
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Dissertations Electronic Theses and Dissertations

2013

Architecture--Performance Interrelationship Analysis In Single/Architecture--Performance Interrelationship Analysis In Single/

Multiple Cpu/Gpu Computing Systems: Application To Composite Multiple Cpu/Gpu Computing Systems: Application To Composite

Process Flow Modeling Process Flow Modeling

Richard Harrison Haney
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/dissertations

 Part of the Computational Engineering Commons, and the Computer Engineering Commons

Recommended Citation Recommended Citation
Haney, Richard Harrison, "Architecture--Performance Interrelationship Analysis In Single/Multiple Cpu/Gpu
Computing Systems: Application To Composite Process Flow Modeling" (2013). Dissertations. 116.
https://digital.library.ncat.edu/dissertations/116

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie
Digital Collections and Scholarship. It has been accepted for inclusion in Dissertations by an authorized
administrator of Aggie Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/dissertations
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/dissertations?utm_source=digital.library.ncat.edu%2Fdissertations%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=digital.library.ncat.edu%2Fdissertations%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digital.library.ncat.edu%2Fdissertations%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/dissertations/116?utm_source=digital.library.ncat.edu%2Fdissertations%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

Architecture–Performance Interrelationship Analysis in Single/Multiple CPU/GPU Computing

Systems: Application to Composite Process Flow Modeling

Richard Harrison Haney

North Carolina A&T State University

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department: Computational Science and Engineering

Major: Computational Science and Engineering

Major Professor: Dr. Ram Mohan

Greensboro, North Carolina

2013

i

School of Graduate Studies

North Carolina Agricultural and Technical State University

This is to certify that the Doctoral Dissertation of

Richard Harrison Haney

has met the dissertation requirements of

North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2013

Approved by:

Dr. Ram Mohan

Major Professor

Dr. K.M. Flurchick

Committee Member

Dr. Ajit Kelkar

Committee Member

Dr. Sanjiv Sarin

Dean, The Graduate School

Dr. Marwan Bikdash

Department Chair

Dr. Dukka K.C.

Committee Member

Dr. Marwan Bikdash

Committee Member

ii

© Copyright by

Richard Harrison Haney

2013

iii

Biographical Sketch

 Richard Harrison Haney was born in 1969 in West Liberty, Kentucky. He received his

Bachelor of Science in Computer Science from Western Carolina University in 2002 and his

Master of Science in Computational Science and Engineering from North Carolina Agriculture

and Technical State University in 2006. He is a candidate for the Ph.D. in Computational

Science and Engineering.

iv

Dedication

I would like to dedicate this to my lovely wife, Lydia, who has been so supportive of all

my endeavors. I would also like to include our daughter Anna in this dedication for all the times

I could not play but had to do research.

v

Acknowledgments

 I would like to acknowledge the help and guidance of Dr. Ram Mohan. Dr. Mohan is one

of the most knowledgeable people in the area of physics based modeling and simulations, high

performance computing and computational finite element methods. I would not have been able to

complete this dissertation without his guidance, assistance and support. I would also like to

acknowledge the help of Dr. Yu Liang for some of the tricky Computer Science issues. I thank

and appreciate the support and guidance of my committee members Dr. Kelkar, Dr. Bikdash, and

Dr. Dukka K.C. The financial support in part from Office of Naval Research, Clarkson

Aerospace Corporation via a prime award from Air Force Research Laboratory through

grants/contracts (Dr. Mohan, PI) is highly appreciated. Prior composite process flow modeling

single and multiple processor code developments referenced in this work are acknowledged. The

support from the Computational Science and Engineering program and the Department of

Nanoengineering at the Joint School of Nanoscience and Nanoengineering are acknowledged. I

thank the computer access to the GPU systems at University of North Carolina, Chapel Hill

(Bass); Ohio Supercomputer Center (Oakley) through Dr. Liang, Central State University, and

Hermes in the campus of North Carolina A&T State University.

vi

Table of Contents

List of Figures ... x

List of Figures ... x

List of Tables .. xv

Abstract ... 2

CHAPTER 1 Introduction... 3

1.1 Background and History.. 3

1.1.1 CPU-GPU hardware parallelism. .. 4

1.1.2 CPU-GPU software parallelism. ... 7

1.2 Focus and Objective .. 10

CHAPTER 2 ... 12

2.1 Physical Description .. 15

2.1.1 Resin Mass Conservation. ... 16

2.1.2 LCM Solution Strategy ... 17

2.2 Key Computationally Intensive Functions .. 17

2.2.1 The Iterative Solver. .. 18

2.3 Data-Structures/Layouts .. 18

2.4 Hardware Discussions of Computing Architectures Used .. 20

2.4.1 CPU Hardware Architectures .. 21

2.4.2 GPU Hardware Architectures. ... 22

2.4.3 Hardware Design Summary .. 23

vii

CHAPTER 3 Computational Potential of GPU – Sparse Matrix-Vector Multiplication 25

3.1 Mapping Sparse Matrix-Vector Multiplication to GPU .. 25

3.1.1 The CUDA Software/Architecture API. ... 26

3.1.1.1 CUDA API thread hierarchy .. 26

3.1.1.2 CUDA API memory hierarchy .. 28

3.1.1.3 CUDA API basic syntax .. 30

3.1.2 Algorithmic Strategies for SpMV Mapping. ... 30

3.2 GPU Initial SpMV Performance Results .. 31

3.2.1 System A. .. 32

3.2.2 System B. ... 32

3.3 Software Data-Structures/Layouts Factors.. 33

3.4 Architectural Hardware Factors .. 36

3.5 Interdependence of Software and Hardware Factors .. 38

CHAPTER 4 Full Candidate Application – Single CPU/GPU Computing System 42

4.1 Mapping Full Candidate Application to GPU ... 42

4.1.1 Key Computationally Intensive Kernels. .. 43

4.1.2 GPU Code Developments. .. 44

4.1.2.1 CUDA Kernels of PCG solver ... 44

4.2 Validation of Full Candidate Application on Single CPU/GPU ... 48

4.3 Initial Full Candidate Application Performance on Single CPU/GPU 52

viii

4.3.1 System A. .. 53

4.3.2 System B. ... 54

4.3.3 Initial performance analysis. ... 55

4.4 Software Data-Structures/Layouts Factors.. 55

4.5 Hardware Architectural Factors .. 59

4.6 Computational Complexity Analysis .. 61

4.6.1 Single call to PCG solver. ... 61

4.6.2 Full Solution Cost – Single GPU. ... 66

4.6.3 Contribution of Hardware Factors. .. 71

4.6.3.1 Single PCG Call. .. 71

4.6.3.2 Full solution – single CPU/GPU. ... 73

4.6.4 Contribution of Software Factors. ... 75

4.6.4.1 Single PCG Call. .. 75

4.6.4.2 Full solution – single CPU/GPU. ... 76

4.7 Performance and Relation to Software and Hardware Factors ... 78

CHAPTER 5 Full Candidate Application – Multiple CPU/GPU Computing System 84

5.1 Mapping Full Candidate Application to GPU ... 85

5.1.1 Key Computationally Intensive Kernels. .. 87

5.1.2 GPU Code Developments. .. 87

5.2 Validation of Full Candidate Application on Multiple CPU/GPU 88

ix

5.3 Initial Full Candidate Application Performance on Multiple CPU/GPU 91

5.3.1 System A. .. 92

5.3.2 System B. ... 96

5.3.3 Initial performance analysis. ... 99

5.4 Software Data-Structures/Layout Factors ... 101

5.5 Hardware Architectural Factors .. 109

5.6 Computational Complexity Analysis .. 110

5.6.1 Relationship of MPI-GPU and CPU-GPU communication. ... 111

5.6.2 Comparison of performance modeling. ... 119

5.6.3 Contribution of Hardware Factors. .. 122

5.6.4 Contribution of Software Factors. ... 126

5.7 Performance and Relation to Software and Hardware Factors ... 131

CHAPTER 6 Summary and Future Directions ... 133

References ... 137

Appendix A ... 153

Appendix B ... 162

Appendix C ... 166

Appendix D ... 169

x

List of Figures

Figure 1. The general models followed by the GPU (left) and CPU (right). 4

Figure 2. Generic graphics rendering pipeline. ... 5

Figure 3. Rasterizing a simple triangle. .. 6

Figure 4. An example 4-by-4 matrix utilized by OpenGL.. 8

Figure 5. Vertex point P is shifted left and down with translation values. 9

Figure 6. Schematic representation of the interrelationship of computational performance. 10

Figure 7. Unstructured mesh geometric configuration used by candidate application. 13

Figure 8. Unstructured mesh geometric configuration of 10FT model. 14

Figure 9. Sparse matrix non-zero entry distribution for mesh MA. ... 14

Figure 10. Sparse matrix non-zero entry distribution for mesh MB... 15

Figure 11. Matrix sparsity pattern of mesh 10FT. .. 15

Figure 12. The CSR format. .. 20

Figure 13. The BCSR2x2 format. ... 20

Figure 14. Diagram of CUDA GPU thread grouping. .. 27

Figure 15. CUDA hardware to logical construct mapping. .. 27

Figure 16. CUDA hardware with logical Grid overlay. .. 28

Figure 17. CUDA GPU mapping of the physical and logical memory structure. 29

Figure 18. Example defining CUDA Kernel function signature and execution space. 30

Figure 19. System A performance as threads per block increase (CSR and BCSR2x2). 35

Figure 20. System B performance as threads per block increase (CSR and BCSR2x2). 36

Figure 21. Block diagram of memory bank conflict for generic CUDA device........................... 40

Figure 22. System A and System B Speedup factors for execution of SpMV operation 41

xi

Figure 23. The CNC operational flow from input to output. .. 43

Figure 24. Presented candidate application diagramming the placement of CNC Package. 45

Figure 25. IEEE conversion from base-10 to base-2 with normalization. 47

Figure 26. 2D circular plate validation model (not to scale). .. 49

Figure 27. Validation of single CPU/GPU for flow-front progression (System A). 51

Figure 28. Validation of single CPU/GPU for inlet injection pressure (System A)..................... 51

Figure 29. Validation of single CPU/GPU for flow-front progression (System B). 52

Figure 30. Validation of single CPU/GPU for inlet injection pressure (System B). 52

Figure 31. Full candidate solution performance (System A). .. 58

Figure 32. Full candidate solution performance (System B). ... 58

Figure 33. Full candidate solution KFLOPs performance (System A). 59

Figure 34. Full candidate solution KFLOPs performance (System B). 59

Figure 35. Performance modeling of single call to PCG solver (System A). 64

Figure 36. Performance modeling of single call to PCG solver (System B). 64

Figure 37. Normalized error for single call PCG modeled performance (System A). 65

Figure 38. Normalized error for single call PCG modeled performance (System B). 65

Figure 39. Performance modeling single CPU/GPU full solution (System A). 68

Figure 40. Performance modeling single CPU/GPU full solution (System B). 69

Figure 41. Error single CPU/GPU full solution modeled performance (System A). 69

Figure 42. Error single CPU/GPU full solution modeled performance (System B). 70

Figure 43. Performance model for single PCG solver on System A (SMP adjusted). 72

Figure 44. Performance model for single PCG solver on System B (SMP adjusted). 73

Figure 45. Performance model for full candidate solution on System A (SMP adjusted). 74

xii

Figure 46. Performance model for full candidate solution on System B (SMP adjusted). 75

Figure 47. Performance model for single PCG solver on System A (Threads adjusted). 76

Figure 48. Performance model for single PCG solver on System B (Threads adjusted). 77

Figure 49. Performance model for full candidate solution on System A (SMP adjusted). 77

Figure 50. Performance model for full candidate solution on System B (SMP adjusted). 78

Figure 51. 2D circular plate validation model (not to scale). .. 89

Figure 52. Validation of multiple CPU/GPU for flow-front progression (System A). 90

Figure 53. Validation of multiple CPU/GPU for inlet injection pressure (System A). 90

Figure 54. Validation of multiple CPU/GPU for flow-front progression (System B). 91

Figure 55. Validation of multiple CPU/GPU for inlet injection pressure (System B). 91

Figure 56. Multiple CPU/GPU computing system - mesh MA (System A). 95

Figure 57. Multiple CPU/GPU computing system - mesh MB (System A). 95

Figure 58. Multiple CPU/GPU computing system - mesh 10FT (System A).............................. 96

Figure 59. Multiple CPU/GPU computing system - mesh MA (System B). 98

Figure 60. Multiple CPU/GPU computing system - mesh MB (System B). 99

Figure 61. Multiple CPU/GPU computing system - mesh 10FT (System B). 99

Figure 62. Multiple CPU/GPU performance BCSR2x2 compression (System A). 105

Figure 63. Multiple CPU/GPU performance BCSR2x2 compression (System B). 106

Figure 64. Multiple CPU/GPU performance mixed compression (System A). 106

Figure 65. Multiple CPU/GPU performance mixed compression (System B). 107

Figure 66. Multiple CPU/GPU performance mixed compression - 10FT (System A). 108

Figure 67. Multiple CPU/GPU performance mixed compression - 10FT (System B). 108

Figure 68. Deviation from ideal mapped with regression multiple CPU/GPU mesh MA. 114

xiii

Figure 69. Deviation from ideal mapped with regression multiple CPU/GPU mesh MB. 114

Figure 70. Non-zeros held locally (mesh MA) and factors off with multiple CPU/GPU. 115

Figure 71. Non-zeros held locally (mesh MB) and factors with multiple CPU/GPU. 115

Figure 72. Asymptotic behavior of MPI and CPU-GPU communication (MA, System A). 116

Figure 73. Asymptotic behavior of MPI and CPU-GPU communication (MB, System A). 116

Figure 74. Asymptotic behavior of MPI and CPU-GPU communication (MA, System B). 117

Figure 75. Asymptotic behavior of MPI and CPU-GPU communication (MB, System B). 117

Figure 76. Asymptotic behavior of MPI and CPU-GPU communication (10FT, System A). .. 118

Figure 77. Asymptotic behavior of MPI and CPU-GPU communication (10FT, System B). ... 118

Figure 78. Multiple CPU/GPU theoretical performance with input MA (System A). 119

Figure 79. Multiple CPU/GPU theoretical performance with input MB (System A). 120

Figure 80. Multiple CPU/GPU theoretical performance with input 10FT (System A). 120

Figure 81. Multiple CPU/GPU theoretical performance with input MA (System B). 121

Figure 82. Multiple CPU/GPU theoretical performance with input MB (System B). 121

Figure 83. Multiple CPU/GPU theoretical performance with input 10FT (System B). 122

Figure 84. Multiple CPU/GPU performance with MA - hardware factor (System A). 124

Figure 85. Multiple CPU/GPU performance with MB - hardware factor (System A). 124

Figure 86. Multiple CPU/GPU performance with 10FT - hardware factor (System A). 125

Figure 87. Multiple CPU/GPU performance with MA - hardware factor (System B). 125

Figure 88. Multiple CPU/GPU performance with MB - hardware factor (System B)............... 126

Figure 89. Multiple CPU/GPU performance with 10FT - hardware factor (System B). 126

Figure 90. Multiple CPU/GPU performance with MA - software factor (System A). 128

Figure 91. Multiple CPU/GPU performance with MB - software factor (System A). 128

xiv

Figure 92. Multiple CPU/GPU performance with 10FT - software factor (System A). 129

Figure 93. Multiple CPU/GPU performance with MA - software factor (System B). 129

Figure 94. Multiple CPU/GPU performance with MB - software factor (System B). 130

Figure 95. Multiple CPU/GPU performance with 10FT - software factor (System B). 130

Figure 96. Time filled for unstructured mesh MA CPU-Only (System A) 169

Figure 97. Time filled for unstructured mesh MA single CPU/GPU (System A) 170

Figure 98. Time filled single CPU/GPU with circular plate (System A) 171

Figure 99. Time filled multiple CPU/GPU with circular plate (System A)................................ 171

Figure 100. Time filled single CPU/GPU with circular plate (System B).................................. 172

Figure 101. Time filled multiple CPU/GPU with circular plate (System B) 172

Figure 102. Input mesh model 10FT multiple partition time-filled comparison (System A) 173

