27 research outputs found

    Sparse Message Passing Based Preamble Estimation for Crowded M2M Communications

    Full text link
    Due to the massive number of devices in the M2M communication era, new challenges have been brought to the existing random-access (RA) mechanism, such as severe preamble collisions and resource block (RB) wastes. To address these problems, a novel sparse message passing (SMP) algorithm is proposed, based on a factor graph on which Bernoulli messages are updated. The SMP enables an accurate estimation on the activity of the devices and the identity of the preamble chosen by each active device. Aided by the estimation, the RB efficiency for the uplink data transmission can be improved, especially among the collided devices. In addition, an analytical tool is derived to analyze the iterative evolution and convergence of the SMP algorithm. Finally, numerical simulations are provided to verify the validity of our analytical results and the significant improvement of the proposed SMP on estimation error rate even when preamble collision occurs.Comment: submitted to ICC 2018 with 6 pages and 4 figure

    NB-IoT via non terrestrial networks

    Get PDF
    Massive Internet of Things is expected to play a crucial role in Beyond 5G (B5G) wireless communication systems, offering seamless connectivity among heterogeneous devices without human intervention. However, the exponential proliferation of smart devices and IoT networks, relying solely on terrestrial networks, may not fully meet the demanding IoT requirements in terms of bandwidth and connectivity, especially in areas where terrestrial infrastructures are not economically viable. To unleash the full potential of 5G and B5G networks and enable seamless connectivity everywhere, the 3GPP envisions the integration of Non-Terrestrial Networks (NTNs) into the terrestrial ones starting from Release 17. However, this integration process requires modifications to the 5G standard to ensure reliable communications despite typical satellite channel impairments. In this framework, this thesis aims at proposing techniques at the Physical and Medium Access Control layers that require minimal adaptations in the current NB-IoT standard via NTN. Thus, firstly the satellite impairments are evaluated and, then, a detailed link budget analysis is provided. Following, analyses at the link and the system levels are conducted. In the former case, a novel algorithm leveraging time-frequency analysis is proposed to detect orthogonal preambles and estimate the signals’ arrival time. Besides, the effects of collisions on the detection probability and Bit Error Rate are investigated and Non-Orthogonal Multiple Access approaches are proposed in the random access and data phases. The system analysis evaluates the performance of random access in case of congestion. Various access parameters are tested in different satellite scenarios, and the performance is measured in terms of access probability and time required to complete the procedure. Finally, a heuristic algorithm is proposed to jointly design the access and data phases, determining the number of satellite passages, the Random Access Periodicity, and the number of uplink repetitions that maximize the system's spectral efficiency

    Algorithms for 5G physical layer

    Get PDF
    There is a great activity in the research community towards the investigations of the various aspects of 5G at different protocol layers and parts of the network. Among all, physical layer design plays a very important role to satisfy high demands in terms of data rates, latency, reliability and number of connected devices for 5G deployment. This thesis addresses he latest developments in the physical layer algorithms regarding the channel coding, signal detection, frame synchronization and multiple access technique in the light of 5G use cases. These developments are governed by the requirements of the different use case scenarios that are envisioned to be the driving force in 5G. All chapters from chapter 2 to 5 are developed around the need of physical layer algorithms dedicated to 5G use cases. In brief, this thesis focuses on design, analysis, simulation and he advancement of physical layer aspects such as 1. Reliability based decoding of short length Linear Block Codes (LBCs) with very good properties in terms of minimum hamming istance for very small latency requiring applications. In this context, we enlarge the grid of possible candidates by considering, in particular, short length LBCs (especially extended CH codes) with soft-decision decoding; 2. Efficient synchronization of preamble/postamble in a short bursty frame using modified Massey correlator; 3. Detection of Primary User activity using semiblind spectrum sensing algorithms and analysis of such algorithms under practical imperfections; 4. Design of optimal spreading matrix for a Low Density Spreading (LDS) technique in the context of non-orthogonal multiple access. In such spreading matrix, small number of elements in a spreading sequences are non zero allowing each user to spread its data over small number of chips (tones), thus simplifying the decoding procedure using Message Passing Algorithm (MPA)
    corecore