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On Polar Polytopes and the Recovery of Sparse
Representations
Mark D. Plumbley,Member, IEEE

Abstract—Suppose we have a signaly which we wish to
represent using a linear combination of a number of basis atoms
ai, y =

∑

i
xiai = Ax. The problem of finding the minimum

ℓ0 norm representation for y is a hard problem. The Basis
Pursuit (BP) approach proposes to find the minimumℓ1 norm
representation instead, which corresponds to a linear program
(LP) that can be solved using modern LP techniques, and several
recent authors have given conditions for the BP (minimumℓ1

norm) and sparse (minimum ℓ0 norm) representations to be
identical. In this paper, we explore this sparse representation
problem using the geometry of convex polytopes, as recently
introduced into the field by Donoho. By considering the dual
LP we find that the so-called polar polytopeP

∗ of the centrally-
symmetric polytope P whose vertices are the atom pairs±ai

is particularly helpful in providing us with geometrical insight
into optimality conditions given by Fuchs and Tropp for non-unit-
norm atom sets. In exploring this geometry we are able to tighten
some of these earlier results, showing for example that a condition
due to Fuchs is both necessary and sufficient forℓ1-unique-
optimality, and there are cases where Orthogonal Matching
Pursuit can eventually find all ℓ1-unique-optimal solutions with
m nonzeros even if the Exact Recover Condition fails form.

Index Terms—Basis Pursuit (BP), Orthogonal Matching Pur-
suit (OMP), linear programming, polytopes, sparse representa-
tions.

I. I NTRODUCTION

Suppose we have a real vectory = [y1, . . . , yd]
T which

we wish to represent using a linear combination fromn > d
nonzerod-dimensional real basis atomsai, y =

∑

i xiai. In
other words, we wish to find ann-vectorx = [x1, . . . , xn]T

such thaty = Ax, where A = [ai] is the d × n matrix
whoseith column isai. Sincen > d there are many possible
representationsAx = y for a given A and y. The sparse
representation problemis then to find the representationx
with the fewest possible non-zero components,

min
x

‖x‖0 such that Ax = y (P0)

where‖x‖0 is the ℓ0 norm of x, i.e. the number of non-zero
elements. In the special case where the atomsai have unit
norm ‖ai‖2 = 1, we may callA a dictionary [1], although
this unit-norm requirement is not necessary for most of the
results in the present paper.

Problem (P0) is known to be NP-hard [2], so instead we
can consider the ‘relaxed’ℓ1 problem

min
x

‖x‖1 such that Ax = y (P1)
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where ‖x‖1 =
∑

i |xi| is the ℓ1 norm of x. Problem (P1),
which is known asBasis Pursuit(BP) in the signal processing
community [3], can be formulated as a linear programming
problem, and can be solved using well known optimization
methods such as the simplex method or interior point methods
[4]. A number of authors have explored the conditions under
which the minimum of (P1) is unique and identical to a unique
minimum of (P0), sometimes calledexact recoveryor ℓ1/ℓ0
equivalence[5]–[9].

In fact this property ofℓ1/ℓ0 equivalence for a particular
solution x0 requires showing both thatx0 is is the unique
minimum of (P0), known asℓ0-unique-optimality, and also that
it the unique minimum of (P1), known asℓ1-unique-optimality
[7]. In this paper we mostly concentrate on the problem ofℓ1-
unique-optimality, and use the result of Donoho and Elad [7]
for ℓ0-unique-optimality.

In an interesting new direction, Donoho [10], [11] has ex-
plored the link between the recovery of sparse representations
and the geometry ofpolytopes, convex sets defined by a finite
set of vertices or inequalities. Donoho showed thatℓ1/ℓ0
equivalence of certain representationsx0 can be linked to the
existence of particular faces of a polytopeP whose vertices
are the atom pairs±ai with ai ∈ A. If the atom pairs±ai

are in general position, andP is k-neighbourly, that is if each
subset ofk signed atoms forms the vertices of a true face
of P , thenℓ1/ℓ0 equivalence holds for all representationsx0

with at mostk nonzeros. This powerful new approach means
that results from the field of polytopes can be brought across
to the sparse representations problem, and vice versa. For
example, using the classic work of McMullen and Shephard
[12] on centrally symmetric polytopes, Donoho showed [10,
Corollary 1.3] the surprising result that forn−2 ≥ d > 2, the
conditionk ≤ ⌊(d+1)/3⌋ must hold forℓ1/ℓ0 equivalence of
all representationsx0 having at mostk nonzeros.

For linear programming problems we can construct a dual
problem, which can sometimes lead to a simpler solution than
the original, primal problem. In a related way, the polytopeP
with vertices±ai also has a dual,P ∗ = {y | ±aT

i y ≤ 1},
called thepolar polytopeof P . In this paper we will use the
dual problem and the polar polytopeP ∗ to give us new insight
into the sparse representation problem. We will investigate
two results due to Fuchs, which we call theFuchs Condition
[13] and Fuchs Corollary[14]. We will show that the Fuchs
Condition is both necessary and sufficient forℓ1-unique-
optimality, is equivalent to existence of a face on the polar
polytopeP ∗, and equivalent to a previous result of Donoho
[10]. We shall also see that the Fuchs Corollary and the Exact
Recovery Condition of Tropp [9] are corollaries of the Fuchs
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Condition, and give interpretations of these in terms of our
polytope geometry. We end with some graphical examples,
which illustrate the differences between these conditionsfor
both non-unit-norm atom sets and unit-norm dictionaries.