Figure 103. Input mesh model 10FT multiple partition time-filled comparison (System B) 174

xv

List of Tables

Table 1 System A – CPU hardware architecture ... 21

Table 2 System B – CPU hardware architecture ... 22

Table 3 System A – GPU hardware architecture ... 23

Table 4 System B – GPU hardware architecture ... 23

Table 5 Time comparison for SpMV on System A (CSR compression) 32

Table 6 Time comparison for SpMV on System B (CSR compression) 32

Table 7 SpMV time comparison per thread occupancy and data format (System A) 35

Table 8 SpMV time comparison per thread occupancy and data format (System B) 36

Table 9 Full solution performance with single CPU/GPU and CSR compression (System A) .. 54

Table 10 Full solution KFLOPs with single CPU/GPU and CSR compression (System A) 54

Table 11 Full solution performance with single CPU/GPU and CSR compression (System B) 54

Table 12 Full solution KFLOPs with single CPU/GPU and CSR compression (System B) 55

Table 13 GPU device limits for both systems ... 63

Table 14 Performance modeling of single calls PCG (System A) .. 65

Table 15 Performance modeling of single calls PCG (System B) .. 66

Table 16 Performance modeling single CPU/GPU full solution (System A) 70

Table 17 Performance modeling single CPU/GPU full solution (System B) 70

Table 18 Categorized software and hardware effects (System A) .. 81

Table 19 Categorized software and hardware effects (System B) .. 81

Table 20 Hardware factors and theoretical performance (System A) .. 82

Table 21 Software factors and theoretical performance (System A) .. 82

Table 22 Hardware factors and theoretical performance (System B) ... 82

xvi

Table 23 Software factors and theoretical performance (System B) ... 83

Table 24 Multiple CPU/GPU performance in milliseconds with mesh MA (System A) 94

Table 25 Multiple CPU/GPU performance in milliseconds with mesh MB (System A) 94

Table 26 Multiple CPU/GPU performance in milliseconds with mesh 10FT (System A) 94

Table 27 Multiple CPU/GPU performance in milliseconds with mesh MA (System B) 97

Table 28 Multiple CPU/GPU performance in milliseconds with mesh MB (System B) 97

Table 29 Multiple CPU/GPU performance in milliseconds with mesh 10FT (System B) 98

Table 30 Multiple CPU/GPU performance in seconds (System A) .. 102

Table 31 Multiple CPU/GPU performance of 10FT model in seconds (System A) 103

Table 32 Multiple CPU/GPU performance in seconds (System B) .. 103

Table 33 Multiple CPU/GPU performance of 10FT model in seconds (System B) 103

Table 34 Multiple CPU/GPU performance in seconds – formats (System A) 104

Table 35 Multiple CPU/GPU performance in seconds – formats (System B) 105

2

Abstract

Current developments in computing have shown the advantage of using one or more Graphic

Processing Units (GPU) to boost the performance of many computationally intensive

applications but there are still limits to these GPU-enhanced systems. The major factors that

contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be

categorized as hardware and software oriented in nature. Understanding how these factors affect

performance is essential to develop efficient and robust applications codes that employ one or

more GPU devices as powerful co-processors for HPC computational modeling.

The present work analyzes and understands the intrinsic interrelationship of both hardware and

software categories on computational performance for single and multiple GPU-enhanced

systems using a computationally intensive application that is representative of a large portion of

challenges confronting modern HPC. The representative application uses unstructured finite

element computations for transient composite resin infusion process flow modeling as the

computational core, characteristics and results of which reflect many other HPC applications via

the sparse matrix system used for the solution of linear system of equations. This work describes

these various software and hardware factors and how they interact to affect performance of

computationally intensive applications enabling more efficient development and porting of High

Performance Computing applications that includes current, legacy, and future large scale

computational modeling applications in various engineering and scientific disciplines.

3

CHAPTER 1

Introduction

 Recent years have seen the slowing of computational intensity offered by standard

Central Processing Unit (CPU)-based systems, while scientific/engineering applications have

inexorably grown in the need for computational power [1-3]. As the CPU approached maximum

power sustainability around 2003, growing from 2/1 cmwatt to 2/20 cmwatts [3, 4], the

Graphics Processing Unit (GPU) was increasing its computational intensity while maintaining

efficient power management [5, 6] and lowering cost to meet the high demand placed upon it

from a thriving game industry [1, 2, 7]. The differences in CPU and GPU computational power

can be traced back to the designs upon which the two are predicated – i.e., Instruction-Stream

Based (ISB) and Data-Stream Based (DSB) models.

1.1 Background and History

 The ISB design of the CPU, whereby a single stream of instructions and data are fed to

the device, limited any optimization of arithmetic operations since the input stream could contain

any number of potentially complex instructions. Therefore, the CPU accomplished the

mitigation of latency by defining elaborate memory caches where processes could be switched

out when needed, such as with an I/O interrupt, constraining larger numbers of transistors to the

Memory Management Units (MMU) and logic device arrays [2, 8, 9] for complex operations

such as speculative branching [10-12]. In comparison, the DSB design of the GPU, with

instructions and data fed to the device as separate streams, could optimize for arithmetic

operations as the instruction stream is committed prior to any data input. Therefore, the GPU

accomplished mitigation of latency by pushing as many processes as possible through the device

at any given time, conscripting large numbers of transistors for floating-point operations and

4

assumed large arrays of uninterrupted data streams via a wide data bus [2, 8]. The DSB and ISB

paradigms define the framework upon which the present computational architectures and

software designs for the CPU and GPU have evolved (see Figure 1).

 1.1.1 CPU-GPU hardware parallelism. The CPU computing architecture, as per the

ISB model, allowed for the maintenance of increasingly complex processes [9, 13], the execution

of which is physically and logically defined by the concept of pipelines. CPU pipelines are

constructs which consist of stages of processing elements executed in a series – each output of a

stage is the input to the next [9, 13]. This single pipeline evolved to the more efficient multiple

pipelines [9, 13], eventually leading to super-scalar systems [14] and vector processing

machines [15] in an effort to maximize hardware oriented computational power for the CPU-

only computing architecture.

Figure 1. The general models followed by the GPU (left) and CPU (right).

 Both the vector processing machines [14, 16, 17] and super-scalar systems [9, 14]

increase the computational power of CPU-only computing architectures using a low-level

hardware defined parallelism but take different routes to achieve this goal. The super-scalar

system defines hardware parallelism via execution of multiple operations per clock cycle

augmenting the system with large numbers of registers [9, 14], whereas the vector processing

machine implements common operations across multiple data elements [14, 16, 17]. Vector

processing machines, such as the CRAY [18] and the NEC SX-8 [19], obtain magnitudes of

5

speedup over scalar systems by pushing vector elements onto a special register known as a pipe

and then execute operations across these elements simultaneously [14, 15]. These CPU

architectural designs evolved to coerce a parallelism that is intrinsically and naturally present in

the GPU device architecture.

 Initially computer graphics were defined as simple vector devices executing as a separate

process using Direct Memory Access (DMA) to bypass frequent interrupts to the CPU [9, 13],

but as the GPU matured into a dedicated device it was free to optimize for throughput, as per the

DSB model. The larger concentration of transistors in the floating-point operations coupled with

a wide data bus produced the computational intensity for which the GPU computing architecture

is widely reputed [20-23] – large numbers of data input is executed simultaneously by

preconfigured floating-point operations [2, 8, 24]. The execution of floating-point operations

across the set of data input is physically and logically defined by the construct of a graphics

pipeline (see Figure 2 and Figure 3).

Figure 2. Generic graphics rendering pipeline.

6

Figure 3. Rasterizing a simple triangle.

 The graphics pipeline construct is a feed-forward system [24] designed to perform

operations on four fundamental entities for final rendering by the display device – vertices,

primitives, fragments, and pixels [2]. Initially these fundamental entities were defined wholly

within a fixed-pipeline [1, 2] but evolved to become a mix of fixed and programmable sections

represented by an interleaved series of fixed functions and programmable stages across which

the data entities flow [1, 2]. Vertex generation is a fixed function and is the first step in the

graphics pipeline, generating a series of vertices using lists of descriptors from the graphics

application [2]. The output vertices from the vertex generation function are passed to the

programmable stage of vertex processing, generating sets of vertex records independently from

each vertex – projecting the original 3-coordinate system to a 2-coordinate system [2]. The input

vertices are grouped next into an ordered stream of primitives by the fixed function, primitive

generation and then passed to the programmable stage of primitive processing – potentially

merging multiple primitives for rendering [2]. The modified primitives are passed to the

fragment generation fixed function, producing fragment records that are interpolated from

samples of the input and passed to the programmable stage, fragment processing [2, 24, 25].

The fragment processing programmable stage simulates the interaction of light and surface with

the input fragment records – textures are defined at this stage as 1-D, 2-D, or 3-D arrays [2, 24,

7

25]. The final fixed function, pixel operations are next and calculate output pixels for rendering

using the input fragment’s screen position [1, 2, 7, 24, 25].

 The software paradigms have also developed conjointly with the architectures for both

the CPU and GPU devices – the two modes evolving as emphasis on higher performance and

ease of development have matured.

 1.1.2 CPU-GPU software parallelism. The CPU-only software paradigms have evolved

along two general modes to increase computational ability – threaded and message passing [15,

22, 26-28]. The former defines a methodology that concurrently runs independent threads of

execution within a single address space [26] and the latter uses message constructs to

communicate and pass data with different processors [26, 28]. These CPU-only software

paradigms denote parallelization as a means of boosting application performance – a common

practice in HPC applications that has historically been efficacious [26, 28-30].

 The actual implementations of the threaded and message passing systems is defined by

several standards, libraries and/or specialized languages that include Unified Parallel C (UPC),

OpenMP, PThreads, Parallel Virtual Machine (PVM), and Message Passing Interface (MPI)

among others [26, 28, 29]. Flynn’s Taxonomy categorizes the threaded paradigm into the Single

Instruction Multiple Data (SIMD) and the message passing paradigm into the Single Program

Multiple Data (SPMD) as the threaded mode requires a lockstep synchronization in a shared

memory context and the message passing mode can operate in a distributed memory context with

varying degrees of autonomy [26, 28].

 The GPU software paradigms, unlike the CPU counterparts that explicitly sought to boost

performance via parallelism, evolved out of a need to render specialized visuals for graphics

heavy applications e.g. high demand games [1]. Once the graphics pipeline became flexible,

8

allowing programming of the vector and fragment processors, an efficient set of software

constructs for rendering advanced 3-D visuals was needed and shader languages and libraries

were developed, so called because the graphics programs generally were written to shade

fragments of a given rendered object [24, 31], and included the first portable library - Silicon

Graphics ubiquitous OpenGL [1, 7, 32]. OpenGL was a watershed moment in graphics

programming as now applications no longer had to be written specifically for a given

architecture and/or operating system, rendering and manipulating primitives using sets of matrix

operations that included transformation, translation, rotation, and scaling [33, 34].

 The OpenGL graphics library was written as an extension of the C language and is built

using a basic 4-element vector wzyx ,,, such that if 1w the vector defines a position in space

and if 0w it is a defined direction [24, 34, 35]. These basic 4-element vectors describe a

homogeneous coordinate system with the w element allowing translation and rotation, building

into a series of 44x matrices that can be modified simultaneously with a single formula [1, 2, 24,

35]. Figure 4 depicts a 16-element operational matrix used by OpenGL such that the 12
th

, 13
th

,

and 14
th

 elements are the translation components – i.e. M03, M13, and M23 in the figure.

Figure 4. An example 4-by-4 matrix utilized by OpenGL.

 Figure 5 shows a generic 2-D translation of a simple rectangle that occurs after applying

translation elements to each of the vertices – done simultaneously by the execution of a

translation matrix similar to the model shown in Figure 4.

9

Figure 5. Vertex point P is shifted left and down with translation values.

 The OpenGL library defines the matrices as column-major order rather than row-major

but this essentially makes no difference as pre-multiplying with row matrices is the same as post-

multiplying with column matrices [33, 34].

 The advent of OpenGL provided a boost to graphics programming itself, accessing the

growing computational power afforded by the GPU for non-rendering purposes was still

hindered by the tedious and difficult mappings required by the library. The release of Nvidia’s

Compute Unified Device Architecture (CUDA) in 2007 marked the beginnings of General

Purpose GPU (GPGPU) computing as it is known today [7, 25, 36]. The CUDA API uses C

language bindings to access underlying system calls to the GPU processors and embraces the

familiar concept of threading. CUDA utilizes a GCC-like compiler, NVCC, to compile the GPU-

bound code to low-level Parallel Thread eXecution (PTX) virtual machine and Instruction Set

Architecture [37, 38]. PTX provides a machine independent architecture for CUDA compilers to

target and allows for portability across multiple GPU generations [37, 38].

 Computational modeling and simulations in many fields require both hardware and

software compatibility and influence the resultant computational performance [20, 23, 25, 39-

41]. The factors that influence the computational performance can be categorized as software

and hardware oriented, each category can be further demarcated as computational algorithms

10

and data-structures/layouts under software; and architectural designs for single and multiple

CPU/GPU under the hardware category.

1.2 Focus and Objective

 The focus and objective of this dissertation is to analyze and understand the intrinsic

interrelationship between the computing hardware architecture and software variables on the

performance of the single and multiple CPU/GPU computing systems shown schematically in

Figure 6. These analysis and discussions are based on computationally intensive, unstructured

finite element computations for transient composite process flow modeling application. The

discussions are organized into single CPU/GPU and multiple CPU/GPU systems. The reminder

of the dissertation is presented and organized into chapters as outlined next.

Figure 6. Schematic representation of the interrelationship of computational performance.

 Chapter 2 defines the computational problem analyzed and provides key computationally

intensive kernels, associated algorithms, and software data-structures/layouts, as well as the

hardware descriptions. Chapter 3 establishes the computational potential of the GPU via the

analysis and discussion of a key component of many computationally intensive applications – the

sparse matrix-vector multiplication. The performance metrics and results as well as the software

data-structures and architectural factors that influence the performance are presented. Chapter 4

11

focuses on the full-solution for the candidate application defining key computationally intensive

kernels and associated developments such as data-structures/layouts for the single CPU/GPU

computing system. The computational performance as it relates to the architecture and software

relationship is examined and discussed in this chapter. Chapter 4 will also discuss the hardware

architectural factors and problem size and how these work to influence computational

performance. All these factors are considered in the development of an empirical computational

complexity relationship that will then be correlated to the results and parameters to understand

how these factors influence the performance. Chapter 5 is essentially the same as chapter 4

excepting for the use of a multiple CPU/GPU computing systems – defining the relevance of

these systems for multiple processor designs. Finally, chapter 6 is a summary of the results and

analysis as well as proposed future directions for CPU/GPU and hybrid computing systems.

This last chapter will establish the interrelationship between software-hardware variables on

computational performance and how these findings can be applied to many computationally

intensive engineering and scientific applications, not just the candidate application employed in

this work.

12

CHAPTER 2

Computational Problem – Candidate Application

 This chapter describes the computationally intensive physical problem employed as a

candidate application for analysis and discussion of computational performance factors – Resin

Transfer Molding (RTM) process and the transient process resin infusion flow modeling [30,

42, 43]. This candidate application presented employs unstructured finite element computations,

assembling sets of locally defined stiffness matrices into a single global stiffness matrix [44],

that is sparse, symmetric and positive-definitive [44, 45]. The global stiffness matrix composed

of finite element computations, is solved at each time-step during resin infusion flow analysis

using the iterative Preconditioned Conjugate Gradient method [46] rather than a direct solver

such as LU-Decomposition which is computationally prohibitive for most non-trivial problems

[44, 45].

 The computational model configurations for computational performance analysis built

upon finite element meshes employed by the computationally intensive candidate application

increase in the problem size based on the 3-noded triangular element and node count but are

consistent in geometry and parameters applied – i.e., both mesh models have the same physical

descriptions of resin infusion flow modeling excepting size. These meshes, ordered by increasing

element/node, are shown below – Figure 7 is representative of both mesh configuration

employed in the resin flow infusion modeling analysis for the candidate application.

Unstructured Mesh Number of Nodes Number of Elements

MA 26,936 53,178

MB 103,196 204,970

13

 The finite element models defined by meshes MA and MB are consistent in geometry

and physical problem parameter input therefore for exhaustive purposes another, less regular,

mesh is analyzed for performance behavior and is denoted as 10FT – shown below is the number

of nodes/elements for this model mesh configuration. The 10FT unstructured mesh falls roughly

into the category of medium-sized computational problem with respect to the other two meshes

studied in this research and is composed of 3-noded triangular elements; however, it is more

complex in structure. The 10FT unstructured mesh model is shown in Figure 8.

