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On Polar Polytopes and the Recovery of Sparse
Representations

Mark D. Plumbley,Member, IEEE

Abstract—Suppose we have a signaly which we wish to where ||x||; = Y. |z;| is the ¢, norm of x. Problem (P1),
represent using a linear combination of a number of basis atoms which is known aBasis PursuifBP) in the signal processing
ai, y = ), zia; = Ax. The problem of finding the minimum o munity [3], can be formulated as a linear programming
o norm representation for y is a hard problem. The Basis - A
Pursuit (BP) approach proposes to find the minimum#; norm problem, and can be _solved using We”_ known optlmlzatlon
representation instead, which corresponds to a linear program Methods such as the simplex method or interior point methods
(LP) that can be solved using modern LP techniques, and several [4]. A number of authors have explored the conditions under
recent authors have given conditions for the BP (minimum{;  which the minimum of (P1) is unique and identical to a unique

norm) and sparse (minimum £, norm) representations to be - minimum of (P0), sometimes calleekact recoveryor ¢; /4,
identical. In this paper, we explore this sparse representation . !
equivalencg5]—[9].

problem using the geometry of convex polytopes, as recently 1 . .
introduced into the field by Donoho. By considering the dual”  In fact this property of¢; /¢, equivalence for a particular
LP we find that the so-called polar polytope P* of the centrally-  solution x, requires showing both that, is is the unique

symmetric polytope P whose vertices are the atom pairsta; minimum of (P0), known a&,-unique-optimalityand also that
is particularly helpful in providing us with geometrical insight it the unique minimum of (P1), known @s-unique-optimality

into optimality conditions given by Fuchs and Tropp for non-unit- .
norm atom sets. In exploring this geometry we are able to tighten [7]. In this paper we mostly concentrate on the problent;ef

some of these earlier results, showing for example that a condition Unique-optimality, and use the result of Donoho and Elad [7]

due to Fuchs is both necessary and sufficient for;-unique- for ¢p-unique-optimality.

optimality, and there are cases where Orthogonal Matching In an interesting new direction, Donoho [10], [11] has ex-

Pursuit can eventually find all ¢;-unique-optimal solutions with plored the link between the recovery of sparse representati

m nonzeros even if the Exact Recover Condition fails forn. . -
and the geometry gfolytopes convex sets defined by a finite

Index Terms—Basis Pursuit (BP), Orthogonal Matching Pur-  set of vertices or inequalities. Donoho showed that/,
suit (OMP), linear programming, polytopes, sparse representa- ¢ ivalence of certain representationscan be linked to the

tions. existence of particular faces of a polytopewhose vertices
are the atom pairsa; with a; € A. If the atom pairsta;
. INTRODUCTION are in general position, anfl is k-neighbourly that is if each
Suppose we have a real vectpr= [y,...,yq]7 which subset ofk signed atoms forms the vertices of a true face

we wish to represent using a linear combination frarm- d  of P, then/; /¢, equivalence holds for all representaticas
nonzerod-dimensional real basis atonas, y = >, z;a;. In with at mostk nonzeros. This powerful new approach means
other words, we wish to find an-vectorx = [zy,...,z,]T that results from the field of polytopes can be brought across
such thaty = Ax, where A = [a;] is thed x n matrix to the sparse representations problem, and vice versa. For
whoseith column isa;. Sincen > d there are many possibleexample, using the classic work of McMullen and Shephard
representationdAx = y for a given A andy. The sparse [12] on centrally symmetric polytopes, Donoho showed [10,
representation problenis then to find the representation Corollary 1.3] the surprising result that far—2 > d > 2, the

with the fewest possible non-zero components, conditionk < |(d+1)/3| must hold for¢; /¢, equivalence of

all representations, having at most: nonzeros.

For linear programming problems we can construct a dual
where x|, is the £, norm of x, i.e. the number of non-zero problem, which can sometimes lead to a simpler solution than
elements. In the special case where the atam&ave unit the original, primal problem. In a related way, the polytdpe
norm |la; ||, = 1, we may callA a dictionary [1], although With vertices+a; also has a dualP* = {y | +aly < 1},
this unit-norm requirement is not necessary for most of ttf&lled thepolar polytopeof P. In this paper we will use the

min [|x||, suchthat Ax =y (PO)

results in the present paper. dual problem and the polar polytog& to give us new insight
Problem (PO) is known to be NP-hard [2], so instead wBt0 the sparse representation problem. We will investigat
can consider the ‘relaxed’; problem two results due to Fuchs, which we call thachs Condition
[13] and Fuchs Corollary[14]. We will show that the Fuchs
min [[x[|, such that Ax =y (P1) condition is both necessary and sufficient for-unique-

optimality, is equivalent to existence of a face on the polar

M. D. Plumbley is _Wlth the Department of Electronic Englnegnn_ polytopeP*, and equivalent to a previous result of Donoho
Queen Mary, University of London, London E1 4NS, U.K. (e-mail 101. We shall al that the Fuchs C Il dthe E t
mark.plumbley@elec.gmul.ac.uk). This work is partially soped by EPSRC [ ] € shall also see that the Fuchs Corollary an € Exac