II. FUCHS CONDITION: NECESSITY ANDSUFFICIENCY

Let us write the linear program (P1) in itsstandard form
[15]

min
x̃

1T x̃ such that Ãx̃ = y and x̃ ≥ 0 (LP)

where1 is a vector of1s, Ã = [A,−A] and x̃T = [xT
+,xT

−]
with x = x+ − x− such thatx+,x− ≥ 0, i.e. [x+]i =
max(xi, 0) and [x−]i = max(−xi, 0). Thus any solution to
Ax = y can be written in the form̃Ax̃ = y with nonnegative
x̃.

The primal linear program (LP) has a corresponding dual
problem

max
c

yT c such that ÃT c ≤ 1. (DLP)

If a solution to (LP) exists, i.e.y ∈ colspan(A), then we say
the primal problem (LP) isfeasible. For a linear program, if the
primal problem is feasible, thenstrong dualityholds between
(LP) and (DLP). Hence (DLP) must also be feasible, and the
optimum values of (LP) and (DLP) are equal [15]. Therefore
we have the following optimality conditions for this system:

Lemma 1:Suppose that problem (LP) is feasible. Then the
pair x̃∗, c∗ is an optimum point of (LP), (DLP)if and only if
the following conditions hold:

1. Ãx̃∗ = y, x̃∗ ≥ 0 (Primal feasibility)

2. ÃT c∗ ≤ 1 (Dual feasibility)

3. (ãT
j c∗ − 1)x̃∗

j = 0

for all j = 1, . . . , 2n (Complementary slackness)

Proof: This follows immediately by writing down the
Karush-Kuhn-Tucker (KKT) conditions (see e.g. [15]) for this
system and eliminating free variables.

Suppose now that̃x0 ≥ 0 is a solution ofÃx̃ = y with
m = ‖x̃0‖0 nonzeros. Let̃xopt be them-dimensional vector
built from the nonzero components ofx̃0, with Ãopt thed×m
matrix built from the corresponding columns ofÃ, such that
y = Ãoptx̃opt = Ãx̃0. Then the following result gives the
necessary and sufficient conditions forx̃0 to be the unique
optimum of (LP):

Theorem 1 (Fuchs Condition: Standard Form):x̃0 is the
unique optimum point of (LP) if and only if (a)̃Aopt has
full rank and (b) there exists somec ∈ R

d such that

ãT
j c = 1 ãj ∈ Ãopt (1)

ãT
j c < 1 ãj /∈ Ãopt (2)

whereãj ranges over the columns of̃A.
Proof: For the ‘if’ direction, we note that̃x0 satisfies the

the primal feasibility condition of Lemma 1, and conditions
(1) and (2) ensure thatc satisfies the dual feasibility condition.
Furthermore, the nonzero components ofx̃0 correspond to the
basis vectors̃aj ∈ Ãopt, which therefore havẽaT

j c = 1,

i.e. ãT
j c − 1 = 0, so x̃0 and c satisfy the complementary

slackness condition, and̃x0 must be an optimal point of (LP).
SinceÃopt is full rank, the optimal solution is unique and is
given by x̃opt = Ã

†
opty, whereÃ

†
opt is the Moore-Penrose

pseudoinverse of̃Aopt.
For the ‘only if’ direction, first let us consider condition (a).

Suppose tentatively that̃Aopt does not have full rank. Then let
us choose a small nonzero vectorx̃N

opt 6= 0 in the null space
of Ãopt, i.e. Ãoptx̃

N
opt = 0. We choosẽxN

opt to be sufficiently
small so that its largest absolute element value‖x̃N

opt‖∞ is
strictly less than the smallest element ofx̃opt. Therefore the
threem-vectorsx̃opt − x̃N

opt, x̃opt and x̃opt + x̃N
opt have all

strictly positive elements and satisfỹAopt(x̃opt − x̃N
opt) =

Ãoptx̃opt = Ãopt(x̃opt + x̃N
opt) = y, so these three vectors

all correspond to feasible points of (LP). Now if1T x̃N
opt > 0,

we have1T (x̃opt − x̃N
opt) = 1T x̃opt − 1T x̃N

opt < 1T x̃opt, so
x̃opt−x̃N

opt corresponds to somẽx′ with a smaller cost1T x̃′ <
1T x̃0, and sox̃0 cannot be the optimum of (LP), yielding a
contradiction. Similarly if1T x̃N

opt < 0 we have1T (x̃opt +
x̃N

opt) < 1T x̃opt, so agaiñx0 cannot be the optimum of (LP).
Finally if 1T x̃N

opt = 0, then1T (x̃opt + x̃N
opt) = 1T x̃opt, so

the distinct vectors̃xopt + x̃N
opt and x̃opt have the same cost,

contradicting the requirement for̃x0 to be theuniqueminimum
of (LP). Therefore anỹAopt must have full rank for̃x0 to be
the unique optimum of (LP).

