3 research outputs found

    Power Distribution Management System revisited: Single-thread vs. Multithread Performance

    Get PDF
    Power Distribution Management System (PDMS) uses very sophisticated algorithms to deliver reliable and efficient functioning of power distribution networks (PDN). PDNs are represented using very large sparse matrices, whose processing is computationally very demanding. Dividing large PDNs into smaller sub-networks results in smaller sparse matrices, and further processing each sub-network in parallel significantly improves the performance of PDMS. Using multithreading to further process each sub-network however degrades PDMS performance. Single-thread processing of sub-network sparse matrices gives much better performance results, mainly due to the structure of these matrices (indefinite and very sparse) and synchronization overhead involved in multi-thread operations. In this paper an overview of PDMS system is presented, and its performance given single-thread and multiple threads is compared. The results have shown that for some applications, single-threaded implementation in multi-process parallel environment gives better performance than multithreaded implementation

    Architecture--Performance Interrelationship Analysis In Single/Multiple Cpu/Gpu Computing Systems: Application To Composite Process Flow Modeling

    Get PDF
    Current developments in computing have shown the advantage of using one or more Graphic Processing Units (GPU) to boost the performance of many computationally intensive applications but there are still limits to these GPU-enhanced systems. The major factors that contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be categorized as hardware and software oriented in nature. Understanding how these factors affect performance is essential to develop efficient and robust applications codes that employ one or more GPU devices as powerful co-processors for HPC computational modeling. The present work analyzes and understands the intrinsic interrelationship of both hardware and software categories on computational performance for single and multiple GPU-enhanced systems using a computationally intensive application that is representative of a large portion of challenges confronting modern HPC. The representative application uses unstructured finite element computations for transient composite resin infusion process flow modeling as the computational core, characteristics and results of which reflect many other HPC applications via the sparse matrix system used for the solution of linear system of equations. This work describes these various software and hardware factors and how they interact to affect performance of computationally intensive applications enabling more efficient development and porting of High Performance Computing applications that includes current, legacy, and future large scale computational modeling applications in various engineering and scientific disciplines

    Developing A New Storage Format And A Warp-Based Spmv Kernel For Configuration Interaction Sparse Matrices On The Gpu

    Get PDF
    Configuration interaction (CI) is a post Hartree–Fock method that is commonly used for solving the nonrelativistic Schrödinger equation for quantum many-electron systems of molecular scale. CI includes instantaneous electron correlation and it can deal with the ground state as well as multiple excited states. The CI matrix is a sparse matrix, and the bigger the CI matrix, the more electron correlation can be captured. However, due to the large size of the CI sparse matrix that is involved in CI computations, a good amount of the time spent on the eigenvalue computations is associated with the multiplication of the CI sparse matrix by numerous dense vectors, which is basically known as Sparse matrix-vector multiplication (SpMV). Sparse matrix-vector multiplication (SpMV) can be used to solve diverse-scaled linear systems and eigenvalue problems that exist in numerous and varying scientific applications. One of the scientific applications that SpMV is involved in is Configuration Interaction (CI). In this work, we have developed a new hybrid approach to deal with CI sparse matrices. The proposed model includes a newly-developed hybrid format for storing CI sparse matrices on the Graphics Processing Unit (GPU). In addition to the new developed format, the proposed model includes the SpMV kernel for multiplying the CI matrix (proposed format) by a vector using the C language and the CUDA platform. The proposed SpMV kernel is a vector kernel that uses the warp approach. We have gauged the newly developed model in terms of two primary factors, memory usage and performance. Our proposed kernel was compared to the cuSPARSE library and the CSR5 (Compressed Sparse Row 5) format and already outperformed both. Our proposed kernel outperformed the CSR5 format by 250.7% and the cuSPARSE library by 395.1% Keywords— CI, SpMV, Linear System, GPU, Kernel, CUDA
    corecore