grants GR/S82213/01, GR/S75802/01, EP/C005554/1 and GOPAA6/1. Recovery Condition of Tropp [9] are corollaries of the Fuchs
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Condition, and give interpretations of these in terms of oue. éfc —1 = 0, soxy and ¢ satisfy the complementary
polytope geometry. We end with some graphical exampledackness condition, arkh must be an optimal point of (LP).
which illustrate the differences between these conditifmms Sincerpt is full rank, the optimal solution is unique and is
both non-unit-norm atom sets and unit-norm dictionaries. given by X, = Alpty, where A(T)pt is the Moore-Penrose

pseudoinverse oA p.

Il. FUCHS CONDITION: NECESSITY AND SUFFICIENCY For the ‘only if’ direction, first let us consider conditiog)(
Let us write the linear program (P1) in ittandard form Suppose tentatively thak,,;. does not have full rank. Then let
[15] us choose a small nonzero vecli“of};t = 0 in the null space
of Agps, i.€. Aopti{)\gt =0. We chooseié\;t to be sufficiently

in17% A% — % : ~ .
minl'x  suchthat Ax=y and x>0 (LP) gmall so that its largest absolute element vallag), || s

strictly less than the smallest elementzqj,.. Therefore the

. O T _ [T T

whﬁrel is a vector ofls, r:* o [A, —A] andx” = [x_, x|  three m-vectorsxop — x4 Xopt @Nd Xopy + X0, have all
with x = x; —x_ such thatx,,x_ > 0, i.€. [X4]i = gicny positive elements and satis®opt (Xopt — XN,) =
max(z;,0) and [x_]; = max(—x;,0). Thus any solution to AviRont = Aupi (ot +%V.) = v, 50 these threepvectors
Ax = y can be written in the fornAx = y with nonnegative “>eptXept = Sopt{Xopt T Xopt) = ¥, TN
2 all correspond to feasible points of (LP). Now]ﬁxopt >0,

. T(g _ Ny 1T TN T
The primal linear program (LP) has a corresponding du® havel™ (Xop — Xop) = 1" Xopt — 17 Koy < 17 Xopt, SO

problem Xopt —X0,¢ COrresponds to some with a smaller cost”x’ <
B 17%,, and sox, cannot be the optimum of (LP), yielding a
maxy’c  suchthat ATc<1. (DLP)  contradiction. Similarly if17x), < 0 we havel” (Xqp +
C

) ) ) x0) < 17Xy, SO againx, cannot be the optimum of (LP).
If a solution to (LP) exists, i.ey € colspan(A), then we say Fing|ly jf 17N = 0, then 17 (Kope + %) = 17 Zopt, SO
thg primal problt_am (LP) ifeasible For a Ilngar program, if the ihe distinct VeCtors .y + ié\;t andx.,; have the same cost,
primal problem is feasible, thestrong dualityholds between contradicting the requirement fa, to be theuniqueminimum

(LP) and (DLP). Hence (DLP) must also be feasible, and thg (LP). Therefore anyA.,, must have full rank for, to be
optimum values of (LP) and (DLP) are equal [15]. Thereforg,q unique optimum of (LP).

we have the following optimality conditio_ns for _this system  Now consider equation (1) of condition (b). Singg is a
Lemma 1: Suppose that problem (LP) is feasible. Then thginimum of (LP) the problem is feasible, and by strong dyalit
pairx*, ¢* is an optimum point of (LP), (DLPjf and only if 54} emma 1 there must also be at least one optiriuta the
the following conditions hold: dual problem (DLP) satisfying the dual feasibility conditi
1. Ax* =y, %x*>0 (Primal feasibility) ATc* <1,ie.alc* <1foralli=1,...,2n. Furthermore
any optimume™ must satisfy complementary slackness, so for

AT L
2 ANTC =1 . (Dual feasibility) anyi with z; > 0, i.e. a; € Aop, we must havea! c* = 1.
3. (ajc" —177 =0 Finally, consider the remaining inequality (2) of conditio
forall j=1,...,2n (Complementary slackness) (b). Since (LP) has a solution, it hasstictly complementary
R ) , " solution [16], i.e. one satisfyingl — éch*) + 23 > 0 for all
Proof: This follows immediately by writing down thej —1,...,2n. Therefore using thig*, for any j such that

Karush-Kuhn-Tucker (KKT) conditions (see e.g. [15]) foisth
system and eliminating free variables. ]

Suppose now thak, > 0 is a solution ofAx = y with
m = ||Xo||, nonzeros. Lek,,;, be them-dimensional vector
built from the nonzero components %f, with Aopt thed xm
matrix built from the corresponding columns 4f, such that
Yy = AgpiXops = AXg. Then the following result gives the
necessary and sufficient conditions fag to be the unique
optimum of (LP):