Unstructured Mesh Number of Nodes Number of Elements

10FT 29,171 58,187

 Figure 9, Figure 10, and Figure 11 show plots of the non-zero element sparsity pattern of

matrices that result from the input meshes MA, MB, and 10FT respectively. Clearly meshes

MA and MB are more regular than the matrix from mesh 10FT, which is though diagonally

dominant and symmetric, has non-zero elements dispersed more evenly across the entire matrix.

 All algorithms referenced in this chapter are presented in Appendix C of this dissertation

for convenience and better formatting of text.

Figure 7. Unstructured mesh geometric configuration used by candidate application.

14

Figure 8. Unstructured mesh geometric configuration of 10FT model.

Figure 9. Sparse matrix non-zero entry distribution for mesh MA.

15

Figure 10. Sparse matrix non-zero entry distribution for mesh MB.

Figure 11. Matrix sparsity pattern of mesh 10FT.

2.1 Physical Description

 The Resin Transfer Molding (RTM) process flow modeling methodology studied is

based on the work published in [30, 43, 47] and is presented briefly next.

16

 2.1.1 Resin Mass Conservation. Following the discussions in [30, 43, 47], the resin flow

through the fiber preform contained within the mold cavity is represented by the transient mass

conservation equation. The physical mass conservation equation (formed by coupling the mass

conservation equation with the momentum equation via Darcian velocity field) is given by

equation (2.1) with K the permeability tensor, the resin viscosity, P the pressure field, and

 the state variable representing the infused state of the resin – further details are available in

[30, 43, 47].

 dP

K
d

dt

d

 (2.1)

The value of the state variable is 0, where the resin has not infused the fiber preform, and 1,

where the resin has completely infused the fiber preform in any given region of the Eulerian

mold continuity domain used in the Finite Element Method (FEM) computations.

 As discussed in [43] the application of Galerkin weighted residual formulation and

approximating for the pressure P and fill factor , with appropriate elements and associated

shape functions, yields a semi-discrete system of equations given by equation (2.2) with C the

lumped mass matrix representing pore volume, K the stiffness matrix, q the load vector, and

the time derivative term.

 qPKC (2.2)

The transient semi-discrete equation is then solved by introducing the finite difference

approximation given by equation (2.3).

t

nn

1

 (2.3)

17

 2.1.2 LCM Solution Strategy The semi-discrete equation (2.2) can be reduced to the

equation (2.4) as discussed in [43], with C taken to be the lumped mass matrix.

 ijij

n

iii

n

iii tqPtKCC 1
 (2.4)

 The above form of the discretized equation is solved by the LCM process flow simulation

algorithm at each time-step. Equation (2.4) defines the implicit form of the process flow

modeling in LCM detailed in [43]. The generalized algorithm for the finite element

approximation of the process flow modeling for each time step is summarized in Algorithm 2.1 -

the interested reader is referred to [30, 43, 47] for further details on the LCM process and its

conversion to the Finite Element Method formulation for the computational simulation.

2.2 Key Computationally Intensive Functions

 Examination of Algorithm 2.1 reveals the most computationally expensive function of

the candidate application – the solution to the system of linear equations given in matrix form as

bxA embodied on line 9 as
mimjmij gPK ˆ . The solution to systems of linear equations

can be accomplished via direct methods or iterative methods - each has advantages and

disadvantages.

 Direct solution methods such as LU-Decomposition provide a solution in a single direct

solution step for the linear equation system without a need of initial guess solution vector but

require high computational costs whereas iterative methods start with an initial guess that

iteratively converges to a solution vector but have significantly lower costs [45]. The candidate

application presented executes this solver within a nested loop so any incurred costs from a

single call to the solver will be exacerbated by the product of LK with K the number of

iterations for mass-convergence and L the number iterations for all nodes to be determined as

filled – in addition to the iterations for the convergence of the iterative solution . The

18

Preconditioned Conjugate Gradient (PCG) iterative solver was selected as a balance of

computational cost and accuracy for the solution of linear system of equations.

 2.2.1 The Iterative Solver. The PCG iterative solver chosen for the candidate application

provides good balance of computational cost and solution accuracy, composed of a set of matrix-

vector operations [44, 46]. The majority of the computational cost of the PCG iterative solver is

well documented as the Sparse Matrix-Vector (SpMV) multiplication [17, 46, 48-51] – this

operation is shown on lines 6 and 9 of Algorithm 2.2. The SpMV operation has high

computational cost due to three performance issues – poor locality, poor instruction mix, and a

high memory overhead [45, 52]. Poor locality of SpMV results from indirect and often irregular

memory accesses, poor instruction mix is derived through the execution of three memory loads

for every two floating-point operations, and the high memory overhead is due to the largest

portion of the matrix being zero and thus useless to the computation but held in memory

regardless. The high memory overhead of this candidate application, and indeed any application

that builds large sets of sparse matrices, is defined as a memory-bound problem and requires data

compression data-structures/layouts to execute [30, 44, 48].

 There are different compression formats that are used to execute memory-bound

problems and a discussion of these follows.

2.3 Data-Structures/Layouts

 One of the most common form of data compression for sparse matrix data structures used

in engineering/scientific application codes for High Performance Computing (HPC) is the

Compressed Sparse Row (CSR) structure which is partly due to its ease of programming [52-

54]; however this is not the only model to follow and much research has been done to explore

this area as the format used can have significant impact on the resulting performance [44, 49,

19

52]. The CSR data compression format consists of three arrays – non-zero data elements,

column indices, and row pointers, and operates by iterating over all the rows of the compressed

sparse matrix (see Figure 12). Each row is represented as the length between each non-zero

element held at the row pointer index currently being iterated over, which is then passed as an

input to the column indices array resulting in the original columnrow, position of the element

from the original sparse matrix – now held as an array of non-zero elements [52].

 Algorithm 2.3 is the expression of the sparse matrix-vector multiplication using the CSR

data compression format [48, 52]. The utilization of the CSR compression format lowers the

memory overhead for the sparse matrix-vector multiplication but does nothing for the other two

components that effect performance, e.g. locality and instruction ratio - line 9 of Algorithm 2.3

embodies an operation that is deleterious to any locality and does not improve the instruction

ratio.

 The Block Compressed Sparse Row with 2x2 (BCSR2x2) sub-blocks has been shown

to improve the often disappointing performance of the CSR by increasing locality via reduced

number of memory loads [21, 52, 55], however this improvement is not guaranteed. BCSR2x2

operates on sets of sub-blocks of dimension 2x2 rather than single elements, but locality is only

improved if the original sparse matrix is composed of dense sets of sub-blocks; otherwise

memory overhead is increased with no corresponding performance boost (see Figure 13).

Determination of these dense sub-blocks of the sparse matrix is not known until runtime, making

this a dynamic problem.

20

Figure 12. The CSR format.

Figure 13. The BCSR2x2 format.

2.4 Hardware Discussions of Computing Architectures Used

 The GPU, CPU code developments from the present work for the candidate application is

executed within the context of two separate computing machine architectures generally

categorized as CPU-based, GPU-based, and/or some combination of the two. Biomedical

Analysis and Simulation Supercomputer (BASS) located at Chapel Hill, North Carolina is

categorized as System A for the remainder of this dissertation, and system called as OAKLEY

located at Ohio Supercomputing Center in Columbus, Ohio is categorized as System B for the

remainder of this dissertation. The System A CPU/GPU computing system is composed of

AMD Dual-Core Opteron CPUs and Nvidia Quadro FX 5600 GPUs each with a 2.8 GHz and 1.5

GHz clock frequency respectively. The System B CPU/GPU computing system is composed of

21

Intel Xeon X5650 6-Core CPUs and Nvidia Tesla M2070 GPUs each with a 2.66 GHz and 1.15

GHz clock frequency respectively. The details of the hardware designs for both computing

systems are discussed next – categorized separately by CPU and GPU.

 2.4.1 CPU Hardware Architectures The CPU hardware designs for System A and

System B follow the same concepts, but System B is more advanced (see Table 1 and Table 2).

These architectures both have multiple levels of cache memory, 2 levels for System A and 3 for

System B, and different capacities [56, 57]. System B has greater cache memory capacity at all

levels, and while both computing systems have the same memory I/O width, System B has faster

memory devices – double that of the memory devices for System A [56, 57].

 Both System A and System B have embraced the concept of multiple core architectures,

but as with the memory structures System B is the more advanced of the two. A processing core

can be viewed as a separate CPU executing in the same address space enabling the computing

architecture to theoretically increase computational ability [9, 13], each core operates at a global

clock frequency for the device – System B executes 6 processing cores whereas System A has 2

[56, 57]. System A executes these cores as a higher clock frequency but System B has three

times the number of cores – a faster design for the hardware level.

Table 1

System A – CPU hardware architecture

Processor Clock 2.8 GHz

Processing Cores 2

L1 Cache 256 KBs

L2 Cache 2 MBs

Memory I/O 64-bit DDR2 SDRAM

22

Table 2

System B – CPU hardware architecture

Processor Clock 2.66 GHz

Processing Cores 6

L1 Cache 384 KBs

L2 Cache 1.50 MBs

L3 Cache 12 MBs

Memory I/O 64-bit DDR3 SDRAM

 2.4.2 GPU Hardware Architectures. The GPU hardware designs for System A and

System B follow the same concepts, but System B is more advanced (see Table 3 and Table 4).

These architectures both have processing cores in the hundreds to accommodate the massive

computational power involved in optimizing throughput, however System B has more than three

times the number offered by System A [58, 59]. System A has a faster clock frequency for each

processing core but has a significantly lower number of these cores so the aggregate power of

System B is greater regardless [58-61]. Each of these cores can be viewed as a separate

processor, but unlike the CPU, the GPU will execute the same instruction for all input until a

reconfiguration occurs for the next large set of input [31, 35] hence less emphasis on memory

management via cache hierarchies.

 Both System A and System B have wide memory I/O at 384-bits to sustain the high

number of processes required to maximize throughput as a latency mitigation strategy prescribed

by the DSB paradigm which the GPU follows. The memory device employed by System B uses

the same input width but is faster than that of System A [58, 59, 61].

 System B is part of the CUDA Compute Architecture 2.0, a metric used by Nvidia to

categorize the device versions at both the software and hardware levels, whereas System A is 1.0

– a significant difference [37, 62]. The higher Compute Architecture of System B allows more

23

options, e.g. Nvidia set of libraries, and System B was the first GPU device to fully embrace

general programming on the GPU (GPGPU) as it contained no video outlet, had double-precision

abilities, and provided Error-Correcting Code (ECC) [25, 37, 62]. The GPU device architecture

for System B is superior to that of System A.

Table 3

System A – GPU hardware architecture

Processor Clock 1.35 GHz

Processing Cores 128

Memory I/O 384-bit GDDR3

Register Count 8,192

Shared Memory Banks 16

CUDA Compute Architecture 1.0

Table 4

System B – GPU hardware architecture

Processor Clock 1.15 GHz

Processing Cores 448

Memory I/O 384-bit GDDR5

Register Count 32,768

Shared Memory Banks 32

CUDA Compute Architecture 2.0

 2.4.3 Hardware Design Summary The hardware designs for both systems presented

reflects the general concept of the DSB and ISB paradigm for the CPU and GPU respectively

resulting in different latency mitigation policies. Both System A and System B utilize cache

memory hierarchies to mitigate latency for the CPU designs and both have processing core

counts in the hundreds to optimize throughput for the GPU designs, as per DSB paradigm. The

memory I/O bus width is higher for the GPU hardware than for the CPU hardware, while they

are equal in size to one another – System B has a faster memory device in both cases. System B

24

is a more advanced hardware design for both the CPU and GPU devices in context of processing

and memory. The next chapter will discuss the computational potential offered by the GPU via

performance of the highest cost operation of the candidate application, as well as many HPC

scientific and engineering computational modeling applications [20, 30, 48, 49, 63], the sparse

matrix-vector multiplication.

25

CHAPTER 3

Computational Potential of GPU – Sparse Matrix-Vector Multiplication

 This chapter focuses on the computational potential offered by the GPU for

computationally intensive applications such as the candidate application presented. The

candidate application has highest computational cost at the point of the solution to system of

linear equations that are presented in matrix form as bxA . This sparse matrix system is solved

iteratively using PCG in deference to the computationally prohibitive costs of using direct solver

methodology – a common practice in HPC modeling applications [20, 30, 48, 49, 63].

 The PCG solver is composed of matrix operations that should map well to the GPU

device given it was created to execute massive numbers of matrix operations in tandem [1, 2, 7,

24]. The Spare Matrix Vector Multiplication (SpMV) operation embodies the highest

computational cost of the PCG solver, up to 90% of the total cost [25, 29, 48, 49, 63] - the

minimization of this operational cost will provide a significant performance boost to the

presented candidate application as well as many other HPC applications. However, mapping the

SpMV operation to the GPU involves software factors, including software API CUDA, that are

intimately related to underlying hardware architectures provided during the computational

modeling application execution.

3.1 Mapping Sparse Matrix-Vector Multiplication to GPU

 The SpMV operation is the highest cost component of the presented candidate

application, as well as many HPC applications that employ systems of sparse matrices and the

potential boost provided by utilizing the GPU as a co-processor has generated a lot of interest

[21, 48, 49, 53, 54, 64]. The SpMV derives its high operational cost not from floating-point

26

operations, as its instruction mix is poor [48]; rather the inefficient memory accesses are

culpable. Properly mapping such a high cost and computationally weak operation to a

computationally powerful device like the GPU for optimal performance involves an

understanding of the software as well as the underlying hardware. The CUDA API is the

software API employed by the presented candidate application and is representative of this

relationship. This is discussed in the context of the actual mapping of the SpMV algorithm to the

CPU/GPU computing system next.

 3.1.1 The CUDA Software/Architecture API. The Nvidia CUDA Software API for

general GPU programming is both a software and hardware system that uses higher level C

language extensions to call lower-level OpenGL/DirectX libraries – accessing the GPU device

[25, 37, 62]. CUDA maintains the C language concept of threads [62], but unlike the C

language CUDA exposes the memory hierarchy to the developer [25, 37] which is a necessity as

the GPU has no real virtual memory system and remains as flat as possible for the optimization

of throughput. Despite the added complexity of an exposed memory hierarchy, CUDA freed

developers from the necessity of translating general code to and from data-structures that the

GPU understood i.e. column-major matrix operations, complete with model-view and matrix-

stacks so necessary for lower-level graphics programming [31, 33-35].

 CUDA GPU threads, memory, basic API syntax, and associated device hardware

architecture are discussed in the following sub-sections.

 3.1.1.1 CUDA API thread hierarchy The GPU thread as defined by the CUDA

architecture is different from the Light Weight Process (LWP) familiar to Operating System

design [9, 37, 62]. The GPU has zero-cost context switching of threads because this is executed

at the hardware level, commonly known as hardware multi-threading, whereas the Operating

27

System paradigm of threads is one controlled by software either in user or kernel space naturally

incurring overhead. Figure 14 from Nvidia [62] illustrates the hierarchical structure of threads.

Figure 14. Diagram of CUDA GPU thread grouping.

 The CUDA paradigm provides a direct mapping from logical constructs, such as the

thread, to hardware architecture designs as shown in Figure 15. The large number of transistors

dedicated to floating-point operations is grouped together as sets of Streaming Processors

(SPs), defining the thread construct [62]. These SPs are grouped in sets of 8 to form sets of

Streaming Multiprocessors (SMPs) – the domain of the Block [62]. The largest logical

construct, the Grid, is embodied by the groupings of SMPs [62] as shown in Figure 16.

Figure 15. CUDA hardware to logical construct mapping.

28

Figure 16. CUDA hardware with logical Grid overlay.

 CUDA executes operations via 24-stage graphics pipelines each fully completing in 4

memory clock cycles using a single SMP defining the logical unit of execution as batches of 32

threads called a warp - 3284 [37]. The CUDA paradigm increases parallel granularity,

naturally extending from the single thread to the Block which is composed of sets of threads, to

the Grid which is composed of sets of Blocks [37].

 All threads in a Block are assigned to a single SMP, abstracted from the programmer,

although multiple Blocks can be assigned to a single SMP [65]. The abstraction of the

Block/thread/SMP construct is the dominate strategy to produce scalability of CUDA to different

generations of GPU devices – the programmer need not know the exact number of SMPs to

develop GPU-bound code as the hardware will schedule as needed [25, 65].

 3.1.1.2 CUDA API memory hierarchy CUDA defines varying layers of memory that

reflect both the underlying hardware architecture and logical threads [62]. Figure 17 from

Nvidia, shows the overview of logical memory constructs to the underlying physical hardware –

29

clearly the GPU is not equivalent to the CPU in memory complexity but does provide some level

of layering [1, 2, 62].

