figure 1, the image (a) is the LR multispectral image down-
sampled by a factor of 10 to a spatial resolution of 1m. 
Image (b) shows the reconstructed result of the proposed 
SparseFI algorithm. Compared to the results produced by 
conventional pan-sharpening methods, original IHS, 
adaptive IHS, PCA, and Brovey transform, it verifies the 
robustness of the compressive sensing based pan-sharpening 
method even under the situation of the large down-sampling 
factor of 10. However, in order to have an objective 
evaluation of overall image quality, quantitative assessment 
metrics are introduced for comparison (see Table 1). 

The utilized assessment metrics include: root mean 
square error (RMSE) calculates the changes in pixel values 
to compare the difference between original image and pan-
sharpened image; correlation coefficient (ρ) measures the 
similarity of spectral feature; degree of distortion (D) 
reflects the distortion level of pan-sharpened image; 
universal image quality index (UIQI), a widely used image 
sharpening quality assessment indicator recently; average 
gradient reflects the contrasts of details contained in the 
image as well as the image intelligibility; erreur relative 
dimensionless global error in synthesis (ERGAS) reflects 
the overall quality of pan-sharpened image. 

The data acquired by WorldView-2 is a panchromatic 
image with a spatial resolution of 0.5m and a multispectral 
image with a spatial resolution of 2m at the same scene. It is 
down-sampled to a panchromatic image 2m and a 
multispectral image 8m to reconstruct a multispectral image 
with a spatial resolution of 2m, compared to the original 
multispectral image. Evaluation values are exhibited in 
Table 2.   

The second rows of Table 1 and Table 2 list the optimal 
values of evaluation criteria. The best value is highlighted 
for each test. Our SparseFI scores the best among all pan-
sharpening methods, especially with smaller ERGAS value 
indicates less spectral distortion. 

 
 



b) Dependency on Regularization Parameter λ 

λ is the well-known Lagrangian multiplier. It balances 
the sparsity of the solution and the fidelity of the 
approximation to y, and guarantees the robust image 
reconstruction from noisy data. Due to the fact that the 
parameter λ depends on the noise level of the input data [1], 
different levels of Gaussian white noise are added to the LR 
input image to find appropriate value of λ that could give a 
common solution to this convex minimization problem. It is 
claimed in [9] that for Gaussian white noise with standard 
deviation σ, one typically sets T   with 2logeT  P , 

where P is the dictionary size. In our experiments, λ smaller 
than 3.7062*σ could provide a solution. Experimental 
results show that the noisier the data the larger the value of λ 
should be, and best performance appears with λ having a 
value in the order of noise level σ. 

c) Efficiency of Sparse Reconstruction Toolboxes 

Various sparse reconstruction toolboxes are published 
to solve the L1-L2 norm minimization problem using convex 
optimization algorithms. For the readers' convenience, Table 
3 lists the performance (i.e. computational accuracy and 
speed) of four popular sparse reconstruction toolboxes, i.e. 
SparseLab, l1_ls, YALL1and CVX. It is obvious that the 
four toolboxes share the same degree of reconstructed 
accuracy, while the SparseLab has significantly higher 
computational speed due to its parallel processing feature. 

 
4. CONCLUSION  

 
In this paper, the proposed SparseFI algorithm for pan-

sharpening is validated using UltraCam and WorldView-2 
data by comparing to other conventional pan-sharpening 
methods. The superior performance of SparseFI algorithm 
has been demonstrated by statistic assessment. SparseFI 
outperforms the other algorithms in most of the assessment, 
and especially in minimizing the spectral distortion. The 
analysis of dependency on the regularization parameter 
indicates that optimal λ has a value in the order of noise 
level σ. From the investigation of assessment the most 

popular sparse reconstruction toolboxes, SparseLab is much 
more computationally efficient while providing comparable 
reconstruction accuracy. 
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APPENDIX 

Table 1.Quality metrics for UltraCam data (pan image simulated with 2.7% model error) 

 RMSE Ρ D UIQI 
Average Gradient 

ERGAS 

Optimum Values 0 1 0 1 +∞ 0 
IHS 4.4063 0.9978 3.4923 0.9918 5.3983 0.6297 

Adaptive IHS 5.0060 0.9945 3.6287 0.9894 5.7153 0.7164 
PCA 17.1850 0.9599 13.4960 0.8309 3.1857 2.4491 

Brovey 9.3757 0.9782 7.9847 0.9709 5.9233 1.3420 
SparseFI 3.7080 0.9954 2.5903 0.9945 5.5767 0.5319 

 
 



 
Table 2. Quality metrics for WorldView-2 (Test site: Roma) 

 RMSE Ρ D UIQI Average Gradient ERGAS 

Optimal value 0 1 0 1 +∞ 0 
IHS 11.4950 0.8157 7.4077 0.7983 5.9847 2.8974 

Adaptive IHS 10.1623 0.8679 6.4243 0.8424 4.9600 2.5813 
PCA 13.5273 0.8315 9.7280 0.6437 3.5163 3.4632 

Brovey 29.0653 0.8163 26.1483 0.6335 5.2290 13.9439 
SparseFI 9.5433 0.8826 5.9840 0.8796 5.9903 2.4142 

 
Table 3. Quality metrics for different sparse reconstruction toolboxes 

 RMSE CC D UIQI 
Average 
Gradient 

ERGAS Time (sec) 

Optimal 
Values 

0 1 0 1 +∞ 0 0 

SparseLab 2.8976 0.9978 1.9385 0.9975 5.7926 0.3759 35.95 
l1_ls 2.8603 0.9978 1.9164 0.9976 5.8104 0.3712 867.97 

YALL1 2.8680 0.9978 1.9199 0.9976 5.8036 0.3722 603.79 
CVX 2.9315 0.9979 2.0159 0.9974 5.7579 0.3791 744.86 

 
 

   
(a)                                                     (b)                                                       (c) 

   
(d)                                                     (e)                                                       (f) 

Figure 1. (a) LR multispectral image with a down-sampling factor of 10; HR multichannel image reconstructed by SparseFI (b), 
IHS method (c), adaptive IHS method (d), PCA method (e) and Brovey transform method (f) 
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