Theorem 1 (Fuchs Condition: Standard Form®y is the
unique optimum point of (LP) if and only if (a)&opt has
full rank and (b) there exists somec R such that

a; ¢ A,and hencei; = 0, we must havel — éiJTc*) > 0,
which is the strict inequality required for equation (2). =
This theorem gives us necessary and sufficient conditions
for xq to be/;-unique-optimal. Let us now find the equivalent
conditions for the original problem (P1), the sufficiencif’ (*
direction) of which was shown by Fuchs [13, Theorem 4], so
we refer to this as th&uchs Condition Suppose thak, is a
solution of Ax = y with m = [|x¢l|, nonzeros. Let,,; be
the m-dimensional vector built from the nonzero components
of x¢, with A, thed xm matrix built from the corresponding
columns ofA such thaty = AptXopt = Axo. Then we have
the following result:
ajc=1 a; € Aopt (1) ATheborec;an (ZUChS t()Zonditi%n: OrigiEaI Form).et | X0,
~T ~ ~ opt D€ defined as above. Theqy is the unique solution to
aje<l & ¢ Aop @ (PT) if and only if (a)A.y, is full rank, and (b) there exists
wherea, ranges over the columns . somec € R? satisfying
Proof: For the ‘if’ direction, we note thak, satisfies the T .
the primal feasibility condition of Lemma 1, and conditions Aopi € = 8ign Xopt 3)
(1) and (2) ensure thatsatisfies the dual feasibility condition. |ach| <1 foranya; € A, a; ¢ Ay 4)
Furthermore, the nonzero componentsgfcorrespond to the
basis vectorsa; € Aopt, which therefore haveich =1, The Fuchs Condition (Theorem 2, or Theorem 1 in standard
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form) is therefore the weakest possible condition fgr converse, we additionally note that the requirement for the

unique-optimality. face I, to have exactlyl — m dimensionsyn less than the
The proof of Theorem 2 (necessity and sufficiency of théimensionality of its polytope”*, means that,,, must have

Fuchs Condition) follows immediately from the followingfull rank m. u

Lemma. Now the (d — m)-face F,, = {c € P*|Apc = 1} of the

Lemma 2:A vector c satisfies condition (b) in Theorem 2polar polytopeP* corresponds to thém — 1)-face F,; =
if and only if it satisfies the condition (b) in Theorem 1.  pn conv{a7 € Aopt} of the primal polytopeP. We will
Proof: First we note thatA ., and A, contain identical call £ o the dual face and F, the correspondingrimal
columns except for sign changes, so the full rank condition gace Using this correspondence we have the following result,
each is equivalent. echoing a result of Donoho [10]:
For the other conditions in Theorem 2, fay € A, for Theorem 4:Let %, > 0 with m nonzeros be a solution of
which [Xom] # 0, we havea ¢ = sign([Xopt);)- If [Xopt]; > A% =y, and letx,p; and A, be constructed as before.

+

0 we getajc = 1 and —ajc = —1 < 1s0a; = a; € Thenx, is the unique optimum point of (LP) if and only if
Aopts 8npj = —a; ¢ Ay Alternatively if [Xopt]; < 0 We Foy = conv{a; € Agy} is an(m — 1)-face of P and is a
getajc = —1 < 1l and—alc = 1soa; = a; ¢ A, simplex.

A,1; = —a; € Ay Fora; ¢ Ay, we have|a cl <1 Proof: It is a standard result for polar polytopes that a
so -1 < aTc <1, ie. —aTc < 1 and +a c < 1, thus dual faceFy, exists and is nondegenerate if and only if the
nﬂc <1 anda c<1,s0a,; ¢ Aopt and a; ¢ Aopt corresponding primal facé,; exists and is a simplex [19].
Showmg the converse is similarly straightforward, notingherefore Theorem 4 follows immediately from Theorem 3.

that a] c=1and- a] c = 1 can never both be satisfied at _ _ S u
once. m Starting with the Fuchs condition in standard form (Theo-
rem 1) we have found a number of alternative conditions for

Il. GEOMETRY OF THEFUCHS CONDITION £1-unique optimality. Let us summarize these as follows.

In its original form, the Fuchs Condition (Theorem 2) is Theorem 5:Suppose that we have solutien to Ax = y

somewhat difficult to interpret (see e.g. comments in [17 ,I::)r?; :elt|iti;)“s%lr;?i2%ﬁer(;sb?g ?;Kalec\::?ﬁ %rf)([)ze_wz]have
[18]). However, in its standard form (Theorem 1) we find th 9 U= =y e ‘

we can relate it to the geometry pblytopes{19]. hen the_ foIIowmg condl_t|9ns are equivalent:
In the context of sparse representations, Donoho [10] in-1) Xo IS the unique minimum of (P1);
troduced the polytope® = conv{+ta;|a; € A}, the convex 2) Xo is the unique minimum of (LP);
hull of the positive and negative versions of the basis atoms3) the Fuchs Condition holds in the standard form (Theo-