Figure 17. CUDA GPU mapping of the physical and logical memory structure.

 The lowest level of memory in the defined hierarchy is the register file, composed of the

set of registers for the SMP – each thread has mutually exclusive access to an on-chip register

and local memory in read/write mode [2]. As with CPU hardware designs, the register is the

fastest of the two on-chip structures with local memory costing approximately 20 to 50 clock

cycles [1, 2, 62, 66]. The next highest level of memory for the CUDA design is the shared

memory structure. Shared memory is bound to a given Block and each thread has read/write

access implying the need for synchronization to avoid race conditions [1, 2, 9, 62, 66] – the next

set of memory levels are visible to all Blocks defined in the application.

 Constant and texture memories are both read-only with regards to the threads in any

given Block but texture can yield some level of locality as the CPU has write access to this

30

structure [2, 24]. Global memory, sometimes called device memory, has the highest capacity

and clock cycle cost running as high as 600 to 800 cycles per call [1, 2, 62, 66] – global memory

is the only area where the CPU and GPU can communicate using the Peripheral Component

Interconnect Express (PCIe) bus. The PCIe bus is a well-known point of bottleneck in many

CPU/GPU computing HPC applications employing sparse matrix systems [48, 53, 64, 67, 68].

 3.1.1.3 CUDA API basic syntax The CUDA API is an extension of the C language

invoking its own GCC –like compiler, e.g. NVCC, to compile high-level GPU Kernels to PTX

machine independent code which is executed at runtime [38, 62] – CUDA recognizes GPU-

bound code via keywords. These keywords are prepended to the C-like function signatures [25,

62] defined as the GPU-bound Kernel and prior to calling must have memory set aside for the

execution of each on the GPU device – as a ThreadsBlocks, structure. Figure 18

illustrates an example usage of the GPU Kernel declaration and memory space allocation for a

generic function.

Figure 18. Example defining CUDA Kernel function signature and execution space.

 3.1.2 Algorithmic Strategies for SpMV Mapping. Mapping the SpMV operation to the

GPU via the CUDA Software API presents the immediate challenge of how to distribute the

matrix to the set of warps to be executed. A straightforward approach would apply a single

thread per row, chunking the domain into sets of 32 – this is not the best approach as

documented in [69]. As with [69], the SpMV operation is mapped to the GPU device using the

31

one warp per row concept to obtain better utilization of the device resources – this is discussed in

detail after the initial performance results.

 Details of the code used in this chapter to gather the performance results are presented in

Appendix A and includes both the CSR and BCRS2x2 data compression formats.

3.2 GPU Initial SpMV Performance Results

 The results of SpMV on the CPU/GPU for both machine system architectures, System A

and System B, using the CSR data format are presented in this section with the goal of exposing

the performance effects of software, hardware, and algorithmic factors using a consistent model

in differing computing environments. These results are gathered using randomly filled sparse

matrices with 50% sparseness, increasing in total matrix sizes from 1K to 4K.

 Critical to understanding the observed results is the establishment of metrics to define

performance benchmarking. Computational performance benchmarking for the GPU and CPU

developments and resin flow infusion modeling for the remainder of this dissertation was

accomplished as follows.

 Normalized FLOPS: The raw count of floating-point operations is modified by clock

frequency of the device being measured to address the variance in processor speeds for

the GPU and CPU architectures. Equation (3.1) illustrates the normalization process

described, denoted as normFLOPS , with cntFLOP the raw count of floating-point

operations, C the clock frequency, and T the total execution time.

T

CFLOP
FLOPS cnt

norm

 (3.1)

 KFLOPS: The approximate thousands of floating-point operations per second. As the

GPU and CPU architecture vary in their processor speed, the KFLOPS is normalized by

the clock cycle of the device being measured.

32

 Speedup factor: The ratio of CPU execution time to GPU execution time whereby the

larger the value, the more optimal the performance obtained through the GPU.

System A is the first architecture examined followed by System B.

 3.2.1 System A. The CPU/GPU computing system execution of the SpMV operation was

compared against the CPU-only version. The CPU-only environment is much slower than that

of the CPU/GPU environment in every case as shown in Table 5. The CPU/GPU computing

system increases in performance at an almost exponential rate, accelerating at the 2K matrix –

this is consistent with previous findings of GPU performance on larger input models [1, 21, 22,

70].

Table 5

Time comparison for SpMV on System A (CSR compression)

Matrix Rows CPU Time (ms) GPU Time (ms) Speedup Factor

1024 9.479572 0.167552 56.5769

2048 35.138212 0.069408 506.2559

4096 148.453443 0.06912 2147.764

 3.2.2 System B. The CPU/GPU computing system execution of the SpMV operation was

compared against the CPU-only version. The CPU-only environment is much slower than that of

the CPU/GPU environment in every case as shown in Table 6. The CPU/GPU computing

system increases in performance at an almost exponential rate, accelerating at the 2K matrix –

this is consistent with previous findings of GPU performance on larger input models [1, 21, 22,

70].

Table 6

Time comparison for SpMV on System B (CSR compression)

Matrix Rows CPU Time(ms) GPU Time(ms) Speedup Factor

1024 1.6948 0.059648 28.41336

33

Table 6

Cont.

2048 8.417524 0.055424 151.8751

4096 30.3342 0.047872 633.6522

3.3 Software Data-Structures/Layouts Factors

 The previous section of this chapter establishes an obvious benefit in performance when

using the CPU/GPU computing system over CPU-only in both System A and System B

computing environments. However it is necessary to understand how different software data-

structures/layouts can affect performance in CPU/GPU systems in order to optimize for

computationally intensive applications. The first software factor to be analyzed is one that is

commonly touted in the GPGPU community – thread occupancy [37, 49, 71, 72].

 The thread occupancy of a CUDA enabled GPU device is defined as a ratio of active

warps to the maximum number of warps supported by the Compute Architecture [37] – System

A which is Compute Architecture 1.0, and System B which is Compute Architecture 2.0 support

24 and 48 warps per SMP respectively [58-61]. The importance of thread occupancy can mean

the difference of as much as 20-times performance boost [37, 73] . However, arbitrarily

assigning the largest number of warps per block possible is the wrong approach.

 There exists a finite set of registers that are allocated for each of the thread blocks, and if

each block requires many registers as defined by threads, the aggregate number of active blocks

possible is reduced and correspondingly the occupancy is reduced and performance suffers [25,

37]. For example, System A defines 192,8 32-bit registers for each SMP and can execute at most

768 threads meaning that at most 10...6666.10
768

8192
 registers can be used per thread to

achieve 100% occupancy. The negative effects on performance can be further compounded by

34

register spilling to device memory, increasing memory cycle counts hundreds of times [37, 62].

Both CPU/GPU computing systems architectures were determined to obtain maximum thread

occupancy at 256 threads per block, a multiple of the warp size – providing the optimal access to

local registers and avoiding costly code spills, allowing the hardware to properly coalesce

memory addresses [62, 69].

 Another software factor that can affect performance of a CPU/GPU computing system is

the data compression format used – understanding this is vital to optimizing memory-bound

applications such as the presented candidate application [2, 52, 74, 75]. As noted in the

introduction, the SpMV lends itself to several performance challenges – key to the data

compression format is locality. The CSR data compression format has poor locality due to

frequent address indirections and BCSR2x2 can mitigate this by lowering the number of memory

loads per floating-point operation – simply by maintaining a 2x2 sub-block set rather than a

single element [2, 52, 74, 75]. However, the benefits of using BCSR2x2 rely heavily on the

existence of dense 2x2 sub-blocks in the original sparse matrix.

 The software factors of thread occupancy and data compression format were combined

and executed on a randomly generated 4K sparse matrix defined with a 50% sparseness for both

System A and System B. Table 7 and Table 8 shows the performance of these software factors

for System A and System B respectively - Figure 19 and Figure 20 illustrate graphically the

same results. Both System A and System B display increased performance as the number of

threads per block grows evidence of better utilization of GPU computational resources.

However, dramatic performance increases generated by growing thread occupancy occur at 32

for System A and 64 for System B shown by Figure 19 and Figure 20 respectively – due to

clock cycle execution which is explained in greater depth in section 3.5 of this chapter. The

35

effect of changing data compression format from CSR to BCSR2x2 is greater for System A (see

Figure 19) than for System B (see Figure 20) as the later defines an on-chip cache relegating

locality mitigation to a lower impact factor for performance. These results clearly illustrate that

software factors can have an impact on the CPU/GPU computing system’s performance – the

associated hardware factors are discussed next.

Table 7

 SpMV time comparison per thread occupancy and data format (System A)

Threads Per Block GPU Time (ms) - CSR GPU Time (ms) - BCSR2x2

16 43.0042 15.7161

32 0.1456 0.122944

64 0.068736 0.125344

128 0.080096 0.1272

256 0.06912 0.179392

Figure 19. System A performance as threads per block increase (CSR and BCSR2x2).

36

Table 8

SpMV time comparison per thread occupancy and data format (System B)

Threads Per Block GPU Time (ms) - CSR GPU Time (ms) - BCSR2x2

16 18.6252 15.6434

32 32.1774 29.8709

64 0.057152 0.06192

128 0.06928 0.063936

256 0.047872 0.062208

Figure 20. System B performance as threads per block increase (CSR and BCSR2x2).

3.4 Architectural Hardware Factors

 The CPU/GPU computing systems execute within differing environmental context for

System A and System B and are important components in the resulting performance of SpMV.

System B has a more advanced CPU and GPU architecture than System A, a 6-core CPU and

Fermi GPU design versus a 2-Core CPU and Quadro GPU design for System B and System A

respectively [56-61, 76]. In and of itself, this difference is irrelevant however when comparing

System A to System B as these architectural hardware variations must be factored into the result.

37

 The architectural hardware design of System B defines a GPU device that provides extra

hardware for context switching compared to the corresponding GPU device of System A. The

increased switching hardware of the GPU device of System B is the manifestation of the double-

pumped graphics pipeline described by the Fermi architecture [61]. Important to the sheer

computational abilities are the number of processing cores of System B with 448 as compared to

System A at 128 [61, 76] – the GPU device on System B has greater than 3-times the power of

System A by this metric.

 The architectural hardware design of System B defines a more advance memory structure

than the corresponding structure of System A and this is reflected consistently at every memory

device [58, 60, 61]. System B and System A both have 384-bit wide memory I/O but System B

has the faster GDDR5 memory versus System A with GDDR3 memory. The GDDR5 memory

of the GPU device of System B operates at twice that of GDDR3 – therefore throughput of data

will be maximal for System B [58, 59]. The hardware design of the GPU device for System B

has 4-times the number of registers than the corresponding GPU device on System A at 32,768

to 8,192 for System B and System A respectively [58, 59] – these extra registers will provide

more capacity for threads of a given warp as a register is thread-bound in nature [25, 66, 69].

Finally, the shared memory of the GPU device of System B is 3-times greater than that of

System A at 49,152 to 16,384 bytes for System B and System A respectively – providing larger

cache-like structure for System B [61, 76].

 These hardware, software, and algorithmic factors when analyzed individually are

important but it is within the context of the aggregate that the real importance is revealed. This

interdependence of factors is discussed next.

38

3.5 Interdependence of Software and Hardware Factors

 The previous sections of this chapter have established the importance of software,

hardware, and algorithmic factors on resulting performance; however these factors are defined as

interdependent. These factors work both independently and with one another to produce the

observed performance results for SpMV in this chapter.

 Executing one warp per row rather than one thread per row, the dominant algorithmic

factor with regards to mapping the SpMV operation to the CPU/GPU computing system provides

a fuller utilization of the GPU device [37, 48]. The fuller utilization of the GPU is directly

impacted by the hardware as the entire warp is now performing useful work and memory

addresses are likely coalesced [37, 48]. The algorithmic factor is also impacted by the software

factor of increasing thread occupancy during SpMV as memory is set aside in units likely to

increase the use of more threads per warp.

 The software factor described by thread occupancy and data compression formats effect

performance by increasing memory address coalescing and increasing locality – essentially

altering the number of memory loads to the corresponding floating-point operations for SpMV.

However, software factors are tied to the hardware with thread occupancy in the same way that

the one warp per row is affected, and the impact of the data compression format change was less

pronounced for System B than for System A.

 The hardware factors of both computing systems effects the performance of SpMV in

two major ways – overall execution speed and impact of data locality. The GPU device of

System B uses a double-pumped logical graphics pipeline that is expressed in hardware as extra

context switch chip; so twice the data input per clock cycle is massaged by the larger number of

processing cores of System B over that of System A. This performance difference is seen from

39

the data plots defined as Figure 19 and Figure 20 where the later executes at approximately half

the time as the former.

 As stated previously in section 3.3 of this chapter, the mitigation of locality issues

derived via the employment of BCSR2x2 data compression has a lower effect on performance

for System B than for System A due to the presence of a hardware-level cache on System B that

does not exist on System A [59-61]. An interesting artifact of the hardware, software, and

algorithmic interplay can be seen when increasing the number of threads per block for System A

and System B as shown in Figure 19 and Figure 20 respectively. The general performance in

both cases is similar but shifted to the right for System B, e.g. address coalescing appears

markedly improved at 32 threads per row for System A and 64 for System B – this differential is

likely an artifact of memory device I/O.

 CUDA defines the unit of execution to be a warp which is a collection of 32 threads

working simultaneously - coalescing memory addresses within this grouping [37, 62]. The

memory device I/O employed by System B can execute twice for a single clock cycle [59-61]

e.g. 32-bits per every 2-cycles means 16-bits for a single-clock cycle - each floating-point

operation requires at least 32-bits as per the data-type; so the 32-bits metric can be extended as

32-threads. System A employees a memory device I/O with single clock cycle execution,

effectively creating a 16-to-32 comparison, thus System B will coalesce at double that of System

A, i.e. 64 threads versus 32 threads. Related to the concept of memory address coalescing is

shared memory banks.

 Shared memory is a software managed cache-like structure, heavily banked to align with

the Single Instruction Multiple Data (SIMD) lane width of the processing core – as with

address coalescing, proximity of these banks to thread accesses is important [25, 37]. These

40

banks, sometimes called segments, execute optimally with address interleaving such that given

float pointer fp in bank B and % being defined as the modulus operator, 1fp points to the

address at and 16%1B and 32%1B for System A and System B respectively - each bank

holding a 4-byte access per cycle [37, 77]. Critical to performance using shared memory is the

avoidance of bank conflicts which can present any time data access is not sequential. A bank

conflict occurs when more than one memory access is made to the same bank in the same clock

cycle – successive 32-bit words are shared among 16 banks for System A and 32 banks for

System B [54, 61, 62, 69, 74, 77]. CUDA handles a bank conflict by serializing each of the

contending threads, for example: given N memory accesses and N unique shared memory banks

bandwidth is increased by a factor of N with no conflicts but is decreased by
K

1
 for each

K thread that requires serialization [37, 62, 77]. Figure 21 illustrates a bank conflict on a generic

CUDA GPU device.

Figure 21. Block diagram of memory bank conflict for generic CUDA device

41

 Regardless of the individual factors discussed, both CPU/GPU computing systems

analyzed expose performance boosts for SpMV – as shown in Figure 22.

Figure 22. System A and System B Speedup factors for execution of SpMV operation

 This chapter has illustrated that execution of SpMV in the CPU/GPU computing system,

the highest cost of the PCG iterative solver, displays impressive improvement over the CPU-only

version. The factors of software, hardware, and algorithm have demonstrated inter-dependency

in regards to the resulting performance of SpMV – how these factors affect the full candidate

solution for composite process flow modeling analysis is discussed in the next chapter.

42

CHAPTER 4

Full Candidate Application – Single CPU/GPU Computing System

 This chapter focuses on the full solution to the candidate composite process flow

modeling application within the context of a single CPU/GPU computing system for both

System A and System B. The full solution of the computationally intensive candidate

application is mapped to the CPU/GPU computing system and validated against an analytical

solution for all computing systems involved. The validated application is then executed using

System A and System B and the resulting performance is analyzed to determine how the

hardware and software factors work together to impact the resulting application computational

performance. During the mapping, key computationally intensive kernels are presented and

associated GPU developments explored.

 This chapter will ascertain how the hardware architectures of System A and System B

work together with the software factors to denote the application performance – key in this

discussion is the calculation of a computational complexity analysis. The computational

complexity analysis is actualized as a performance modeling equation that can be used to project

how different problem, software, and hardware parameters will affect performance.