Now consider equation (1) of condition (b). Sincex̃0 is a
minimum of (LP) the problem is feasible, and by strong duality
and Lemma 1 there must also be at least one optimumc∗ to the
dual problem (DLP) satisfying the dual feasibility condition
ÃT c∗ ≤ 1, i.e. ãT

i c∗ ≤ 1 for all i = 1, . . . , 2n. Furthermore
any optimumc∗ must satisfy complementary slackness, so for
any i with x̃i > 0, i.e. ãi ∈ Ãopt, we must havẽaT

i c∗ = 1.
Finally, consider the remaining inequality (2) of condition

(b). Since (LP) has a solution, it has astrictly complementary
solution [16], i.e. one satisfying(1 − ãT

j c∗) + x̃∗
j > 0 for all

j = 1, . . . , 2n. Therefore using thisc∗, for any j such that
ãj /∈ Ãoptand hencẽx∗

j = 0, we must have(1 − ãT
j c∗) > 0,

which is the strict inequality required for equation (2).
This theorem gives us necessary and sufficient conditions

for x̃0 to beℓ1-unique-optimal. Let us now find the equivalent
conditions for the original problem (P1), the sufficiency (‘if’
direction) of which was shown by Fuchs [13, Theorem 4], so
we refer to this as theFuchs Condition. Suppose thatx0 is a
solution ofAx = y with m = ‖x0‖0 nonzeros. Letxopt be
the m-dimensional vector built from the nonzero components
of x0, with Aopt thed×m matrix built from the corresponding
columns ofA such thaty = Aoptxopt = Ax0. Then we have
the following result:

Theorem 2 (Fuchs Condition: Original Form):Let x0,
Aopt be defined as above. Thenx0 is the unique solution to
(P1) if and only if (a)Aopt is full rank, and (b) there exists
somec ∈ R

d satisfying

AT
optc = signxopt (3)

|aT
j c| < 1 for any aj ∈ A, aj /∈ Aopt (4)

The Fuchs Condition (Theorem 2, or Theorem 1 in standard
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form) is therefore the weakest possible condition forℓ1-
unique-optimality.

The proof of Theorem 2 (necessity and sufficiency of the
Fuchs Condition) follows immediately from the following
Lemma.

Lemma 2:A vector c satisfies condition (b) in Theorem 2
if and only if it satisfies the condition (b) in Theorem 1.

Proof: First we note thatAopt andÃopt contain identical
columns except for sign changes, so the full rank condition on
each is equivalent.

For the other conditions in Theorem 2, foraj ∈ Aopt, for
which [xopt]j 6= 0, we haveaT

j c = sign([xopt]j). If [xopt]j >
0 we get aT

j c = 1 and −aT
j c = −1 < 1 so ãj = aj ∈

Ãopt, ãn+j = −aj /∈ Ãopt. Alternatively if [xopt]j < 0 we
get aT

j c = −1 < 1 and −aT
j c = 1 so ãj = aj /∈ Ãopt,

ãn+j = −aj ∈ Ãopt. For aj /∈ Aopt, we have|aT
j c| < 1

so −1 < aT
j c < 1, i.e. −aT

j c < 1 and +aT
j c < 1, thus

ãT
n+jc < 1 and ãT

j c < 1, so ãn+j /∈ Ãopt and ãj /∈ Ãopt.
Showing the converse is similarly straightforward, noting

that aT
j c = 1 and−aT

j c = 1 can never both be satisfied at
once.

III. G EOMETRY OF THEFUCHS CONDITION

In its original form, the Fuchs Condition (Theorem 2) is
somewhat difficult to interpret (see e.g. comments in [17],
[18]). However, in its standard form (Theorem 1) we find that
we can relate it to the geometry ofpolytopes[19].

In the context of sparse representations, Donoho [10] in-
troduced the polytopeP = conv{±ai|ai ∈ A}, the convex
hull of the positive and negative versions of the basis atoms
ai. In our standard-form notation with̃A = [A,−A], we can
equivalently express this polytope asP = conv{ãi|ãi ∈ Ã}.
This type of polytope, with mirror-image vertices, is called a
centrally-symmetricpolytope, sinceu ∈ P =⇒ −u ∈ P so
it is symmetric about the origin. In general the vertices ofP
will be a subset of the atom pairs, although for the unit norm
case‖ai‖2 = 1, uniqueness of the atom pairs±ai is sufficient
for them all to be vertices.

Now, for the polytopeP let us introduce its associatedpolar
polytope

P ∗ = {c | ãT
i c ≤ 1, ãi ∈ Ã} = {c | ÃT c ≤ 1}. (5)

In this context, the original polytopeP is known as theprimal
polytope. We notice thatP ∗ is exactly the set of feasible
vectorsc for the dual linear program (DLP). This allows us
to express the Fuchs Condition in an equivalent geometrical
form.

Theorem 3:The solutionx0 with m = ‖x0‖0 nonzeros in
Theorem 1 is the unique optimum point of (LP) if and only if
the polar polytopeP ∗ has a(d−m)-dimensional faceF ∗

opt =

{c ∈ P ∗|ÃT
optc = 1}.

Proof: For 0 ≤ m < d, the conditions in Theorem 1
are equivalent to the requirement forF ∗

opt to exist and to
be nondegenerate, i.e. to have exactlyd − m dimensions,
so that a pointc can exist in the relative interior ofF ∗

opt,
c ∈ relintF ∗

opt. For m = d the conditions are equivalent to
c being exactly the vertex (0-face) c = (Ã−1

opt)
T 1. For the

converse, we additionally note that the requirement for the
faceF ∗

opt to have exactlyd − m dimensions,m less than the
dimensionality of its polytopeP ∗, means that̃Aopt must have
full rank m.