a;. In our standard-form notation witA = [A, —A], we can rem 1); N . o

equivalently express this polytope &= conv{a;|a; € A}. 4) the Fuchs Condition holds in the original form (Theorem
This type of polytope, with mirror-image vertices, is cdlla 2);

centrally-symmetriqolytope, sincen €¢ P = —uec Pso 5 the dual facel),, = {c € P~ | Alic=1}={ce

it is symmetric about the origin. In general the verticesrof P* | tafc < 1 ;8; € Agp} exists and hasl — m

will be a subset of the atom pairs, although for the unit norm dimen;ions (Theorem 3); o _
case|a;||, = 1, uniqueness of the atom paitsy; is sufficient ~ 6) the primal face,,. = Prconv{a; € Aoy} exists and

for them all to be vertices. is an (m — 1)-simplex (Theorem 4).
Now, for the polytopeP let us introduce its associatpdlar
polytope IV. GLOBAL OPTIMALITY AND EQUIVALENCE

P ={clalc<1l,a, e A} ={c|ATc<1}. (5) We have so far considered the case of a single solutjpn
) o ) ) to (P1), or equivalently a single soluticty to (LP). Now let
In this context, thg original pqutopB is known as theprlme_ll us consider equivalence for sets of points.
polytope. We notice thaf”* is exactly the set of feasible

vectorsc for the dual linear program (DLP). This allows us

to express the Fuchs Condition in an equivalent geometriéal Discreteness and Covering of Sign and Support

form. In its standard form, we see that the Fuchs Condition

Theorem 3:The solutionx, with m = ||xo||, nonzeros in (Theorem 1) only depends oA, or in original form

Theorem 1 is the unique optimum point of (LP) if and only i{Theorem 2) om.,,; and the signs o, Thus the following

the polar polytope”* has a(d —m)-dimensional face;, = follows immediately.

{ce P*|A0Tptc =1}. Lemma 3 (Discreteness)he condition forx, to be the
Proof: For 0 < m < d, the conditions in Theorem 1 unique minimum of (LP) depends only on the support of

are equivalent to the requirement fdf;,, to exist and to x,. Or equivalently: The condition fox, to be the unique

be nondegenerate, i.e. to have exacfly- m dimensionS, minimum of (P1) depends only on the supportgfand signs

so that a pointc can exist in the relative interior of7,., of x, on its support.

c € relint £} ,. Form = d the conditions are equivalent to Proof: The support ofk determines&Opt and hence both

c being exactly the vertexOfface) c = (Aopt)Tl For the the rank ofA,,; and existence of in the Fuchs condition in
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the standard form (Theorem 1). The support and signs,of  For the ‘only if’ direction, the2n vertices of P correspond
determines the support &. B to the basis vectors paitsa;. Since P is k-neighbourly, all
As noted by Donoho, who also showed a similar resul}) x 2¥ ways we can choose a set bfbasis vectors and
[10, Lemma 6.5], this ‘discreteness of individual equivele’ signso; € {—1,+1} correspond to a simplical face @f, so
has been observed by previous authors [5], [20]. It means frery solutionx, with & nonzeros must bé -unique optimal.
instance that if a particula, is the unique optimal solution Consequently each subset/otolumns fromA has full rank
to (P1) withy = Axo, then all solutionsx( to (P1) with a k, sok, > k. Finally, if P is k-neighbourly then it is also
differenty’ = Ax( but the same support and signsxasand m-neighbourly for allm = 0,...,% [19] so this also holds
the same matrixA. must also be the unique optimal solutiorfor every solutionx, with 0 < m < k nonzeros. ]

of their respective problems. Remark This is expressed in a slightly stronger form than the

L <,
Nowtle;tpus Say t?hat a reprfsoe;tat'mt?\ﬁr_sf Olf the original [10, Theorem 1], which included an assumption that
support otx Covers the suppor o 1e.thale; =0 == e columns ofA are ingeneral positionIinstead we have the

Z; = 0. Then we have the following useful result about abo%tomewhat weaker condition thay, > , i.e. Spark(A) > k
‘sparser’ representations. = o L= oD !

L 4(C ina)S < > 0is th . . in one direction. Without this condition it might be possibl
_-emma (Covering) Upposexo = 0s the unique min- ¢ ail possible solutions to bé,-unique-optimal withoutP
imum of (LP). Then any solutiork” > 0 to AxXx’ = y’

. : . o - . having all2n vertices, or without” having all( ;) x 2* primal
is also ¢;-unique-optimal ifx, coversx’. Or equivalently: g gall(;) P

. . T . faces. It would be interesting to see if it is possible to vesak
SUpposexy is the unique minimum of (P1). Then any solutio g P

This correspondence further, to polytop&swithout all 2
x' to Ax’ = y’ is also ¢;-unique-optimal ifx, coversx’ P ' polytop "

’ vertices.
and the nonzero elements &f have the same signs as the

corresponding elements af;. .