Understanding these variations in factors/parameters is essential as new computing architectures

arrive to get optimal performance for HPC applications in many legacy and new computational

modeling codes / code developments.

4.1 Mapping Full Candidate Application to GPU

 The mapping of the full candidate application to the single CPU/GPU environment is a

natural extension from the previous chapter, detailing the mapping of the SpMV operation, in the

single CPU/GPU environment for both System A and System B. Both of these mappings are

43

done within the single shared address space CPU/GPU computing architectures and the SpMV is

the largest component of the PCG iterative solver [48-50] and hence representative of the full

solution itself. The presented candidate application employees the Concurrent Number

Cruncher (CNC) GPU solvers package by Luc Buatois, et al [50] which uses a custom SpMV

operation with CSR and BCSR2x2 data compression formats as well as Nvidia’s CUBLAS

library [78] for SAXPY and DOT-PRODUCT calls [50] (see Figure 23). Nvidia has recently

released a library for sparse matrix operations known as CUSPARSE with restrictions to CUDA

Compute Architecture of at least Version 1.1 [79]. System A falls into the CUDA Compute

Architecture of 1.0, therefore in an effort to apply consistency across CPU/GPU computing

systems the CUSPARSE library was not used in this study.

Figure 23. The CNC operational flow from input to output.

 The key computationally intensive Kernels presented in the CNC software as well as the

process of mapping the presented candidate application to function in a CPU/GPU computing

system are discussed next.

 4.1.1 Key Computationally Intensive Kernels. The most computationally intensive

kernels of the full candidate solution are those that relate to the iterative PCG solver, as it is

44

called LK times with K the number of iterations for mass-convergence and L the number

iterations for all nodes to be determined as filled (see Algorithm 2.1), as well as the number of

CG iterations for each solution call to the linear equation solver. The SpMV is the largest cost of

the PCG iterative solver and is ported to the local GPU device, as with the SAXPY and DOT-

PRODUCT kernels, and called within the nested loop described in Algorithm 2.1, but the

consideration of GPU code developments, software, and hardware factors is critical for optimal

performance results.

 4.1.2 GPU Code Developments. The PCG iterative solver defined in the candidate

application is mapped and ported to GPU via the CNC code as shown in Figure 24. The CNC

code is third-party software created using the C/C++ programming language that embeds the

CUDA Kernels within its design – the library header for the CNC package is simply placed as

part of the preprocessor “include” calls and compiled with the proper CUDA library links using

the NVCC compiler and an executable is created with separate GPU-bound code to leverage the

local GPU device [37, 38, 50]. The CNC package solves the system of linear equations of the

matrix form bxA receiving input matrix data from the calling C/C++ class file(s), executing

the GPU device code, and retrieving the resulting solution vector for the CPU-bound code

portion of the application [50]. The CNC package defines the PCG iterative solver, as with all

PCG solvers [46], using multiple calls to the SpMV, SAXPY, and DOT-PRODUCT operations –

the SAXPY and DOT-PRODUCT portions of the solver are examined next.

 4.1.2.1 CUDA Kernels of PCG solver The SAXPY and DOT-PRODUCT operations are

defined in the Nvidia CUBLAS library [78] which is the CUDA version of the Basic Linear

Algebra Subprograms (BLAS). BLAS is categorized by levels 1, 2, and 3 with level-1 consisting

of vector operations, level-2 consisting of matrix-vector operations, and level-3 consisting of

45

matrix-matrix operations [78, 80, 81]. CUBLAS follows the BLAS paradigm, defining the

SAXPY and DOT-PRODUCT as level-1 category operations [78].

Figure 24. Presented candidate application diagramming the placement of CNC Package.

 There are several steps that must be followed for any CPU/GPU computing system to use

a CUDA library package which can be generalized as initialization, allocation, execution and

finally retrieval of results [37, 62]. Initialization is the first step and is potentially heavy due in

no small part to the sheer size of the library itself. The CUBLAS library is quite large,

containing the Shader Assembly (SASS) and PTX code for every Kernel defined in the library

with PTX as much as 75% of the library size [37, 38, 62]. The SASS is the binary version of the

library and PTX the intermediate to allow for differing GPU device generations and is loaded

using a Just In Time (JIT) compiler construct – the driver has to locate and read the SASS

binary for the particular GPU device and load it to the machine’s board. Once the library is

loaded, the CPU issues a command for the GPU device to allocate memory for the number of

elements and the data-type that is to be used by the Kernel. The data is then passed to the GPU

from the CPU via pointers as direct contact between CPU and GPU is not possible [24, 37, 62].

The kernel is executed from input data and passed back to the CPU host for use by the system –

46

the GPU memory is not explicitly removed until another call to the allocation is made, the GPU

is a state-machine by design [8, 31, 34, 35].

 The CUBLAS scalar DOT-PRODUCT function executes a single memory access for

every arithmetic operation yielding an upper bound on performance that becomes the ratio of

CPU to GPU memory sizes, typically ranging around 5 to 10 [37, 78, 82]. The cost of access to

the data residing in CPU space erodes any performance boost. This is why the full

implementation of the candidate application keeps data located in GPU space [50] – instead of

multiple global accesses during the iterative phases of the solver, single calls are made at the

beginning and end of the solver [50]. The computational cost of the scalar DOT-PRODUCT is

negligible relative to the SpMV but its role in the PCG algorithm is invaluable as these

computations are used to define the solution convergence of the linear equation system [46, 65].

 The scalar DOT-PRODUCT is primary in the computation of residuals [46], applied in

Algorithm 2.2 at lines 11 and 12. The closer the residuals are to zero, the more likely a solution

has been located – however this assumption could become tenuous if the device employed is not

fully compliant with IEEE-754 floating-point representation standards [83]. The potential for

non-compliant floating-point operations using GPU devices is a valid concern [84] as GPU

manufactures have never openly held to this compliance and this was never a concern [83, 85,

86]. The typical high-res games redraw frames at up to 60-times a second [2, 24] so any visual

artifacts produced by a slightly-off floating-point value would not be noticed even by the most

perceptive human player. Once the GPU moved into the exacting analytics required of the

engineering/scientific community, the formerly lax adherence to numerical accuracy standards

needed to be tightened. The algebraic representation of the scalar DOT-PRODUCT operation is

shown in equation (4.1) with A and B vectors each of length n .

47

n

i

T

nnii BABABABABABA
1

2211 (4.1)

 Nvidia has long maintained that its GPU devices held fast to the IEEE standards but

admitted that the more accurate double-precision representation was not supported [86], at least

until the advent of the Tesla Fermi architectural designs [60, 61]. These architectures are not

only double-precision compliant they contain Error Correcting Code (ECC) adaptations to avoid

propagation of small numerical inaccuracies [59].

 Perhaps counter-intuitively, the real instantiation of floating-point inaccuracies involving

the scalar DOT-PRODUCT is the addition portions of the operation rather than the

multiplication [13, 45, 87]. The reason is the potential for alignment error when normalizing the

result to be 127-biased [13, 87]. Figure 25 shows an example conversion from a base-10

floating-point number to the corresponding base-2 representation with applied 127-bias.

Figure 25. IEEE conversion from base-10 to base-2 with normalization.

 Unfortunately, even full compliance of IEEE standards for floating-point representations

is no guarantee of full accuracy in every case [45, 87].

 Paraphrasing work by Anthony M. Castaldo [87], given two numerals with exponents

21,ee such that 21 ee the number of bits to exceed the scale of the returned value is 21 ee this

48

is the number of zeros that the smaller numeral will be padded to on the left to properly align.

Therefore, if the value of smaller operant is just one greater than the bits of the mantissa it adds

nothing to the resulting addition. Supposing the 32-bit format, if the aforementioned exponents

differ by 24 or more, the answer will be the larger of the two – the other operant is completely

ignored in the result. The operation still ascribes to the IEEE-754 standard but is completely

erroneous with regards to small numerical variations in the long term; particularly sensitive to

these perturbations are large clustered machines where the error can magnify as it progresses

through the system, known as a soft error [84] – hence contributing to the importance of ECC

adaptations.

 The CUBLAS SAXPY operation executes a scalar multiplication and addition with

vectors as shown in equation (4.2) with y and x vectors and the scalar. The CUBLAS version

of this level-1 BLAS operation is generalized to allow for incremental steps in both x and y

directions, i.e. an array stride [78, 88]. These extra levels of indexing could cause a slight drop

in performance but is a trade-off to the generality provided by the library. The SpMV operation

is the same used in the previous chapter – complete with the same determination of optimal

thread occupancy.

 yxy (4.2)

 The full candidate application is validated against an analytically derived solution for a

simple 2D unstructured mesh model consisting of radial center injection in a thin circular plate

mold geometry using the single CPU/GPU computing system next.

4.2 Validation of Full Candidate Application on Single CPU/GPU

 The correctness of the full candidate application for the single CPU/GPU computing

systems is ensured via the examination of flow-front progression and injection port pressures of

49

numerical solutions for CPU and GPU against the correspondingly analytical results. The model

used for validation is simple 2D circular plate mold geometry with a center, radial injection and

is compared with the resulting analytical equation.

 The simple circular plate model has a radius of 10 cm and an inner radius of 0.15 cm for

the radial injection port as shown in Figure 26. The inner radius, 0R , is subjected to a constant

radial flow rate Q . The thickness of the cavity is H , the injection inlet pressure is P, and is a

function of transient resin infusion time, resin viscosity is , the permeability of the fiber

preform is K , and the porosity of fiber compaction is . The flow front radial location at any

time t is given by [89]:

2

1

2

0)(

 R

H

Qt
tR

 (4.3)

The corresponding expression for injection pressure, which varies with time, is given by [89]:

0

0 ln
2 R

tR

HK

Q
P

 (4.4)

Figure 26. 2D circular plate validation model (not to scale).

 The following physical parameters are used in this analysis:

50

sec
4.2

3cm
Q , permeability 2080.44 cmeK , a viscosity PaS02.0 , a porosity of 805.0 ,

a time step 5.0t , and an element thickness cmH 742.0 . The circular plate model involved

a computational mesh of 1,344 nodes and 2,560 3-noded triangular elements. Figure 27 and

Figure 29 display the flow-front progression showing the computed and analytical variation of

the radial flow front location with respect to time for System A and System B respectively and

clearly define accuracy with the analytical solution. Figure 28 and Figure 30 display the

corresponding transient inlet injection pressure for System A and System B respectively and

clearly define accuracy of the computational solution.

 The flow-front and inlet injection pressure values are accurate for this circular plate radial

injection geometry. Other complex flow modeling geometries also showed equivalent

comparison of the flow front progression and the predicted fill time between CPU/GPU based

computational solutions for the same geometry and problem parameters employed.

Computational performance modeling performance of the full candidate solution for the single

CPU/GPU computing systems is presented next. The initial performance evaluations were

conducted using the single CPU/GPU computing systems.

51

Figure 27. Validation of single CPU/GPU for flow-front progression (System A).

Figure 28. Validation of single CPU/GPU for inlet injection pressure (System A).

52

Figure 29. Validation of single CPU/GPU for flow-front progression (System B).

Figure 30. Validation of single CPU/GPU for inlet injection pressure (System B).

4.3 Initial Full Candidate Application Performance on Single CPU/GPU

 The results of full candidate application on the single CPU/GPU for both computing

system machines, System A and System B, with unstructured meshes MA, MB and 10FT as

53

input model data and the CSR data compression format are presented in this section with the goal

of exposing the performance effects of software, hardware, and algorithmic factors using a

consistent model in differing computing environments. Clearly, the most salient metric of

performance measures for scientific and engineering applications where analysis time is

concerned is the direct measure of computational solution time. However, due to the inherent

processor differences in terms of clock speeds, benchmarking different hardware is difficult to

quantify. Total computational time employed also depends on the cost of arithmetic operations

in different architectures that can vary, and detailed information in commodity processors used in

this work are proprietary [66, 72, 88]. A comparison of the Floating-Point Operations rate

(FLOPs) may also be misleading in diversified architectures with different clock frequencies –

therefore FLOPs are normalized by the clock rate as defined in section 3.2 of chapter 3.

Normalizing FLOPs helps to avoid idiosyncrasies of individual hardware, to provide arithmetic

power comparisons. Execution time depends on processor speeds and normalized FLOPs allow

for a more definitive comparison over wall-clock time or FLOPs.

 The single CPU/GPU computing system defined as System A is examined first followed

by System B.

 4.3.1 System A. The single CPU/GPU computing system execution of the full candidate

application was compared against the CPU-only version. Table 9 shows that the GPU

outperforms the CPU-only system for process flow modeling analysis employing input mesh

MA, MB, and 10FT when examined with regards to total solution wall-clock time. Both flow

modeling analysis obtained same flow progression contours and predicted infusion time for the

same physical problem parameters employed in all cases. The superior arithmetic power of the

GPU for this single CPU/GPU computing system is clearly visible in Table 10, presenting an

54

advantage of more than 9-times the number of KFLOPs, which have been normalized as per

section 3.2 of chapter 3, in the GPU compared to the CPU.

Table 9

Full solution performance with single CPU/GPU and CSR compression (System A)

Unstructured Mesh CPU Time (secs.) GPU Time (secs.) Speedup Factor

MA 6,176.46 418.44 14.76

MB 81,929.7 4,219.61 19.42

10FT 6770.31 285.17 23.74

Table 10

 Full solution KFLOPs with single CPU/GPU and CSR compression (System A)

Unstructured Mesh KFLOPs (CPU) KFLOPs (GPU)

MA 142.26 1,169.56

MB 133.39 1,292.44

10FT 135.92 1,186.73

 4.3.2 System B. The single CPU/GPU computing system execution of the full candidate

application was compared against the CPU-only version. Table 11 shows that the GPU

outperforms the CPU-only system for input mesh MA, MB, and 10FT when examined with

regards to total solution wall-clock time. The superior arithmetic power of the GPU for this

single CPU/GPU computing system is clearly visible in Table 12, presenting an advantage of

almost 3-times the number of KFLOPs, normalized as per section 3.2 of chapter 3, for the GPU

compared to the CPU.

Table 11

 Full solution performance with single CPU/GPU and CSR compression (System B)

Unstructured Mesh CPU Time (secs.) GPU Time (secs.) Speedup Factor

MA 424.93 168.57 2.52

MB 6,414.74 1,197.35 5.36

55

Table 11

Cont.

10FT 627.83 105.09 5.97

Table 12

 Full solution KFLOPs with single CPU/GPU and CSR compression (System B)

Unstructured Mesh KFLOPs (CPU) KFLOPs (GPU)

MA 2,299.38 3,213.32

MB 1,891.28 5,046.01

10FT 2,142.75 4,743.81

 4.3.3 Initial performance analysis. The execution of the unstructured mesh input files,

MA, MB, and 10FT for both computing systems exposes some common performance behaviors

– most notably the correlation to problem size and performance. System A and System B

produce better performance using total solution time and normalized FLOPs as metrics when the

problem size increased. This performance boost for increasing problem size is reflected in the

previous chapter’s analysis of the SpMV for both CPU/GPU computing systems as well as

though out the published literature regarding GPU performance [2, 25, 67, 90]. However, there

are some differences with the magnitude of the performance boost found. System B has a lower

speedup factor and KFLOPs change than does System A. Likely this is due not to any defect of

System B but rather the more advanced CPU used – the dual-core CPU of System A is so

lacking in relation to the GPU that the speedup factor must be greater.

4.4 Software Data-Structures/Layouts Factors

 This previous section was an initial performance analysis for three unstructured mesh

model inputs via the single CPU/GPU computing systems defined as System A and System B

and produced some good performance boosts, especially for System A. However, the initial

56

software variables need to be examined to identify potential factors that can hinder performance

of the presented candidate application. The first software factor to be examined is data

compression format.

 The initial performance was executed using CSR, a data compression format with a noted

proclivity for poor computational intensive performance [53, 54] – this has been shown to

improve with BCSR2x2 due to increased locality [52-54]. The presented candidate application

generates systems of equations based on 3-noded triangular elements each with 1-degree of

freedom resulting in dense sets of sub-blocks in the sparse matrix [44, 45] – a potential boon for

locality using BCSR2x2.

