570 research outputs found

    Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-rank Matrices

    Get PDF
    This paper considers compressed sensing and affine rank minimization in both noiseless and noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix recovery. The analysis relies on a key technical tool which represents points in a polytope by convex combinations of sparse vectors. The technique is elementary while leads to sharp results. It is shown that for any given constant t4/3t\ge {4/3}, in compressed sensing δtkA<(t1)/t\delta_{tk}^A < \sqrt{(t-1)/t} guarantees the exact recovery of all kk sparse signals in the noiseless case through the constrained 1\ell_1 minimization, and similarly in affine rank minimization δtrM<(t1)/t\delta_{tr}^\mathcal{M}< \sqrt{(t-1)/t} ensures the exact reconstruction of all matrices with rank at most rr in the noiseless case via the constrained nuclear norm minimization. Moreover, for any ϵ>0\epsilon>0, δtkA<t1t+ϵ\delta_{tk}^A<\sqrt{\frac{t-1}{t}}+\epsilon is not sufficient to guarantee the exact recovery of all kk-sparse signals for large kk. Similar result also holds for matrix recovery. In addition, the conditions δtkA<(t1)/t\delta_{tk}^A < \sqrt{(t-1)/t} and δtrM<(t1)/t\delta_{tr}^\mathcal{M}< \sqrt{(t-1)/t} are also shown to be sufficient respectively for stable recovery of approximately sparse signals and low-rank matrices in the noisy case.Comment: to appear in IEEE Transactions on Information Theor

    Polar Polytopes and Recovery of Sparse Representations

    Get PDF
    Suppose we have a signal y which we wish to represent using a linear combination of a number of basis atoms a_i, y=sum_i x_i a_i = Ax. The problem of finding the minimum L0 norm representation for y is a hard problem. The Basis Pursuit (BP) approach proposes to find the minimum L1 norm representation instead, which corresponds to a linear program (LP) that can be solved using modern LP techniques, and several recent authors have given conditions for the BP (minimum L1 norm) and sparse (minimum L0 solutions) representations to be identical. In this paper, we explore this sparse representation problem} using the geometry of convex polytopes, as recently introduced into the field by Donoho. By considering the dual LP we find that the so-called polar polytope P of the centrally-symmetric polytope P whose vertices are the atom pairs +-a_i is particularly helpful in providing us with geometrical insight into optimality conditions given by Fuchs and Tropp for non-unit-norm atom sets. In exploring this geometry we are able to tighten some of these earlier results, showing for example that the Fuchs condition is both necessary and sufficient for L1-unique-optimality, and that there are situations where Orthogonal Matching Pursuit (OMP) can eventually find all L1-unique-optimal solutions with m nonzeros even if ERC fails for m, if allowed to run for more than m steps
    corecore