Proof: The faces of &-simplex are themselves simplical.c' b/t Equalencg _ _
Therefore the primal facé” of P corresponding to ang’ 10 Show/y/f, equivalence for a particular representation,
must be a simplical face df,,,;, S0 by Theorem 4’ is itself ~the following result will be useful:

(,-unique-optimal. The equivalent version follows from the Lemma 5 (Donoho and Elad [7f,-Uniqueness):A  rep-
construction ofk from x. m resentatiory = Axg with m = ||x¢l|, nonzeros igy-unique-

optimal (i.e. the sparsest possibleyif < k,/2, wherek, is
) o the k-rank of A.
B. Global£;-Unique-Optimality Proof: See [7, Corollary 1] using, = Spark(A)—1.
Now let us consider;-unique-optimality of all represen- We can therefore state the following.

tations xo with at mostk nonzeros. For this we will need Corollary 1: Suppose we have a solution to y = Axg
the following definitions. The centrally-symmetric polp® With m = ||xo||, nonzeros, and for which one of the conditions
P = conv{+a;|la; € A} is called k-neighbourlyif every of Theorem 5 holds. Ther, is both /,-unique-optimal and
subset oft vertices of P, which does not contain two opposite/1-unique-optimal ifm < k, /2, wherek, is the k-rank of A.
vertices of P, are the vertices of & — 1)-simplex which is Proof: This simply combines the conditions on from
a face of P. We also define thé-rank (Kruskal Rank) of Lemma 5 and Theorem 5. ]
a matrix as follows [21, p162]: A matriA has k-rank of To show further that; /¢y equivalence holds for a set of
k, if the columns are linearly independenténeryset ofk, representations, it is sufficient for both-unique-optimality
columns fromA, and if there is at least one set @f, + 1) and/;-unique-optimality to hold for all representatioss in
columns fromA that includes linearly dependent columnsthat set.
(For the Spark of a matrix, introduced by Donoho and Elad Theorem 7:Suppose thaf is k-neighbourly. Ther?; //,-
[7], we haveSpark(A) = k,+1.) We are now in a position to €quivalence holds for all solutions, to (P1) withm = |[xo/l,
give our version of the main result of Dohono [10, Theoreonzeros, provided: < min(k, k,/2).

1]. Proof: This simply combines the conditions on from
Theorem 6 (Donoho)Suppose we have anx d matrix A Lemma 5 and Theorem 6. ]

with k-rank k,, i.e. all sets ofk, columns of A are linearly

independent. Then the primal polytopehas2n vertices and V. FUCHS COROLLARY

is k-neighbourly, if and only if (a)k, > k, and (b) every  The Fuchs Condition (Theorems 1 and 2) concerns the
solutionx, to y = Axo with at mostk nonzeros is the unique existence of a point, but may not be easy to test. However,
solution to (P1). suppose we choose a specific vectog; = AlptTl =
Proof: For the ‘if’ direction, k, > k requires that each i tT sign Xopt, Which we call thevertexof our (signed) basis
subset ofk columns fromA has full rankk. Therefore for setpA or (AT sign xo,,). Then we obtain the followin
each support pattern df nonzero elements, solutions, to opt opt: SIBH Xopt - 9

. . o result:
y = Ax, exist for each of th&* sign combinations. If all of . )
the solutions aré, -unique-optimal, then each of ttjé ) x 2 Corollary 2 (Fuchs Corollary: Standard Form)Eor a de

) ._sired solutionk, to Ax =y, let us construck,,, and A,
faces of P corresponding to the patterns of support and signg 0 x=y pt pt

must be a(k — 1)-simplex, soP is k-neighbourly and has S in Theorem 1. 1o, has full rank and

vertex pairs. alcopy <1 forall a; €A a; ¢ Agy (6)
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is satisfied with the specific dual vectes,; = AlptTl, then We shall now develop an interpretation of ERC in terms of
Xq is the unique optimum to (DLP). our polytope geometry. Let us construct the polytdpg; =
This result, a stronger condition than the Fuchs Conditiaonv{ta; | a; € A} which we shall call theprimal basis
(Theorem 1), was originally introduced by Fuchs [14] in thpolytope and its corresponding relative polar polytoBg,, =
following form: {c € aff P, | £cTa; < 1,a; € Ay} Whereaff P, is the
Corollary 3 (Fuchs Corollary: Original Form):Let  x.,,; affine hull of I%,,; we call P}, the dual basis polytopewe
and A, be given as in Theorem 2. &, is full rank, and then obtain the following result:
T Theorem 9:Suppose thai\,,; has full rankm. Then the
laTAl " signxon| <1 foranya; € A, a; ¢ Age  Exact Recovery Condition, Equation (8), is satisfied if and
(7) only if (a) P;, C P*, ie. the dual basis polytop€y., is
thenx, is the unique solution to (P1). contained within the complete polar polytopé, and (b)P;,
While the Fuchs Corollary is a stronger condition thagoes not touch any face @t* for which ia]Tc — 1 for some
necessary, in that there are unique optima for which tlgg ¢ Aop
conditions onc,,; are not satisfied (see [13]) its advantage  Proof: We construct the set ofi-dimensional sign vectors
over the Fuchs Condition is that it is easier to test. Whilg — [01,...,0m]" € {+1,—1}™ and the set of basis vertices
testing the Fuchs Condition would require a search for the.
relevant face ofP* to be conducted, the probe point (basiE
vertex) copy can be constructed directly from, and A. LT i ]
In terms of the polar polytope geometry, the Fuchs Corolladyopt @ |s;he vector in the span;)f the columnsAdf,,; which
requires both that the dual fade;,, = {c € P*|Aoyc = 1} SalisfiesAg,.c = o i.e.diag(o)Agyc = 1, or in other words