 The presented candidate application generates dense sub-blocks of non-zero elements via

the methodology of the Finite Element Method (FEM) - initial collections of 33x local

element matrices result from 1-degree of freedom applied to the input 3-noded triangular

elements [44, 45]. These local element matrices are coalesced into a global element matrix that

maintains symmetry from these 33x sub-matrices [44, 45] – the 22 sub-blocks utilized by the

BCSR2x2 data compression will be subsumed by the dense sub-matrices of the global element

matrix. The application of data compression formats to improve locality is closely associated to

memory address coalescing and thread occupancy as all of these seek to maximize throughput by

grouping as many threads as possible, however the CNC GPU solver requires multiple Kernels

which forces a schism to these groupings.

 CUDA places implicit barriers between dependent Kernel invocations [37], e.g. Kernels

that rely on one or more currently executing Kernels must wait for system synchronization to

occur before continuing [62, 65]. This new software factor subsists with the PCG iterative solver

because it is composed of not just the SpMV Kernel but a number of CUBLAS calls executed in

57

sequence. System B, as part of the CUDA Compute Architecture 2.0, can simultaneously apply

Kernels using the CUDA stream [60, 61] but this is not a luxury offered by System A [62, 76].

Therefore, to maintain as much consistency of variables between systems, these stream

constructs were not employed in the present work. The role of the data compression format is

discussed next.

 Figure 31 and Figure 32 show the execution time for System A and System B

respectively revealing a distinct difference in the performance benefit of changing from CSR to

BCSR2x2 for each of these CPU/GPU computing systems. Figure 31 shows the performance

boost of increased locality for the presented candidate application expressed as the BCSR2x2

data format for input meshes MA and MB with negligible effect for the less regular 10FT mesh

configuration whereas Figure 32 describes a deleterious result for meshes MA and MB – again

10FT is negligibly affected. This difference in performance is surprising from a pure locality

approach as the dense sub-blocks created by the 3-noded triangular elements are the same for

both System A and System B – the arithmetic power leveraged by the different CPU/GPU

computing systems via the normalized FLOPs is shown in Figure 33 and Figure 34 for System A

and System B respectively.

 System A shows a much higher rate of floating-point operations when going from CSR

to BCSR2x2 than System B for the corresponding change (see Figure 33 and Figure 34) –

excepting the 10FT model mesh configuration which illustrates negligible difference in both

computing environments. System B manifests a negligible increase in normalized FLOPs for the

BCSR2x2 format and a decrease in performance – given the relative regularity of the input mesh

configuration; this implies an initially poorer locality for System A. The lower impact of the

locality change for System B is likely due to the implementation of an actual cache as per the

58

Nvidia Fermi architecture [60, 61]. The negligible change for the 10FT input mesh supports a

correlation not just to the size of the problem domain but the expressed regularity of the matrix.

The hardware factors on performance for both System A and System B are discussed next.

Figure 31. Full candidate solution performance (System A).

Figure 32. Full candidate solution performance (System B).

59

Figure 33. Full candidate solution KFLOPs performance (System A).

Figure 34. Full candidate solution KFLOPs performance (System B).

4.5 Hardware Architectural Factors

 The observed performance of the CPU/GPU computing systems using the unstructured

mesh configuration defined by MA, MB, and 10FT is affected not just by the software factors

60

discussed in the previous section but hardware factors as well. The presented candidate

application resulted in a performance boost for both System A and System B when using the

CSR format albeit to a smaller degree for System B – excepting the negligible results observed

for the less regular input mesh 10FT in both computing environments. However, when the

BCSR2x2 format was employed the performance of System B dropped while System A

increased – fairly regular geometries, consistent models and software factors were used leaving

the underlying hardware architectural factors as culpable.

 System B has a cache defined at the hardware level [60, 61] whereas System A does not

[58, 76] – this has great impact on solutions involving sparse matrices such as those applied via

the presented candidate application [54]. A hardware-level cache provides the ability to stash a

process during execution and quickly retrieve it when needed rather than calling global memory

read/writes at every instant. The more advanced architecture of System B does not negate the

importance of judicious application of software factors, but it does alleviate it somewhat. The

lowered importance of locality on System B, expressed using BCSR2x2, adds all the

computational overhead of extra loops to iterate over defined sub-blocks but none of the

corresponding utilization of greater arithmetic units and hence none of the predicted performance

seen in System A.

 The software and hardware factors encountered during the execution of computationally

intensive applications using CPU/GPU computing systems are typically difficult to quantify and

as such defining concrete metrics for performance on these system is difficult. The formulation

of an expected performance equation is discussed in the next section.

61

4.6 Computational Complexity Analysis

 Computational complexity has historically been quantified using asymptotic analysis to

understand how the design scales [91], but this methodology relies on axioms that do not exist

for GPU computing such as constant operations yielding negligible costs to overall performance

[92]. Adjusting the number of threads per block can allow CUDA to coalesce memory addresses

resulting in as much as 20-times reduction in execution time [72] – small changes can have big

impacts on the algorithm [66]. Therefore quantifying algorithmic behavior is relegated to the

minutia of performance modeling as standard parallel modeling techniques fail to take into

account the importance of limited and high access costs to the exposed memory hierarchy of the

modern GPU [16, 72].

 Currently there is no standard for performance analysis for use with GPGPU computing,

however options have been published [16, 66, 67, 72, 93] and this study follows many of the

concepts put forth in these works. The code that is ported to the GPU(s) for this research is

broken up into its major components, analyzed, and relevant parts re-assembled to form a

general performance model. The single CPU/GPU computing system is studied first and expands

to the multiple CPU/GPU computing system in the next chapter.

 The following sub-section will derive a mathematical model for a single call to the PCG

iterative solver rather than the whole solution and is detailed in Appendix A. This approach

yields a base equation from which the different behaviors for different parameters can be

determined. The third party CNC software was used for the results being analyzed which defines

1616 thread blocks [50] – this is the assumed constant for all derived equations.

 4.6.1 Single call to PCG solver. Computing the average number of non-zero elements

for a given sparse matrix that is assumed to be square with 1616 thread blocks, NZR with memG ,

62

M are the number of bytes in global memory and the total number of rows respectively – using

bytes as the metric defines the numerical values of 4 given that there are 4 bytes for every

floating-point data type expressed in equation (4.5).

M

M
GMAXR memNZ

44

14
,1 (4.5)

Computing the number of blocks, BN , with tN , wN , and smpN the number of threads per warp,

the number of warps per block, and the total number of symmetric multiprocessors for M rows

and average non-zero entries per row as NZR columns can be defined by equation (4.6).

smpwt

NZ
B

NNN

RM
N

 (4.6)

Computing the cycle cost based on the defined cost of sparse matrix-vector computational costs

for the serial CPU at NN rows 2 [46, 91] and using a global memory cycle count of 500

based on the average for the actual data range of 400 – 600 is TC , with B the number of threads

per block expressed in equation (4.7).

B

M
CT

500
2 (4.7)

Computing the total cost for execution of preconditioned conjugate-gradient solver on GPU,

pcgC with K , R and D the total number of iterations for convergence, memory clock frequency,

and number of cycles per pipeline can be defined by equation (4.8).

RD
CNNKC TsmpBpcg

1
 (4.8)

Equation (4.8) is not exact but does reflect many of the same performance modeling equations in

published works [66, 72].

63

 Figure 35 and Figure 36 depict a comparison of actual to estimated performance time for

System A and System B respectively using unstructured mesh configuration MA, MB, and

10FT expressed with the CSR data compression format. The results are not exact, as the thread

dispatch policy for both GPU devices is non-public information [72, 93] and is interleaved for

optimal throughput [2, 37, 55]. In addition, synchronization costs between dependent Kernels of

the PCG iterative solver are not published. The issue is further compounded with an assumed not

large but with an unknown dispatch policy. The approximate nature of the results provided by

the derived performance model demands the examination of normalized error which is computed

by
t

tt

A

EA
 with tA and tE defining the actual and estimated times respectively.

 Figure 37 and Figure 38 show the normalized error of the single PCG call for System A

and System B respectively and indicate values of less than 50% which is a manageable amount

of error for the given input data – the data results are shown in Table 14 for System A and Table

15 for System B. The next section extends from the single call to the PCG iterative solver and

mathematically models the full candidate solution.

Table 13

 GPU device limits for both systems

System A: Compute Architecture 1.0 System B: Compute Architecture 2.0

Core Clock Rate = 1.35 GHz Core Clock Rate = 1.15 GHz

Total Warps = 24 Total Warps = 48

Total SMP = 16 Total SMP = 14

Shared Memory per Block = 1024 Shared Memory per Block = 1024

Registers per Block = 512 Registers per Block = 256

Shared Memory Banks = 16 Shared Memory Banks = 32

64

Figure 35. Performance modeling of single call to PCG solver (System A).

Figure 36. Performance modeling of single call to PCG solver (System B).

65

Figure 37. Normalized error for single call PCG modeled performance (System A).

Figure 38. Normalized error for single call PCG modeled performance (System B).

Table 14

 Performance modeling of single calls PCG (System A)

Unstructured Mesh Actual Time (ms) Estimated Time (ms)

MA 0.888224 0.920487534

66

Table 14

Cont.

MB 2.45664 3.545509018

10FT 0.938336 1.008680919

Table 15

 Performance modeling of single calls PCG (System B)

Unstructured Mesh Actual Time (ms) Estimated Time (ms)

MA 0.470848 0.442022833

MB 1.160256 1.702796988

10FT 0.374528

0.484375628

 4.6.2 Full Solution Cost – Single GPU. The final modeling performance equation for a

single CPU/GPU computing system is derived from the estimated single call to the PCG

computed from equation (4.8). The size and granularity of the local GPU device registers are

significant to the number of active threads for utilization of computational resources and is

defined by equation (4.9) with allocRg the register allocation unit size and granularW the warp

allocation granularity – both of which are found in hardware specifications [37, 62].

granular

alloc
rg

W

Rg
A (4.9)

Equation (4.9) is a major component of a defined conditional function that models the

serialization of threads within the warp construct shown as equation (4.9.1) with ATBN the

number of active thread blocks per SMP and

t

NZ
warp

N

R
MN .

67

1

4%
:0

4%

ELSE

A
N

N

N

N
IF

W

rg

ATB

warp

ATB

warp

pen (4.9.1)

Equation (4.9.1) is passed to the Gaussian distribution adapted to model the performance

behavior of the single CPU/GPU computing system defined as equation (4.9.2).

2

1
1

 e
W

R
pen

growth

 (4.9.2)

Computing the total cost for execution of solution [93] with multiple calls to the GPU-enhanced

PCG, gpuT with K the total number of iterations for full solution convergence – equation (4.9.3)

defines the final performance modeling equation for a single CPU/GPU computing system.

 growthpcggpu RCKT (4.9.3)

 Figure 39 and Figure 40 depict the results of the actual to estimated execution times for

the solutions of unstructured mesh configurations MA, MB, and 10FT for single CPU/GPU

computing systems executing in System A and System B environments respectively. The

formed finite element matrices for the input data meshes being solved via the presented

candidate application are expressed using the CSR data compression formats in all cases.

 The observed results of performance modeling for both CPU/GPU computing systems

show a close equivalence of actual to estimated solution times. Both System A and System B

showed dramatic decreased difference of estimated and actual time as the size of the input data

increased – an inverse relationship that corroborate the premise that the underutilized and non-

coalesced memory accesses can be expensive [62, 66, 72, 93]. The more intense the floating-

point operations, the more fully utilized the CPU/GPU computing system resources are and the

68

better chance of address coalescing. The increased number of input data elements being solved

mitigates the impact of extraneous variables such as threaded time-sharing policies and equation

(4.9.3) becomes the dominating predictor for the single CPU/GPU computing system for the full

solution of the candidate application. Figure 41 and Figure 42 shows dramatic decrease in

normalized error between the actual and complexity analysis predicted results for both System A

and System B respectively support this precept - Table 16 and Table 17 are the actual results.

Figure 39. Performance modeling single CPU/GPU full solution (System A).

69

Figure 40. Performance modeling single CPU/GPU full solution (System B).

Figure 41. Error single CPU/GPU full solution modeled performance (System A).

70

Figure 42. Error single CPU/GPU full solution modeled performance (System B).

Table 16

 Performance modeling single CPU/GPU full solution (System A)

Unstructured Mesh Actual Time (secs) Estimated Time (secs)

MA 204.69 157.30

MB 1,804.05 1,760.76

10FT 140.55 135.78

Table 17

 Performance modeling single CPU/GPU full solution (System B)

Unstructured Mesh Actual Time (secs) Estimated Time (secs)

MA 146.64 75.25

MB 974.90 843.17

10FT 89.23 75.29

71

 4.6.3 Contribution of Hardware Factors. This section establishes a relationship to

hardware factors and the resulting application performance via the derived equation (4.9.3),

adjusting hardware variables and then projecting against the actual performance of the

application. The resulting differentials are analyzed and the impact of the adjusted parameter(s)

on performance of the CPU/GPU computing system is theorized.

 4.6.3.1 Single PCG Call. The first performance modeling that is adjusted for hardware

factor(s) changes is the single call to the PCG solver, since this is used to build the final full-

solution model (see equations (4.8) and (4.9.3)). The number of SMP chips was adjusted to be

greater than and less than the current number defined in both single CPU/GPU computing

systems for a single call to the PCG iterative solver to determine the theoretical effect the SMP

counts have on the resulting performance.

 The behavior expressed by both System A and System B computing systems was similar,

excepting of course the faster nature of System B [58-61, 76]. Figure 43 shows that reducing the

number of SMPs to 4 for System A resulted in an increase in execution time, exacerbated by the

larger input of unstructured mesh MB. This same reduction in SMPs on System B shown by

Figure 44 resulted in a similar increased execution time and, as with System A; the larger model

configuration MB had a greater impact. The observed performance change for both System A

and System B as a result of this adjusted hardware factor is as expected given the larger model

mesh MB presents more elements for a relatively low number of SMPs – SMPs are the physical

equivalent of the logical block [37, 62] so lower counts manifest less computational power that

will be further debilitated applied in larger problem space provided by input mesh MB. The

converse is observed by increasing the number of SMPs to 64 for both System A and System B,

72

as before this is no source of consternation – more computational power will naturally be

leveraged by a larger environment in which to be expressed.

 The hardware factor of SMPs at the level of a single call to the PCG iterative solver

extends naturally to the performance of the full candidate solution. The full candidate solution

subsumes the single PCG call and works in tandem - result expressed as a magnification, a

constant, or abrogation to resulting performance. The full candidate solution hardware factors

for the single CPU/GPU computing system are discussed in the next sub-section.

Figure 43. Performance model for single PCG solver on System A (SMP adjusted).

73

Figure 44. Performance model for single PCG solver on System B (SMP adjusted).

 4.6.3.2 Full solution – single CPU/GPU. Adjusting the hardware factor(s) for the full

candidate solution and the resulting impact(s) on the performance is modeled in this sub-section.

As with the previous sub-section the number of SMPs is adjusted and the resulting theoretical

performance is examined to deduct the relative impact of this factor on behavior for both single

CPU/GPU computing environments for System A and System B. Equation (4.9.2) defines the

most direct access of the number of SMPs to the full candidate solution as a rate of

growth/decay.

 The full solution performance model given by (4.9.3) applies the Gaussian distribution to

the overall performance of the system with the determination of serialized threads within a warp

defined as the allocated register unit size for the given GPU device - the ratio of SMPs directly

impact the value of this allocated unit size as fewer SMPs coerces lower unit sizes and less

computational ability and vice versa. SMPs are given this position in the performance

complexity model as each will provide a factor to the initial single PCG solver call, modeled by

74

equation (4.8). Examining the performance results in Figure 45 and Figure 46 reveal a

comparable behavior to that observed for the single PCG call discussed previously but to a much

less magnitude.

 The single CPU/GPU computing system environments defined by System A and System

B express a performance boost for an increased number of SMPs and a higher execution time for

decreased numbers of SMPs. However, the full candidate solution is less affected by this

hardware factor change as was with the single PCG call with input mesh configuration MA

yielding negligible results for System A and System B; the input mesh 10FT mesh configuration

now reflects the performance comparable to mesh configuration MB.

Figure 45. Performance model for full candidate solution on System A (SMP adjusted).

75

Figure 46. Performance model for full candidate solution on System B (SMP adjusted).

 4.6.4 Contribution of Software Factors. This section establishes a relationship to

software factors and the resulting application performance via the derived equation (4.9.3),

adjusting hardware variables and then projecting against the actual performance of the

application. The resulting differentials are analyzed and the impact of the adjusted parameter(s)

on performance of the CPU/GPU computing system is theorized.