Now the (d − m)-faceF ∗
opt = {c ∈ P ∗|Ãoptc = 1} of the

polar polytopeP ∗ corresponds to the(m − 1)-face Fopt =
P ∩ conv{ãj ∈ Ãopt} of the primal polytopeP . We will
call F ∗

opt the dual face, and Fopt the correspondingprimal
face. Using this correspondence we have the following result,
echoing a result of Donoho [10]:

Theorem 4:Let x̃0 ≥ 0 with m nonzeros be a solution of
Ãx̃ = y, and let x̃opt and Ãopt be constructed as before.
Then x̃0 is the unique optimum point of (LP) if and only if
Fopt = conv{ãj ∈ Ãopt} is an (m − 1)-face of P and is a
simplex.

Proof: It is a standard result for polar polytopes that a
dual faceF ∗

opt exists and is nondegenerate if and only if the
corresponding primal faceFopt exists and is a simplex [19].
Therefore Theorem 4 follows immediately from Theorem 3.

Starting with the Fuchs condition in standard form (Theo-
rem 1) we have found a number of alternative conditions for
ℓ1-unique optimality. Let us summarize these as follows.

Theorem 5:Suppose that we have solutionx0 to Ax = y

with m = ‖x0‖0 nonzeros. Or equivalently: suppose we have
a nonegative solutioñx0 ≥ 0 to Ãx̃ = y with Ã = [A,−A].
Then the following conditions are equivalent:

1) x0 is the unique minimum of (P1);
2) x̃0 is the unique minimum of (LP);
3) the Fuchs Condition holds in the standard form (Theo-

rem 1);
4) the Fuchs Condition holds in the original form (Theorem

2);
5) the dual faceF ∗

opt = {c ∈ P ∗ | ÃT
optc = 1} = {c ∈

P ∗ | ±aT
i c ≤ 1,ai ∈ Aopt} exists and hasd − m

dimensions (Theorem 3);
6) the primal faceFopt = P ∩conv{ãj ∈ Ãopt} exists and

is an (m − 1)-simplex (Theorem 4).

IV. GLOBAL OPTIMALITY AND EQUIVALENCE

We have so far considered the case of a single solutionx0

to (P1), or equivalently a single solutioñx0 to (LP). Now let
us consider equivalence for sets of points.

A. Discreteness and Covering of Sign and Support

In its standard form, we see that the Fuchs Condition
(Theorem 1) only depends oñAopt, or in original form
(Theorem 2) onAopt and the signs ofxopt. Thus the following
follows immediately.

Lemma 3 (Discreteness):The condition for x̃0 to be the
unique minimum of (LP) depends only on the support of
x̃0. Or equivalently: The condition forx0 to be the unique
minimum of (P1) depends only on the support ofx0 and signs
of x0 on its support.

Proof: The support of̃x0 determines̃Aopt and hence both
the rank ofÃopt and existence ofc in the Fuchs condition in
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the standard form (Theorem 1). The support and signs ofx0

determines the support of̃x0.
As noted by Donoho, who also showed a similar result

[10, Lemma 6.5], this ‘discreteness of individual equivalence’
has been observed by previous authors [5], [20]. It means for
instance that if a particularx0 is the unique optimal solution
to (P1) with y = Ax0, then all solutionsx′

0 to (P1) with a
differenty′ = Ax′

0 but the same support and signs asx0 and
the same matrixA must also be the unique optimal solution
of their respective problems.

Now let us say that a representatioñx covers x̃′ if the
support ofx̃ covers the support of̃x′, i.e. that x̃i = 0 =⇒
x̃′

i = 0. Then we have the following useful result about about
‘sparser’ representations.

Lemma 4 (Covering):Supposẽx0 ≥ 0 is the unique min-
imum of (LP). Then any solutioñx′ ≥ 0 to Ãx̃′ = y′

is also ℓ1-unique-optimal if x̃0 covers x̃′. Or equivalently:
supposex0 is the unique minimum of (P1). Then any solution
x′ to Ax′ = y′ is also ℓ1-unique-optimal ifx0 coversx′

and the nonzero elements ofx′ have the same signs as the
corresponding elements ofx0.

Proof: The faces of ak-simplex are themselves simplical.
Therefore the primal faceF ′ of P corresponding to anỹx′

must be a simplical face ofFopt, so by Theorem 4̃x′ is itself
ℓ1-unique-optimal. The equivalent version follows from the
construction of̃x from x.

B. Global ℓ1-Unique-Optimality

Now let us considerℓ1-unique-optimality of all represen-
tations x0 with at mostk nonzeros. For this we will need
the following definitions. The centrally-symmetric polytope
P = conv{±ai|ai ∈ A} is called k-neighbourly if every
subset ofk vertices ofP , which does not contain two opposite
vertices ofP , are the vertices of a(k − 1)-simplex which is
a face ofP . We also define thek-rank (Kruskal Rank) of
a matrix as follows [21, p162]: A matrixA has k-rank of
ka if the columns are linearly independent ineveryset ofka

columns fromA, and if there is at least one set of(ka + 1)
columns fromA that includes linearly dependent columns.
(For theSpark of a matrix, introduced by Donoho and Elad
[7], we haveSpark(A) = ka+1.) We are now in a position to
give our version of the main result of Dohono [10, Theorem
1].

Theorem 6 (Donoho):Suppose we have ann×d matrix A

with k-rank ka, i.e. all sets ofka columns ofA are linearly
independent. Then the primal polytopeP has2n vertices and
is k-neighbourly, if and only if (a)ka ≥ k, and (b) every
solutionx0 to y = Ax0 with at mostk nonzeros is the unique
solution to (P1).