exists and has dimensiah— m, as for the Fuchs Condition, £2; € — Lfora, € A, and some combination of sigrts;.
and also that the basis vertex,, = AzptTl is contained in HenceVopt*|s actually the set _02 *vert|ce*s of the dual basis
its relative interior,cop € relint Fz,. polytope ;. Thus the conditio’;,, C P* corresponds to a
non-strict inequality in Equation (8). The remaining cdudi
for P}, not to touch any face oP* for which +a] ¢ = 1 for

somea; ¢ A,p corresponds to exclusion of the equality, to

= {c = AiptTa}. Equation (8) is equivalent to the

opt
onditonac < 1 forall ¢ € Vi, a; ¢ Agp. Now ¢ =

VI. EXACT RECOVERY CONDITION

Perhaps more well known than the Fuchs Condition is th&sye a strict inequality. u
Exact Recovery Conditio(ERC) introduced by Tropp [9]. In some ways, the Exact Recovery Condition is not as well
Theorem 8 (Tropp [9]: Exact Recovery Conditior)et Us pehaved as the Fuchs Condition. For example, we have the
havex, and Ao as in Theorem 2. If following somewhat surprising result:
t Theorem 10 (Non-nestedness of ERG#tisfying ERC for
A fA, Aoptaﬂ'Hl <1 ®) " all solutionsx, with m nonzeros is not sufficient to ensure

. . . that all solutionsxg with & < m nonzeros also satisfy ERC.
where a; ranges over the atoms iA which are not in the Proof: Let A = [a,a0] with a; = [1,0]” anda, =

m-term representation gf, thenx, is the unique solution to [v2,v2]T. ERC is trivially satisfied forn = 2 since A =

(P1). . ; ) A, SO there are nd\ 3 a; ¢ A,y Now for xo = [3,0]7
The quantitymax,, ¢ A AoptajH1 is referred to as thexact \yith 1. — 1, we haveA,, = a; = [1,0]T and Alpt —al =

opt

recovery coefficient [1,0], so Al ;a; = v/2 > 1 and hence ERC fails fok = 1.
Although the approaches of Fuchs [13] and Tropp [9] a€xamples can be also be constructed for unit-norm dictiesar
very different, Gribonval and Nielsen [17] pointed thatyhe(e'g_ see Section VIII-B). -
are closely linked. Specifically we have This result is in contrast to the Fuchs Condition, where Lemm
max max ISign(Xfpt)Azptajl 4 tells us that if the_Fuc;hs Cond_itiqn is satisfied for;ajlwith
Xopt a;#Aopt m nonzeros, then it will be satisfied for amy with &k < m
= max aféli’fm |(sign(Xopt ), Alptaj>| nonzeros [10].
= max AiptajH 9) VIl. ERC AND MATCHING PURSUIT ALGORITHMS
aj opt

We have seen that Tropp’s ERC is sufficient but not
so the Exact Recovery Condition (Theorem 8) is itself mecessary for;-unique-optimality. However, Tropp [9] also
corollary of the Fuchs Corollary (Corollary 3). Thus ERC is ghowed that the Exact Recovery Condition (8) is necessary
stronger condition than the Fuchs Condition (Theorem 2, aand sufficient for the Orthogonal Matching Pursuit (OMP)
it is also a stronger condition than that in the Fuchs Corpllaalgorithm [22] to find the/;-unique-optimal solution in the
(Corollary 3), which we can see as follows: following sense:
Lemma 6: Suppose we have a desired solutignto y = Theorem 11 (Tropp [9]: Exact Recovery for OMP):

Axq. Then the Exact Recovery Condition (Theorem 8) iSuppose we have a desired solutiefn for y = Axq with
satisfied if the Fuchs Corollary (Corollary 3) is satisfieddl  full rank A,; as in Theorem 8. Then Orthogonal Matching
x(, With the same support ag, including solutionsxj with  Pursuit (OMP) will recoverx, in m steps if the Exact
the same support but different signs. Recovery Condition (8) holds. Conversely, suppose ERG fail

Proof: This follows from (9) (see [17]). m for somey = Ax, with optimal synthesis matrixA:.
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Then there are signals in the column spanAf,; which
Orthogonal Matching Pursuit cannot recowerm steps
Proof: See [9]. ] !