 4.6.4.1 Single PCG Call. The number of threads per block is an obvious software factor

to adjust as this is can be related to memory address coalescing and can be viewed as another,

less direct application of thread occupancy. The theoretical performance results of both System

A and System B corroborates documented performance regarding number of threads per block

[48, 49, 65, 66]. Lowering the number of threads per block to 128 from the optimal 256

increases theoretical execution time for the single PCG solver and increasing to 768 boosts

performance, modeling the effect of hardware coalescing of memory addresses [62, 77]. This

76

software factor is manifest for both System A and System B computing environments as shown

in Figure 47 and Figure 48 for System A and System B respectively.

 The influence of the given software factors is clearly evident at the single PCG solver call

level, the next sub-section discusses the full candidate solution.

 4.6.4.2 Full solution – single CPU/GPU. Adjusting software factor(s) for the full

candidate solution and the resulting impact(s) on performance is modeled in this sub-section –

the number of threads per block is altered. The effect of this software factor is similar to the

observed results for the single PCG solver call - smaller numbers of threads express lower

performance whereas greater numbers yield a performance boost.

 The observed hardware and software factors work together with the defined

computational algorithm to effect performance – this interplay of factors is discussed in the next

section.

Figure 47. Performance model for single PCG solver on System A (Threads adjusted).

77

Figure 48. Performance model for single PCG solver on System B (Threads adjusted).

Figure 49. Performance model for full candidate solution on System A (SMP adjusted).

78

Figure 50. Performance model for full candidate solution on System B (SMP adjusted).

4.7 Performance and Relation to Software and Hardware Factors

 The resulting performance of the single CPU/GPU computing system is directly tied to

the interplay of software and hardware factors of the environments in which they executed and

are related in this sub-section. Hardware factors such as the addition of SMPs and increasing

memory provide the context in which software factors can express further optimization and

software factors such as increasing thread occupancy and data compression formats that can

increase locality allow device architectures to apply low-level features like hardware multi-

threading for maximal memory throughput.

 Equation (4.9.3) accommodates a mathematical model to map theoretical performance

changes as hardware and software variables are altered, allowing the developer to better

understand the effects different software and hardware constructs for HPC computational

modeling applications using CPU/GPU computing systems. The development of predictive

79

models for computing follows three general approaches – analytical, profile, and simulation

based categories [92].

 Simulation-based performance prediction uses an application that has modeled the

objective architecture in exacting detail and generates results from dynamic and random inputs –

accurate but computationally costly [92]. Profile-based performance prediction uses two stages

to develop the model; instrumentation is utilized to generate statistical information on a given

program run and analysis is used on these statistics to create an estimation of performance for a

given architecture [92]. The analysis-based performance prediction model derives a

mathematical equation that can estimate program behavior for specific architectures and

algorithms – this is the model utilized in this chapter and follows precepts established by the

works of [66, 72, 92, 93].

 All of the following discussions on the effects of hardware and software factors and any

resulting interplay are derived from altering the variables of equation (4.9.3) and illustrate

theoretical performance as consequence. The software factor Threads-Per-Block are denoted as

TPB and the theoretical change exhorted by different parameters is given as ETime in the

following discussion.

 Table 20 categorizes the hardware factors with System A as the computing environment

contrasting the actual solution execution time against the effective time generated by the

alteration of input variables and is shown in milliseconds. Table 21 categorizes the software

factors with System A as the computing environment contrasting the actual solution execution

time against the effective time generated by the alteration of input variables and is shown in

milliseconds.

80

 Table 22 categorizes the hardware factors with System B as the computing environment

contrasting the actual solution execution time against the effective time generated by the

alteration of input variables and is shown in milliseconds. Table 23 categorizes the software

factors with System B as the computing environment contrasting the actual solution execution

time against the effective time generated by the alteration of input variables and is shown in

milliseconds.

 The degree of impact that the proper implementation of software and hardware factors

present is shown in Table 18 and Table 19 for System A and System B respectively. The

resulting factors of change are calculated as non-dimensional quantifier such that differences

from the original solution times are applied against the solution times that result when the

parameter/factors are expressed – the closer to zero the less effect the factor has on system

performance and the greater the magnitude beyond one the more negative the effect on

performance. The larger negative impact on performance is manifest as the lowering of the

number of SMP, the converse is also true and is expected given that the increasing of SMP

invariably increases the number of graphics cores from which to utilize in a given problem

domain.

 Interestingly the relative effect of increasing the number of TPB has the same

consequence regardless of the computing system utilized. The relative equivalence of software

factors regardless of computing environments is to be expected as the algorithm should operate

independently if optimized – of course, this is not conclusive as the more dispersed the non-zero

elements, the greater the irregularity of memory addressing, memory bank conflicts and the

resultant performance degradation. This is evidenced by Table 18 as the lowered number of

SMPs exposes the weakness of locality – higher relative latency due to lower hardware ability to

81

hide it. Regularity of the sparse structure can play a significant impact to the potential

performance benefit in CPU/GPU computing environments.

 However, this is not conclusive as the analytical performance model derived is, as all

prediction models of this category, based on conservative measures of a given architecture and

problem domain - extrapolating too far beyond the initial derivation can create computational

artifacts in the results.

Table 18

 Categorized software and hardware effects (System A)

Input
Hardware

Factor
Value

Factor of

Change

Software

Factor
Value

Factor of

Change

MA SMP 4 2.427 TPB 128 0.414

MB SMP 4 0.352 TPB 128 0.414

10FT SMP 4 2.272 TPB 128 0.414

MA SMP 64 0.750 TPB 512 0.000

MB SMP 64 0.750 TPB 512 0.000

10FT SMP 64 0.750 TPB 512 0.000

Table 19

 Categorized software and hardware effects (System B)

Input
Hardware

Factor
Value

Factor of

Change

Software

Factor
Value

Factor of

Change

MA SMP 4 2.50 TPB 128 0.414

MB SMP 4 2.50 TPB 128 0.414

10FT SMP 4 2.50 TPB 128 0.414

MA SMP 64 0.780 TPB 512 0.000

MB SMP 64 0.780 TPB 512 0.000

10FT SMP 64 0.780 TPB 512 0.000

82

Table 20

 Hardware factors and theoretical performance (System A)

Input Variable Value Time (ms.) ETime (ms.)

MA SMP 4 204,689.00 537,490.96

MB SMP 4 1,804,050.00 2,370,321.50

10FT SMP 4 140,546.00 444,203.64

MA SMP 64 204,689.00 39,324.91

MB SMP 64 1,804,050.00 440,189.68

10FT SMP 64 140,546.00 33,945.25

Table 21

 Software factors and theoretical performance (System A)

Input Variable Value Time (ms.) ETime (ms.)

MA TPB 128 204,689.00 222,455.30

MB TPB 128 1,804,050.00 2,490,088.86

10FT TPB 128 140,546.00 192,023.31

MA TPB 512 204,689.00 204,689.00

MB TPB 512 1,804,050.00 1,804,050.00

10FT TPB 512 140,546.00 140,546.00

Table 22

 Hardware factors and theoretical performance (System B)

Input Variable Value Time (ms.) ETime (ms.)

MA SMP 4 146,635.00 263,356.17

MB SMP 4 974,897.00 2,951,083.33

10FT SMP 4 89,228.10 263,514.70

MA SMP 64 146,635.00 16,459.76

MB SMP 64 974,897.00 184,442.71

10FT SMP 64 89,228.10 16,469.67

83

Table 23

 Software factors and theoretical performance (System B)

Input Variable Value Time (ms.) ETime (ms.)

MA TPB 128 146,635.00 106,411.96

MB TPB 128 974,897.00 1192417.74

10FT TPB 128 89,228.10 106,476.02

MA TPB 512 146,635.00 146,635.00

MB TPB 512 974,897.00 974,897.00

10FT TPB 512 89,228.10 89,228.10

 The performance results of the single CPU/GPU computing systems have been shown to

be consistent for presented input unstructured mesh model configurations with varying sizes for

both System A and System B computing systems. This performance can be dramatically

affected by sometimes slight aberrations of input – from this single CPU/GPU paradigm the

multiple CPU/GPU methodology is analyzed and discussed in the next chapter.

84

CHAPTER 5

Full Candidate Application – Multiple CPU/GPU Computing System

 This chapter focuses on the full solution to the candidate application within the context of

a multiple CPU/GPU computing system for both System A and System B. The full solution of

the computationally intensive candidate application is mapped to the CPU/GPU computing

system, distributed across independent nodes, and the resulting performance is analyzed to

determine how the hardware and software factors work together to impact the resulting

application performance. During the mapping, key computationally intensive kernels are

presented and associated GPU developments explored.

 This chapter will ascertain how the hardware architectures of System A and System B

work together with the software factors to denote the application performance – key in this

discussion is the calculation of a computational complexity analysis for multiple CPU/GPU

computing systems which is a natural extension from the single version presented in the previous

chapter. The computational complexity analysis is actualized as a performance modeling

equation that can be used to project how different problem, software, and hardware parameters

will affect performance. Specific computational behavior of multiple CPU/GPU computing

systems is the exposure of the important cost of intra-nodal and local host communication to the

performance of a computationally intensive application.

 Understanding these variations in factors/parameters is essential as new computing

architectures arrive to get optimal performance for HPC computational modeling legacy and new

code development applications.

85

5.1 Mapping Full Candidate Application to GPU

 The mapping of the full candidate application to the multiple CPU/GPU environment

extends from the previous chapter, detailing the mapping of the single CPU/GPU computing

system, and is developed and demonstrated for both System A and System B environments. The

previous chapter applied the CNC solver set in the context of a shared memory address

environment and this chapter grows the environment to include multiple systems each with its

own CPU/GPU architecture providing intra-node communication via MPI standard [28, 94]. The

ability of CPU/GPU computing systems to scale with multiple architectures is critical as HPC

applications have long embraced the increased performance provided by parallelizing large-scale

problems with domain decomposition techniques via MPI and much research in the GPGPU

computing community is targeting this objective [36, 69, 95-97]. The single CPU/GPU

computing system presented in the previous chapter passed the computationally intensive

solution to system of linear equations in matrix form bxA to a local GPU device where it can

be most beneficial - extending this paradigm to the multiple systems encompasses an extra level

of intra-nodal communication, e.g. MPI.

 MPI is a standard for message passing systems with different implementations such as

MVPICH [26, 28] and historically dominates HPC modeling as an effective methodology for

application performance boosting [26, 28]. Implementations of the MPI standard define a tool

for connecting multiple machines and/or discrete CPUs as a logical whole in order to solve

problems that are computationally prohibitive in a single machine context [26, 28]. This

methodology is similar to the Parallel Virtual Machine (PVM), the predecessor of MPI [26,

28], but the differences are important.

86

 PVM and MPI take different approaches as to the defining and utilization of distributed

topologies. MPI allows the user to easily create virtual topologies [98] that must be explicitly set

in PVM [99, 100]. The abstraction of topologies with MPI is one of the reasons for its

popularity; software developers do not have to focus on different architectural environments

when creating an application in MPI. The use of virtual topologies has another benefit – many

MPI implementations optimize the definition of the system based on the physical nodes in the

current cluster. The MPI implementation simply alters the identifications of the various

processors contained in the defined communicator to reflect the optimal distances of the actual

machines contained in the system [98, 100]. PVM will allow for the communication, not only

between heterogeneous architectures but also between different languages – e.g., a C-Code

program can interface to a FORTRAN-Code program and vice-versa. PVM will probe for

differences in architecture to allocate native resources as needed. MPI, whose chief design is

around both performance and portability, assumes a consistent connection via a defined world

communicator [98, 100]. PVM is designed for operation within a heterogeneous set of

architectures, while MPI can do this also, it is not explicitly defined within the standard itself

[98, 100].

 MPI was chosen as the standard for intra-node communication for the presented

candidate composite process flow modeling application as this represents a significant body of

research in GPGPU computing [101-104] and porting legacy code to utilize CPU/GPU systems

requires a robust and portable solution that encompasses this paradigm. The key

computationally intensive Kernels encompassed by the multiple CPU/GPU computing systems

are discussed next.

87

 5.1.1 Key Computationally Intensive Kernels. The key computationally intensive

Kernels for the multiple CPU/GPU computing systems introduced in this chapter are evolved

from two distinct sources. The first source is a direct result of the utilization of sets of single

CPU/GPU computing systems from which the multiple CPU/GPU computing system is formed

as each individual CPU/GPU machine involved brings with it the local computationally intensive

Kernels that are effected by a separate machine architecture. The second source is directly

related to the communication vehicle for the multiple CPU/GPU computing systems, MPI and

any communicational overhead it brings to the total system is magnified by the significant GPU

and CPU communications via the local PCIe bus – a noted bottleneck in single CPU/GPU

systems now magnified by the number of distinct nodes in the communication world of MPI [69,

97].

 5.1.2 GPU Code Developments. This sub-section establishes GPU code developments

such as API tools/libraries and the data-structures/layouts for the definition of the multiple

CPU/GPU computing system. Nvidia’s CUDA API has remained ahead in the GPGPU

computing community [1, 2, 24] and this continues as interest grows in CPU/GPU computing

clusters with the provision of the Unified Virtual Address (UVA) space [37, 62, 105].

 UVA allows CUDA to map GPU device buffers into a global virtual address space and

then queries the system to determine if a desired address is in GPU or CPU space. UVA then

signals CUDA to execute a PCIe communication or local memory call, depending on the

physical location of the virtual address – theoretically allowing for direct MPI buffer transfers.

However, CUDA UVA was not utilized with the presented candidate application as the construct

did not come to fruition until compute architecture 2.0 and this leaves out System A [58]. So in

the interest of consistency was not pursued in this dissertation.

88

 Given that the individual GPU devices in the multiple CPU/GPU computing systems

have no direct communication to outside nodes a double-copying is inferred [105]. The

individual CPU/GPU computing system executed upon a local sub-domain of the global problem

space, as per domain decomposition [26, 28], passing the computationally intensive system of

linear equations defined as a sparse matrix system to the local GPU. The GPU executes the

system using the PCG iterative solver, as with the single CPU/GPU system, and returns the result

back across the PCIe bus to the CPU where it is then stored in the defined MPI communication

buffers to be shared with other nodes in the system – unavoidably increasing the latency as there

must now be explicit staging of memory buffers for collective and point-to-point calls [94] and

GPU to CPU to MPI and back the same path at each iteration of the algorithm.

 The full candidate application is validated against an analytically derived solution for a

simple 2D radial injection circular plate mold geometry model using the multiple CPU/GPU

computing system next.

5.2 Validation of Full Candidate Application on Multiple CPU/GPU

 The correctness of the full candidate application for the multiple CPU/GPU computing

systems is ensured via the examination of flow-front progression and injection port pressures of

numerical solutions for CPU and GPU against the correspondingly analytical results. As before,

the model used for validation is a simple 2D circular plate with the resulting analytical equation.

 The simple model being used in this chapter is a radial flow in a circular plate with a

radius of 10 cm and an inner radius of 0.15 cm shown in Figure 56. The inner radius, 0R , is

subjected to a constant flow rate Q . The thickness of the cavity is H , the pressure is P, resin

viscosity is , the permeability of the fiber preform is K , and the porosity of fiber compaction

is . The flow front radius at any time t is given by [89]:

89

2

1

2

0)(

 R

H

Qt
tR

 (5.1)

The corresponding expression for injection pressure, which varies with time, is given by [89]:

0

0 ln
2 R

tR

HK

Q
P

 (5.2)

Figure 51. 2D circular plate validation model (not to scale).

 The following physical parameters are used in this analysis:

sec
4.2

3cm
Q , permeability

2080.44 cmeK , a viscosity PaS02.0 , a porosity of 805.0 ,

a time step 5.0t sec, and an element thickness cmH 742.0 . The circular plate model

involved a computational mesh of 1,344 nodes and 2,560 3-noded triangular elements. Figure 52

and Figure 54 display the flow-front progression for System A and System B respectively and

clearly define accuracy with the analytical value. Figure 53 and Figure 55 display the inlet

injection pressure for System A and System B respectively and clearly define accuracy with the

analytical value.

90

 The flow-front and inlet injection pressure values are accurate so the full candidate

solution for the multiple CPU/GPU computing systems is presented next with a focus on initial

performance evaluation using the multiple CPU/GPU computing systems.

Figure 52. Validation of multiple CPU/GPU for flow-front progression (System A).

Figure 53. Validation of multiple CPU/GPU for inlet injection pressure (System A).