Proof: For the ‘if’ direction, ka ≥ k requires that each
subset ofk columns fromA has full rankk. Therefore for
each support pattern ofk nonzero elements, solutionsx0 to
y = Ax0 exist for each of the2k sign combinations. If all of
the solutions areℓ1-unique-optimal, then each of the( n

k )×2k

faces ofP corresponding to the patterns of support and signs
must be a(k − 1)-simplex, soP is k-neighbourly and hasn
vertex pairs.

For the ‘only if’ direction, the2n vertices ofP correspond
to the basis vectors pairs±aj . SinceP is k-neighbourly, all
( n

k ) × 2k ways we can choose a set ofk basis vectors and
signsσj ∈ {−1,+1} correspond to a simplical face ofP , so
every solutionx0 with k nonzeros must beℓ1-unique optimal.
Consequently each subset ofk columns fromA has full rank
k, so ka ≥ k. Finally, if P is k-neighbourly then it is also
m-neighbourly for allm = 0, . . . , k [19] so this also holds
for every solutionx0 with 0 ≤ m ≤ k nonzeros.

RemarkThis is expressed in a slightly stronger form than the
original [10, Theorem 1], which included an assumption that
the columns ofA are ingeneral position. Instead we have the
somewhat weaker condition thatka ≥ k, i.e. Spark(A) > k,
in one direction. Without this condition it might be possible
for all possible solutions to beℓ1-unique-optimal withoutP
having all2n vertices, or withoutP having all( n

k )×2k primal
faces. It would be interesting to see if it is possible to weaken
this correspondence further, to polytopesP without all 2n
vertices.

C. ℓ1/ℓ0 Equivalence

To showℓ1/ℓ0 equivalence for a particular representation,
the following result will be useful:

Lemma 5 (Donoho and Elad [7]:ℓ0-Uniqueness):A rep-
resentationy = Ax0 with m = ‖x0‖0 nonzeros isℓ0-unique-
optimal (i.e. the sparsest possible) ifm ≤ ka/2, whereka is
the k-rank of A.

Proof: See [7, Corollary 1] usingka = Spark(A)−1.
We can therefore state the following.
Corollary 1: Suppose we have a solutionx0 to y = Ax0

with m = ‖x0‖0 nonzeros, and for which one of the conditions
of Theorem 5 holds. Thenx0 is both ℓ0-unique-optimal and
ℓ1-unique-optimal ifm ≤ ka/2, whereka is thek-rank ofA.

Proof: This simply combines the conditions onm from
Lemma 5 and Theorem 5.

To show further thatℓ1/ℓ0 equivalence holds for a set of
representations, it is sufficient for bothℓ0-unique-optimality
andℓ1-unique-optimality to hold for all representationsx0 in
that set.

Theorem 7:Suppose thatP is k-neighbourly. Thenℓ1/ℓ0-
equivalence holds for all solutionsx0 to (P1) withm = ‖x0‖0

nonzeros, providedm ≤ min(k, ka/2).
Proof: This simply combines the conditions onm from

Lemma 5 and Theorem 6.

V. FUCHS COROLLARY

The Fuchs Condition (Theorems 1 and 2) concerns the
existence of a pointc, but may not be easy to test. However,
suppose we choose a specific vectorcopt = Ã

†
opt

T 1 =

A
†
opt

T
signxopt, which we call thevertexof our (signed) basis

set Ãopt or (A†
opt, signxopt). Then we obtain the following

result:
Corollary 2 (Fuchs Corollary: Standard Form):For a de-

sired solutionx̃0 to Ãx̃ = y, let us construct̃xopt and Ãopt

as in Theorem 1. If̃Aopt has full rank and

ãT
j copt < 1 for all ãj ∈ Ã, ãj /∈ Ãopt (6)
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is satisfied with the specific dual vectorcopt = Ã
†
opt

T 1, then
x̃0 is the unique optimum to (DLP).
This result, a stronger condition than the Fuchs Condition
(Theorem 1), was originally introduced by Fuchs [14] in the
following form:

Corollary 3 (Fuchs Corollary: Original Form):Let xopt

andAopt be given as in Theorem 2. IfAopt is full rank, and

|aT
j A

†
opt

T
signxopt| < 1 for any aj ∈ A, aj /∈ Aopt

(7)
thenx0 is the unique solution to (P1).

While the Fuchs Corollary is a stronger condition than
necessary, in that there are unique optima for which the
conditions oncopt are not satisfied (see [13]) its advantage
over the Fuchs Condition is that it is easier to test. While
testing the Fuchs Condition would require a search for the
relevant face ofP ∗ to be conducted, the probe point (basis
vertex)copt can be constructed directly fromx0 andA.

In terms of the polar polytope geometry, the Fuchs Corollary
requires both that the dual faceF ∗

opt = {c ∈ P ∗|Ãoptc = 1}
exists and has dimensiond − m, as for the Fuchs Condition,
and also that the basis vertexcopt = Ã

†
opt

T 1 is contained in
its relative interior,copt ∈ relint F ∗

opt.

VI. EXACT RECOVERY CONDITION

Perhaps more well known than the Fuchs Condition is the
Exact Recovery Condition(ERC) introduced by Tropp [9].