The condition for recovery ‘inm steps’ is implicit in =

Tropp’s statement of this theorem, but is used in the proof ¢”

the converse direction. To show that the Steps’ condition

is necessary we can give the following counter-result: - + -2
Lemma 7: There exist problems (P1) with solutiorg with oYy

m nonzeros for which ERC fails, but which OMP can recover

in k > m steps, provided that OMP is eventually allowed t§i9- 1. Primal polytopeP (dotted) and polar polytope”* (solid) for
dro eros in the final representation (a)_a unit-norm dictionary and (b) a non-unit-norm atom s'|'d1e. shaded

rop any z p ’ region R4 4 denotes a cone ig-space represented by nonnegative amounts
Proof. Let us use the same example as in the proef,zs > 0 of the basis vectorg-a;, +as.

of Theorem 10, and suppose we wish to recover the signal

xo = [1,0]T fromy = Axo = a; = [1,0]7, for which

At = [a;1]. From the proof of Theorem 10 we know thadifferences between them. In this section we will give 2-
ERC fails for thisx,. Now let us run OMP [22]. In step dimensional examples for a unit-norm dictionary and noit-un

1 we havealy = v2 > 1 = aly, so OMP chooses norm atom set, and a 3-dimensional example for a unit-norm
the wrong atoma,, yielding a basis set after 1 step ofdictionary.

A = [ay]. Choosingz, to minimize the mean squared error

we getx()) = ajy = [1/(2v/2)] producing a reconstruction o Tyo Dimensional Examples

vy = xMa, = (1/(2v2)) x [v2,v2]7 = [0.5,0.5] and

residualr =y — () =[0.5,-0.5]7 # 0. So as expected,
OMP has not recovered, = [1,0]7 in m = 1 steps.

2

-1

Fig. 1 shows an example of (a) a unit-norm dictionary and
(b) a basis set with one unit-norm atom and one non-unit-
But if we allow OMP to run for a second step, we findiorm atom. The vectorga; are scaled versions of the atoms

’ defined by+a/ = =+a;/|a;||>. We notice that thea;” touch

alr(M = 0.5 while aZ'r(") = 0 as we would expect for OMP. h i h | t the dual DolViaB® si
Hence in step 2, OMP chooses the remaining basisso Te fuppoTr m/g” ﬁgerplanes of the dual polytope since
a; = a; a;/||aj|jo = 1.

A®) = [a,, a,] (reordering the atoms for convenience). Nov?isi N h h . , . oT
choosingx = [z1,z2] to minimize the mean squared erro uppose that we have a ‘'sparse’ representatios: [, 0]

r . ,

we getx(® — Mz) x§2)] — (AH®y = [1,0)7 producing for somef > 0, with m = ||xo]|, ?Tl. In each of Flgs.. 1(a)

a reconstructiony® = x»A® =y, andr = 0. Since N9 (B) the ffCE.FOPt = {e € PrlAgc =1} C P exists:

2{ = 0, OMP has found the corredtterm reconstruction specifically 5, is the line joininge, 4 to ¢, and we can

of y, albeit taking 2 steps to do so. The same result holds fF- this is a face witth—m = 2—1 = 1 dimension. Any point

scaled and negated versions A&f,; — [ai]. ¢ on the line joiningc, 4 to Cys excluding the gnd points
Thus failure of ERC does not require that OMP will fail S+ andc, . themselves, will correspond o€ relint -

opt-
S Therefore thi int will i ndition in the Fuch
only that there are cases for which it cannot succeed erefore this point satisfy condition (b) in the Fuchs
m steps. We can therefore state the following conditio

Ebndition (Theorems 1 and 2). Thus in each of Figs. 1(a) and
) ) - T . .
weaker than the Exact Recovery Condion, for posdilelayed ?ﬁ) 'f. thegpom.txo o [@’O]I IS a fe?smleh.sol;monhto (Pl)'l
recoveryby OMP then it is £,-unique-optimal. To confirm this, for the prima
Corollary 4: Sl'Jppose that, with my nonzeros is adesiredface Fopt, In €ach of Figs. 1(a) and (b) we have the single-
. 0 0 ; _ _ . .
solution ofy, = Ax, which fails ERC. Suppose further that?OMt SetFop = conviar} = {ai} C P, which also exists
there exists a different solutiopy; = Ax; for which ERC is