Theorem 8 (Tropp [9]: Exact Recovery Condition):Let us
havex0 andAopt as in Theorem 2. If

max
aj /∈Aopt

∥

∥

∥
A

†
optaj

∥

∥

∥

1
< 1 (8)

whereaj ranges over the atoms inA which are not in the
m-term representation ofy, thenx0 is the unique solution to
(P1).
The quantitymaxaj /∈Aopt

∥

∥

∥
A

†
optaj

∥

∥

∥

1
is referred to as theexact

recovery coefficient.
Although the approaches of Fuchs [13] and Tropp [9] are

very different, Gribonval and Nielsen [17] pointed that they
are closely linked. Specifically we have

max
xopt

max
aj /∈Aopt

| sign(xT
opt)A

†
optaj |

= max
xopt

max
aj /∈Aopt

|〈sign(xopt),A
†
optaj〉|

= max
aj /∈Aopt

∥

∥

∥
A

†
optaj

∥

∥

∥

1
(9)

so the Exact Recovery Condition (Theorem 8) is itself a
corollary of the Fuchs Corollary (Corollary 3). Thus ERC is a
stronger condition than the Fuchs Condition (Theorem 2), and
it is also a stronger condition than that in the Fuchs Corollary
(Corollary 3), which we can see as follows:

Lemma 6:Suppose we have a desired solutionx0 to y =
Ax0. Then the Exact Recovery Condition (Theorem 8) is
satisfied if the Fuchs Corollary (Corollary 3) is satisfied for all
x′

0 with the same support asx0, including solutionsx′
0 with

the same support but different signs.
Proof: This follows from (9) (see [17]).

We shall now develop an interpretation of ERC in terms of
our polytope geometry. Let us construct the polytopePopt =
conv{±ai | ai ∈ Aopt} which we shall call theprimal basis
polytope, and its corresponding relative polar polytopeP ∗

opt =
{c ∈ aff Popt | ±cT ai ≤ 1,ai ∈ Aopt} whereaff Popt is the
affine hull of Popt; we call P ∗

opt the dual basis polytope. We
then obtain the following result:

Theorem 9:Suppose thatAopt has full rankm. Then the
Exact Recovery Condition, Equation (8), is satisfied if and
only if (a) P ∗

opt ⊂ P ∗, i.e. the dual basis polytopeP ∗
opt is

contained within the complete polar polytopeP ∗, and (b)P ∗
opt

does not touch any face ofP ∗ for which ±aT
j c = 1 for some

aj /∈ Aopt.
Proof: We construct the set ofm-dimensional sign vectors

σ = [σ1, . . . , σm]T ∈ {+1,−1}m and the set of basis vertices

V ∗
opt = {c = A

†
opt

T
σ}. Equation (8) is equivalent to the

condition aT
j c < 1 for all c ∈ V ∗

opt,aj /∈ Aopt. Now c =

A
†
opt

T
σ is the vector in the span of the columns ofAopt which

satisfiesAT
optc = σ i.e. diag(σ)AT

optc = 1, or in other words
±ia

T
i c = 1 for ai ∈ Aopt and some combination of signs±i.

HenceV ∗
opt is actually the set of2m vertices of the dual basis

polytopeP ∗
opt. Thus the conditionP ∗

opt ⊂ P ∗ corresponds to a
non-strict inequality in Equation (8). The remaining condition
for P ∗

opt not to touch any face ofP ∗ for which±aT
j c = 1 for

someaj /∈ Aopt corresponds to exclusion of the equality, to
leave a strict inequality.

In some ways, the Exact Recovery Condition is not as well
behaved as the Fuchs Condition. For example, we have the
following somewhat surprising result:

Theorem 10 (Non-nestedness of ERC):Satisfying ERC for
all solutionsx0 with m nonzeros is not sufficient to ensure
that all solutionsx0 with k < m nonzeros also satisfy ERC.

Proof: Let A = [a1,a2] with a1 = [1, 0]T and a2 =
[
√

2,
√

2]T . ERC is trivially satisfied form = 2 sinceA =
Aopt so there are noA ∋ aj /∈ Aopt. Now for x0 = [β, 0]T

with k = 1, we haveAopt = a1 = [1, 0]T andA
†
opt = aT

1 =

[1, 0], so A
†
opta2 =

√
2 > 1 and hence ERC fails fork = 1.

Examples can be also be constructed for unit-norm dictionaries
(e.g. see Section VIII-B).
This result is in contrast to the Fuchs Condition, where Lemma
4 tells us that if the Fuchs Condition is satisfied for allx0 with
m nonzeros, then it will be satisfied for anyx0 with k < m
nonzeros [10].

VII. ERC AND MATCHING PURSUIT ALGORITHMS

We have seen that Tropp’s ERC is sufficient but not
necessary forℓ1-unique-optimality. However, Tropp [9] also
showed that the Exact Recovery Condition (8) is necessary
and sufficient for the Orthogonal Matching Pursuit (OMP)
algorithm [22] to find theℓ1-unique-optimal solution in the
following sense:

Theorem 11 (Tropp [9]: Exact Recovery for OMP):
Suppose we have a desired solutionx0 for y = Ax0 with
full rank Aopt as in Theorem 8. Then Orthogonal Matching
Pursuit (OMP) will recoverx0 in m steps if the Exact
Recovery Condition (8) holds. Conversely, suppose ERC fails
for some y = Ax0 with optimal synthesis matrixAopt.
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Then there are signals in the column span ofAopt which
Orthogonal Matching Pursuit cannot recoverin m steps.

Proof: See [9].
The condition for recovery ‘inm steps’ is implicit in

Tropp’s statement of this theorem, but is used in the proof of
the converse direction. To show that the ‘m steps’ condition
is necessary we can give the following counter-result:

Lemma 7:There exist problems (P1) with solutionsx0 with
m nonzeros for which ERC fails, but which OMP can recover
in k > m steps, provided that OMP is eventually allowed to
drop any zeros in the final representation.

Proof: Let us use the same example as in the proof
of Theorem 10, and suppose we wish to recover the signal
x0 = [1, 0]T from y = Ax0 = a1 = [1, 0]T , for which
Aopt = [a1]. From the proof of Theorem 10 we know that
ERC fails for thisx0. Now let us run OMP [22]. In step
1 we haveaT

2 y =
√

2 > 1 = aT
1 y, so OMP chooses

the wrong atoma2, yielding a basis set after 1 step of
A(1) = [a2]. Choosingx2 to minimize the mean squared error
we getx(1) = a+

2 y = [1/(2
√

2)] producing a reconstruction
ŷ(1) = x(1)a2 = (1/(2

√
2)) × [

√
2,
√

2]T = [0.5, 0.5] and
residualr(1) = y − ŷ(1) = [0.5,−0.5]T 6= 0. So as expected,
OMP has not recoveredx0 = [1, 0]T in m = 1 steps.

But if we allow OMP to run for a second step, we find
aT

1 r(1) = 0.5 while aT
2 r(1) = 0 as we would expect for OMP.

Hence in step 2, OMP chooses the remaining basisa1 so
A(2) = [a1,a2] (reordering the atoms for convenience). Now
choosingx = [x1, x2] to minimize the mean squared error
we getx(2) = [x

(2)
1 , x

(2)
2 ] = (A†)(2)y = [1, 0]T producing

a reconstruction̂y(2) = x(2)A(2) = y0 and r = 0. Since
x

(2)
2 = 0, OMP has found the correct1-term reconstruction

of y, albeit taking 2 steps to do so. The same result holds for
scaled and negated versions ofAopt = [a1].

Thus failure of ERC does not require that OMP will fail,
only that there are cases for which it cannot succeed in
m steps. We can therefore state the following condition,
weaker than the Exact Recovery Condion, for possibledelayed
recoveryby OMP.

Corollary 4: Suppose thatx0 with m0 nonzeros is a desired
solution ofy0 = Ax0 which fails ERC. Suppose further that
there exists a different solutiony1 = Ax1 for which ERC is
satisfied, and whichcoversx0 in the sense that the support
of x1 is a superset of the support ofx0. Then OMP will
‘eventually’ recoverx0 in m1 steps, wherem1 > m0 is the
number of nonzeros inx1

Proof: This follows from the proof of Theorem 11, but
allowing some of the elements ofx1 to be zero to match the
zeros of the desired solutionx0.
At present it is unclear whether it is common for ERC to fail
at one levelm0 but be satisfied at higher levelsm1 > m0, so
it remains to be seen whether this concept ofdelayed recovery
by OMP will turn out to be useful.

VIII. I LLUSTRATIVE GRAPHICAL EXAMPLES

One of the advantages of the polytope geometry we have
considered here is that it can give us some insight into the
various optimality conditions we are interested in, and the
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Fig. 1. Primal polytopeP (dotted) and polar polytopeP ∗ (solid) for
(a) a unit-norm dictionary and (b) a non-unit-norm atom set.The shaded
regionR++ denotes a cone iny-space represented by nonnegative amounts
x1, x2 ≥ 0 of the basis vectors+a1, +a2.

differences between them. In this section we will give 2-
dimensional examples for a unit-norm dictionary and non-unit-
norm atom set, and a 3-dimensional example for a unit-norm
dictionary.

A. Two Dimensional Examples

Fig. 1 shows an example of (a) a unit-norm dictionary and
(b) a basis set with one unit-norm atom and one non-unit-
norm atom. The vectors±a+

i are scaled versions of the atoms
defined by±a+

i = ±ai/‖ai‖2
2. We notice that thea+

i touch
the supporting hyperplanes of the dual polytopeP ∗ since
aT

i a+
i = aT

i ai/‖ai‖2
2 = 1.

Suppose that we have a ‘sparse’ representationx0 = [β, 0]T

for someβ > 0, with m = ‖x0‖0 = 1. In each of Figs. 1(a)
and (b) the faceF ∗

opt = {c ∈ P ∗|ÃT
optc = 1} ⊂ P ∗ exists:

specificallyF ∗
opt is the line joiningc++ to c+−, and we can

see this is a face withd−m = 2−1 = 1 dimension. Any point
c on the line joiningc++ to c+−, excluding the end points
c++ andc+− themselves, will correspond toc ∈ relint F ∗

opt.
Therefore this point will satisfy condition (b) in the Fuchs
Condition (Theorems 1 and 2). Thus in each of Figs. 1(a) and
(b), if the point x0 = [β, 0]T is a feasible solution to (P1),
then it is ℓ1-unique-optimal. To confirm this, for the primal
face Fopt, in each of Figs. 1(a) and (b) we have the single-
point setFopt = conv{a1} = {a1} ⊂ P , which also exists
and is has(m − 1) = 0 dimensions, as expected.

For the Fuchs Corollary, in each of Figs. 1(a) and (b) we
have Ãopt = [a1] and henceÃ†

opt
T = [+a+

1 ] so our basis
vertex is given bycopt = Ã

†
opt

T 1 = +a+
1 · 1 = a+

1 . Since
F ∗

opt = conv{c++, c+−} which is the line segment joining
c++ to c+−, clearly copt ∈ relintF ∗

opt in Fig. 1(a), but
copt /∈ relintF ∗

opt in Fig. 1(b). Therefore, while the Fuchs
Condition (Theorems 1 and 2) is satisfied forx0 = [β, 0]T in
both Fig. 1(a) and (b), the Fuchs Corollary is only satisfied
for this x0 in Fig. 1(a), but not in Fig. 1(b). This confirms that
the Fuchs Corollary is indeed strictly stronger than the Fuchs
Condition (see also [13]).