and is hag'm — 1) = 0 dimensions, as expected.
satisfied, and whicltoversxg in the sense that the supporth For the Fuchs Corollary, in ?a‘;h of F'gf' 1(2) and (b.) we
: ; ave A, = [a;] and henceA! " = [+a]] so our basis
of x; is a superset of the support a&f. Then OMP will N b _ Al Tfi —4at.1—al si
‘eventually’ recoverx, in m; steps, wheren; > my is the \Z’ﬁftex_'s given bycopr = ot +?1 = olnee
number of nonzeros ix; opt = COHV{CT+7C|+—} whic '15 t;* ine slg_gmelnt Jo'g'ng
Proof: This follows from the proof of Theorem 11, but++ to Cff";*ea.ry;"pt 1€b re_lfﬁt Ofpt n r']gl tr(1a)'F UL
allowing some of the elements af; to be zero to match the Copt ¢ relint Fop, in Fig. 1(b). ' heretore, while the T uchs
; : Condition (Theorems 1 and 2) is satisfied far = [3,0]* in
zeros of the desired solutioy. th Fig. 1 d (b). the Fuchs Coroll . | tisfied
At present it is unclear whether it is common for ERC to faﬁ’0 thi 'g. (aF)' anl ( )l,a te tL.JC F§ frg a_lr_)r/]'ls onfy s Iti 'F:
at one levelm, but be satisfied at higher levets; > mg, so tﬁr FIS T}O '2: 'gl'l (a)_, _udnodlnt I%I (t). IS tchon Irtrr?shé a
it remains to be seen whether this conceptlefayed recovery Ce dgtp s 010 iary 'i?in eed strictly stronger than thensuc
by OMP will turn out to be useful. ondition (see also [13]). . . .
For the Exact Recovery Condition, our primal basis poly-
tope is P,y = conv{—aj,+a;}. In this case we geb), =
VIII. | LLUSTRATIVE GRAPHICAL EXAMPLES conv{—al,+al} so Pz, is the line segment joining-a;
One of the advantages of the polytope geometry we haed +aj. In Fig. 1(a) we can see that;, C P* and
considered here is that it can give us some insight into t#&, is well away from the faces alongalc = 1 (joining
various optimality conditions we are interested in, and the | to c,.) and —alc = 1 (joining c__ to c,_). Hence
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(@) (b) For the Exact Recovery Condition, we require that
||Azpt:513||1 < 1 so we must have e.@: ;a3 < 1. However,
calculation givea:OTptag = 2/4/3 > 1 so ERC fails for this
basis. The shaded cone in Fig. 2(b) shows the segment of the
plane spanned bya;,a,} for which alc > max;_;2a’c.
Here we see that the vertex,; = c;4o is in this shaded
region (Fig. 2(b)), and has been ‘cut off' by the halfspace
al'c < 1. As confirmation of this, the dual basis polytop,.

is the square in the plane; = 0 with vertices af+1, +1, 0].

We can see that the corner containjiigl, 0] (= c440) is not
contained within the full dual polytope, sB;,, ¢ P*, and
hence ERC is not satisfied.

To summarize, since the Fuchs Condition is satisfied, any
desired solutionzy = [31, 52,0]T with 31,8, > 0 in this
example will be recovered by Basis Pursuit, even though the
Fuchs Corollary and ERC both fail. Note however that the
Fig. 2. Failure of ERC for unit norm vectors ih= 3 dimensions, showing solutionzy = [, — (2, 0] with 51, 32 > 0, with same support
(a) the complete polar polytope, with section line through aist atys =t different signs would satisfy both the Fuchs Conditiod a
0, and (b) the magnified section showing the atermgsas andasz (= aJ",a;, . . I
andaj since|a;| = 1). the Fuchs 'Corollary,. Wh!le ERC must still fail since the soip

of the desired solution is unchanged.

ERC is satisfied in Fig. 1(a). However, in Fig. 1(b) we IX. CONCLUSIONS
can see thatP;, ¢ P* so ERC is not satisfied. If we

. . ) We have explored the geometry of the sparse representation
repeat this analysis for some, with A, = [as], we see

; ; - N problem using centrally-symmetric polytopes and polaa{du
that Fo,, = conv{—ag, +aj} S0 Pop C P7, and Pop, olytopes. We have seen that polytopes can give us a useful
is away from th(_a othc_er.faces, In bOIh, F,'g' 1(a) and (b'nsight into the optimality conditions introduced by Fugcfar
and hence ERC is satisfied for both. Similarly for Some o2 mple which had previously been considered to be difficul
with Ao,y = [ag,a2], we now haveP;, = P* so clearly to interpret.
P‘fr{t < P, and there are na; ¢ Aop. Hence ERC is In exploring this geometry we have also been able to tighten
satisfied form = 2 in both Fig. 1(a) and (b). some of these previous results, and link these to the padytop
_ o ) ) ) based results of Donoho for the primal polytope. For example

B. Unit-norm Dictionaries: A Three-dimensional Example e showed that the Fuchs Condition is both necessary and

Many of the equivalence results of previous authors asaifficient for/;-unique-optimality, and that there are situations
for dictionaries of unit norm atom$;| = 1. The special where Orthogonal Matching Pursuit (OMP) can find &lt
properties of unit-norm dictionaries mean that it is morenique-optimal solutions withn nonzeros, even if the Exact
awkward to find low-dimensional examples to illustrate thRecovery Condition (ERC) fails fam, if it is allowed to run
distinction between Fuchs Condition, Fuchs Corollary arfdr additional steps.
ERC. Nevertheless, we can illustrate many of these issues
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