For the Exact Recovery Condition, our primal basis poly-
tope isPopt = conv{−a1,+a1}. In this case we getP ∗

opt =
conv{−a+

1 ,+a+
1 } so P ∗

opt is the line segment joining−a+
1

and +a+
1 . In Fig. 1(a) we can see thatP ∗

opt ⊂ P ∗ and
P ∗

opt is well away from the faces along+aT
2 c = 1 (joining

c−+ to c++) and −aT
2 c = 1 (joining c−− to c+−). Hence
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since|ai| = 1).

ERC is satisfied in Fig. 1(a). However, in Fig. 1(b) we
can see thatP ∗

opt 6⊂ P ∗ so ERC is not satisfied. If we
repeat this analysis for somex0 with Aopt = [a2], we see
that P ∗

opt = conv{−a+
2 ,+a+

2 } so P ∗
opt ⊂ P ∗, and P ∗

opt

is away from the other faces, in both Fig. 1(a) and (b),
and hence ERC is satisfied for both. Similarly for somex0

with Aopt = [a1,a2], we now haveP ∗
opt = P ∗ so clearly

P ∗
opt ⊂ P ∗, and there are noaj /∈ Aopt. Hence ERC is

satisfied form = 2 in both Fig. 1(a) and (b).

B. Unit-norm Dictionaries: A Three-dimensional Example

Many of the equivalence results of previous authors are
for dictionaries of unit norm atoms|ai| = 1. The special
properties of unit-norm dictionaries mean that it is more
awkward to find low-dimensional examples to illustrate the
distinction between Fuchs Condition, Fuchs Corollary and
ERC. Nevertheless, we can illustrate many of these issues
using the dictionary matrixA = [a1,a2,a3] with the unit
norm atoms given bya1 = [1, 0, 0]T ,a2 = [0, 1, 0]T ,a3 =
(1/

√
3)[1, 1, 1]T . In particular, suppose that our desired vector

to recover isx0 = [1, 1, 0]T so thaty = Ax0 = a1 + a2.
Therefore the optimal basis set that we would like to recover
given y is Aopt = [a1,a2], which has vertexcopt =

A
†
opt

T
1 = [1, 1, 0]T .

For the Fuchs Condition, consider the pointcF =
[1, 1,−2]T marked in Fig. 2(a). We can verify thatcT

Fa1 =
cT
Fa2 = 1, and |cT

Fa3| = |(1 + 1 − 2)/
√

3| = 0 < 1 therefore
the Fuchs Condition is satisfied. In fact the relevant dual face
is F ∗

opt = conv{c+++, c++−} so anyc ∈ relint F ∗
opt, i.e.

anywhere along the line segment strictly betweenc+++ and
c++−, will be suitable to satisfy the Fuchs Condition.

Considering the Fuchs Corollary, this requirescopt =

A
†
opt

T
1 = c++0 to be contained inF ∗

opt. However, Fig. 2(b)
shows thatc++0 /∈ P ∗, so c++0 /∈ F ∗

opt since F ∗
opt ⊂ P ∗

is itself a face ofP ∗. Therefore the Fuchs Corollary is not
satisfied.

For the Exact Recovery Condition, we require that
‖A†

opta3‖1
< 1 so we must have e.g.cT

opta3 < 1. However,
calculation givescT

opta3 = 2/
√

3 > 1 so ERC fails for this
basis. The shaded cone in Fig. 2(b) shows the segment of the
plane spanned by{a1,a2} for which aT

3 c > maxi=1,2 aT
i c.

Here we see that the vertexcopt = c++0 is in this shaded
region (Fig. 2(b)), and has been ‘cut off’ by the halfspace
aT

3 c ≤ 1. As confirmation of this, the dual basis polytopeP ∗
opt

is the square in the planex3 = 0 with vertices at[±1,±1, 0].
We can see that the corner containing[1, 1, 0] (= c++0) is not
contained within the full dual polytope, soP ∗

opt 6⊂ P ∗, and
hence ERC is not satisfied.

To summarize, since the Fuchs Condition is satisfied, any
desired solutionx0 = [β1, β2, 0]T with β1, β2 > 0 in this
example will be recovered by Basis Pursuit, even though the
Fuchs Corollary and ERC both fail. Note however that the
solutionx0 = [β1,−β2, 0] with β1, β2 > 0, with same support
but different signs would satisfy both the Fuchs Condition and
the Fuchs Corollary, while ERC must still fail since the support
of the desired solution is unchanged.

IX. CONCLUSIONS

We have explored the geometry of the sparse representation
problem using centrally-symmetric polytopes and polar (dual)
polytopes. We have seen that polytopes can give us a useful
insight into the optimality conditions introduced by Fuchs, for
example, which had previously been considered to be difficult
to interpret.

In exploring this geometry we have also been able to tighten
some of these previous results, and link these to the polytope-
based results of Donoho for the primal polytope. For example,
we showed that the Fuchs Condition is both necessary and
sufficient forℓ1-unique-optimality, and that there are situations
where Orthogonal Matching Pursuit (OMP) can find allℓ1-
unique-optimal solutions withm nonzeros, even if the Exact
Recovery Condition (ERC) fails form, if it is allowed to run
for additional steps.
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