91

Figure 54. Validation of multiple CPU/GPU for flow-front progression (System B).

Figure 55. Validation of multiple CPU/GPU for inlet injection pressure (System B).

5.3 Initial Full Candidate Application Performance on Multiple CPU/GPU

 Much of the establishment of key computationally intensive Kernels for the multiple

CPU/GPU computing systems is a reflection of the single CPU/GPU computing system from the

92

previous chapter. The single system provides the building blocks of the multiple systems leaving

the effective performance of the multiple systems to the parlance of latency mitigation as a

product of standard MPI communication overhead [26, 28] and noted CPU/GPU costs [106-109].

 5.3.1 System A. The full candidate solution for multiple CPU/GPU computing systems

was applied using System A and is discussed in this sub-section. The initial problem domain was

partitioned into various sub-domains each to be executed on a single CPU/GPU computing

system. The multiple sub-domain results are then compared against the CPU-only, and the

CPU/MPI solution times.

 Table 24 shows the total solution times, in milliseconds, for increasing numbers of

partitions using as input unstructured mesh MA expressed using CSR data format compression

with System A computing architecture. The observed total solution times in all cases are higher

for the multiple CPU/GPU computing system over the single CPU-only and CPU plus MPI

which illustrates the significant cost potential of the extra layer of latency produced by intra-node

communication within the execution of the global solution domain. The slight decrease at 2-

partitions for the GPU plus MPI model is due to the cache effect of increased local memory to

allow more of the problem to be immediately available for solving.

 Table 25 shows the total solution times, in milliseconds, for increasing numbers of

partitions using as input unstructured mesh configuration MB expressed using CSR data format

compression with System A computing architecture. The observed total solution times for GPU

plus MPI are more promising as the increased computational loads on the individual nodes using

the larger sized input mesh are large enough to overcome the latency of intra-node as well as the

PCIe bottleneck – until 16 sub-domains are created and computational loads on individual nodes

in the system become too poor to overcome increasing latency for this fixed problem size. Figure

93

56 and Figure 57 visually depict the observed performance using System A as the computing

environment and different sized mesh configurations MA and MB respectively.

 The more structured meshes MA and MB depict distinct performance differences when

employing MPI with the local GPU. The smaller model MA illustrates no performance benefit

for MPI with GPU over MPI without GPU as the smaller model does not have enough

computational intensity at the local GPU level to overcome the cost of intra-nodal

communication generated by MPI [70, 105]. The larger model MB reveals a slight performance

boost when using MPI and the local GPU for the global count of partitions that remain below 16

when the intra-nodal communication cost once again become the dominating factor of

performance. The more unstructured mesh model 10FT shows a negligible difference of MPI

with or without utilizing the local GPU due to the more evenly distributed non-zero elements,

each computing node in the system is given nearly equal divisions of work and the so throughput

latency is better handled, thus hiding the intra-nodal communication cost of MPI better.

 Table 26 shows the total solution times, in milliseconds, for increasing numbers of

partitions using as input unstructured mesh configuration 10FT defined earlier expressed using

CSR data format compression with System A computing architecture. The observed total

solution times for GPU plus MPI are higher than the corresponding CPU plus MPI – the

performance is closer than the results shown by the mesh MA as the numbers of non-zero

elements is greater for 10FT but the intra-nodal communication derived from the coarser-grained

parallelism of MPI communication creates higher levels of latency that must be mitigated [69,

105, 109].

 The next sub-section will discuss the results of the multiple CPU/GPU architecture

defined by System B.

94

Table 24

 Multiple CPU/GPU performance in milliseconds with mesh MA (System A)

Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)

CSR 1 2,749,450.00 418,440.00

CSR 2 1,666,960.00 1,604,200.00

CSR 4 825,989.00 1,357,890.00

CSR 16 260,669.00 1,461,590.00

Table 25

 Multiple CPU/GPU performance in milliseconds with mesh MB (System A)

Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)

CSR 1 77,163,900.00 4,219,610.00

CSR 2 20,169,400.00 16,985,600.00

CSR 4 9,633,960.00 8,570,300.00

CSR 16 2,495,580.00 23,956,100.00

Table 26

 Multiple CPU/GPU performance in milliseconds with mesh 10FT (System A)

Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)

CSR 1 6,649,810.00 140,546.00

CSR 2 1,206,160.00 1,246,120.00

CSR 4 621,867.00 688,750.00

CSR 8 321,710.00 545,930.00

95

Figure 56. Multiple CPU/GPU computing system - mesh MA (System A).

Figure 57. Multiple CPU/GPU computing system - mesh MB (System A).

96

Figure 58. Multiple CPU/GPU computing system - mesh 10FT (System A).

 5.3.2 System B. The full candidate solution for multiple CPU/GPU computing systems is

executed in the System B computing environment and is discussed in this sub-section. The initial

global problem domain is partitioned into various sub-domains and passed among various

discrete processing nodes to be executed in the manner of a single CPU/GPU computing system.

The multiple sub-domain results are then compared against the CPU-only, and the CPU/MPI

solution times.

 Table 27 shows the total solution times, in milliseconds, for increasing numbers of

partitions using as input unstructured mesh configuration MA expressed using CSR data format

compression with System B computing architecture. The observed total solution times in all

cases involving sub-domain partitions reveal that the GPU plus MPI construct outperforms the

CPU/MPI model. However this positive benefit of combining GPU and MPI is not observed in

the larger input mesh configuration MB as can be seen in Table 28. This observed performance

degradation for the larger element mesh is a stark contrast from the behavior manifested in

97

System A, where a larger mesh resulted in better performance as the computationally intensive

operations increased.

 Table 29 shows the total solution times, in milliseconds, for increasing numbers of

partitions using as input unstructured mesh configuration 10FT expressed using CSR data format

compression with System B computing architecture. The observed solution times for the 10FT

model, while executing on the more advanced CPU/GPU computing System B never manages to

overcome the latency incurred by the intra-nodal communication emergent from the use of

multiple MPI communication calls – evidence of a faster and more efficient hardware that

minimizes costs at the local host and conversely exposing the MPI communication costs.

 Figure 59 and Figure 60 are visual depictions of the observed results of the multiple

CPU/GPU architecture System B listed in Table 27 and Table 28, and Figure 61 illustrates the

data given in Table 29. The next sub-section will examine, analyze and discuss the observed

initial performance results for multiple CPU/GPU systems represented by computing System B

and System A.

Table 27

 Multiple CPU/GPU performance in milliseconds with mesh MA (System B)

Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)

CSR 1 420,980.00 168,570.00

CSR 2 767,364.00 220,462.00

CSR 4 448,665.00 98,034.20

CSR 16 307,081.00 44,392.40

Table 28

 Multiple CPU/GPU performance in milliseconds with mesh MB (System B)

Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)

CSR 1 6,306,240.00 1,197,350.00

98

Table 28

Cont.

CSR 2 1,675,850.00 2,995,870.00

CSR 4 872,019.00 2,172,520.00

CSR 16 318,895.00 1,490,310.00

Table 29

 Multiple CPU/GPU performance in milliseconds with mesh 10FT (System B)

Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)

CSR 1 616,770.00 89,228.10

CSR 2 124,995.00 249,532.00

CSR 4 73,081.40 145,577.00

CSR 8 41,426.60 118,746.00

Figure 59. Multiple CPU/GPU computing system - mesh MA (System B).

99

Figure 60. Multiple CPU/GPU computing system - mesh MB (System B).

Figure 61. Multiple CPU/GPU computing system - mesh 10FT (System B).

 5.3.3 Initial performance analysis. The execution of the unstructured mesh input files,

MA, MB and 10FT for both computing systems exposes some interesting performance

behaviors, notably a divergence of performance for the different computing environments. The

100

observed results for both System A and System B lower in total solution time as the number of

sub-domains increases – excepting at 16 partitions, as System A then starts to ratchet up in

solution times for both input meshes MA and MB. The input mesh 10FT displays almost no

difference between CPU plus MPI and GPU plus MPI – the impact of intra-nodal

communication is lessened for this model within the System A computing system environment.

 System B performs better using GPU plus MPI over CPU/MPI for the smaller input mesh

MA but this is the opposite of that observed with the larger mesh MB. System B has both a

larger set of registers and shared memory than System A and therefore able to hold larger

amounts of data to increase throughput allowing better utilization and conversely exposing

higher combined latencies of local CPU-GPU and intra-nodal communications. The result is the

counter-intuitive effect of a less computationally intensive problem performing better than the

larger and more computationally costly input mesh MB – an artifact of increased memory

complexity and no direct connection to the MPI library calls.

 The counter-intuitive effect of better hardware creating reverse performance for larger

problem domains, i.e. less computationally intensive models can perform better than more

computationally intensive models using a device that is optimal for systems requiring higher

numbers of floating point operations can be seen in Figure 61. Figure 61 shows a nearly constant

difference from the GPU plus MPI and CPU plus MPI which is likely due to the more efficient

execution of the GPU device – exposing a larger amount of intra-nodal communication cost for

the global system.

 The software factors that influence the performance of multiple CPU/GPU computing

systems is discussed next followed by the corresponding hardware factors.

101

5.4 Software Data-Structures/Layout Factors

 The previous section was an initial performance analysis for unstructured mesh inputs via

the multiple CPU/GPU computing systems defined as System A and System B and produced

mixed results – System A displayed a performance boost for the larger input mesh MB but not

MA and System B displayed the converse. However neither approached the same level of

performance observed by the single CPU/GPU systems of the previous chapter and neither

illustrated definitive performance increase for input mesh 10FT – although System A yields a

closer result. The software variables involved in the observed results of the initial full solution

with multiple CPU/GPU computing systems are examined to identify potential factors that can

hinder performance of the presented candidate application. The first software factor to be

examined is intrinsic to memory-bound problems such as the presented candidate composite

process flow modeling finite element based application – data compression format.

 In the interest of brevity, the reader is referred to chapter 4 for a more detailed reasoning

for the execution of the BCSR2x2 format over CSR which was defined for the initial

performance results observed. The same system parameters that exist at the local single

CPU/GPU computing systems are valid for the multiple CPU/GPU structure presented in this

chapter, and the potential increase in locality via the utilization of the BCSR2x2 data

compression format [52-54] is discussed next.

 Figure 62 and Figure 63 show the multiple CPU/GPU performance with System A and

System B respectively using only BCSR2x2 data compression format for input meshes MA and

MB. The homogeneous comparisons of the BCSR2x2 show that System A gains no positive

performance benefit using the smaller input mesh MA but does for the corresponding larger

mesh MB once 16 partitions is reached whereas the CSR format showed that at 16 partitions the

102

performance for this input mesh dropped. This difference in behavior corroborates the precept

that locality defined at the software data layout can effect behavior of HPC applications.

 Figure 66 and Figure 67 show the performance of the input mesh 10FT for System A and

System B respectively comparing the CSR and BCSR2x2 compression formats. The less regular

mesh defined by the 10FT model displays a consistent benefit when expressed using the

BCSR2x2 compression format over the CSR format. These observed performance results are

consistent with the input mesh MA, which contains a similar number of non-zeros but in a much

less complex geometry.

 System B displays similar performance behavior as System A when the data

compression layout is altered to BCSR2x2 but to a larger magnitude. System A showed

performance benefit at 16 partitions for the input unstructured mesh MB whereas System B

illustrates this same benefit at 4 partitions. And while System A has no discernible advantage of

BCSR2x2 for the input mesh MA, System B does show a lower total solution cost, albeit not

very impressive. Table 30 and Table 32 are the observed results utilizing the BCSR2x2

compression format for System A and System B respectively.

 The observed results are taken within the context of the BCSR2x2 data compression

formats only, with the base line defined as the cost of execution for the global solution using

BCSR2x2 – i.e. the full solution cost using the BCSR2x2 compression format using a CPU/GPU

computing system at a single processor level, with no domain decomposition applied. The

effects of spatial locality are applied in a mixed compression environment next.

Table 30

 Multiple CPU/GPU performance in seconds (System A)

Data Compression Partitions Mesh MA Mesh MB

BCSR2x2 1 418.44 4,219.61

103

Table 30

Cont.

BCSR2x2 2 1,512.94 14,223.50

BCSR2x2 4 1,015.11 7,429.34

BCSR2x2 16 715.41 3,234.68

Table 31

 Multiple CPU/GPU performance of 10FT model in seconds (System A)

Data Compression Partitions Mesh 10FT

BCSR2x2 1 140.69

BCSR2x2 2 1,020.35

BCSR2x2 4 660.38

BCSR2x2 8 551.57

Table 32

 Multiple CPU/GPU performance in seconds (System B)

Data Compression Partitions Mesh MA Mesh MB

BCSR2x2 1 217.76 1,931.31

BCSR2x2 2 233.34 2,151.81

BCSR2x2 4 168.96 1,202.46

BCSR2x2 16 129.29 549.83

Table 33

 Multiple CPU/GPU performance of 10FT model in seconds (System B)

Data Compression Partitions Mesh 10FT

BCSR2x2 1 89.07

BCSR2x2 2 169.63

BCSR2x2 4 133.66

BCSR2x2 8 132.52

104

 Figure 64 and Figure 65 show the comparison of the multiple CPU/GPU computing

systems using different data formats of CSR and BCSR2x2 with System A and System B

respectively. System A shows a positive benefit of using the BCSR2x2 format over the CSR

format but only for a limited number of sub-domains for the input unstructured mesh MB and

even less for the smaller input mesh MA. This observation illustrates that increasing spatial

locality for the System A architecture can have absolute benefit as BCSR2x2 will improve on

the CSR format and not just illustrate an ever increasing computational benefit as compared to a

single compression format in all cases. System B does not follow the same pattern as System A.

 The multiple CPU/GPU computing system defined by System B does not show any

positive benefit for the use of the BCSR2x2 data compression format when direct comparisons to

CSR are made – excepting a slight improvement for 2-partitions using the MA input likely due

to cache effects. These observations are further elaborated in the next section on hardware

factors as the immunity to the increased locality of System B when using BCSR2x2 is a

consequence of this. Table 34 and Table 35 show the observed results for the comparison of CSR

and BCSR2x2 data compression formats for System A and System B respectively. The less

regular input mesh 10FT shows a more consistent behavior for both computing environments.

Table 34

 Multiple CPU/GPU performance in seconds – formats (System A)

Partitions
Mesh MA

(CSR)
Mesh MA (BCSR2x2) Mesh MB (CSR)

Mesh MB

(BCSR2x2)

1 418.44 418.44 4,219.61 4,219.61

2 2,009.79 1,512.94 15,815.20 14,223.50

4 1,011.24 1,015.11 7,651.25 7,429.34

16 702.69 715.41 3,261.84 3,234.68

105

Table 35

 Multiple CPU/GPU performance in seconds – formats (System B)

Partitions
Mesh MA

(CSR)
Mesh MA (BCSR2x2) Mesh MB (CSR)

Mesh MB

(BCSR2x2)

1 168.57 217.76 1,197.35 1,931.31

2 335.92 233.34 2,138.79 2,151.81

4 157.90 168.96 1,038.69 1,202.46

16 124.02 129.29 495.33 549.83

Figure 62. Multiple CPU/GPU performance BCSR2x2 compression (System A).

106

Figure 63. Multiple CPU/GPU performance BCSR2x2 compression (System B).

Figure 64. Multiple CPU/GPU performance mixed compression (System A).

107

Figure 65. Multiple CPU/GPU performance mixed compression (System B).

 Figure 66 and Figure 67 show the performance results for System A and System B

respectively for the input mesh configuration 10FT. The computing environments defined by

System A and System B illustrate general equivalence of performance benefit for increased

locality exposed by the use of BCSR2x2 – unlike the input meshes MA and MB. The more

regular input meshes MA and MB have lower irregular memory access patterns than 10FT,

exposing hardware differences to a greater degree – improving locality for the algorithm has

consistent results in both computing environments.

108

Figure 66. Multiple CPU/GPU performance mixed compression - 10FT (System A).

Figure 67. Multiple CPU/GPU performance mixed compression - 10FT (System B).

109

5.5 Hardware Architectural Factors

 The observed performance of the CPU/GPU computing systems using the unstructured

mesh input defined by MA, MB, and 10FT is affected not just by the software factors discussed

in the previous section but hardware factors as well. The presented candidate application

performed with mixed results using the multiple CPU/GPU computing system paradigm, and

switching to different data compression formats continued these amalgamated observations –

providing enhanced results for System A but less so for System B. The lower sensitivity to the

adjustment of data compression format of System B given the equivalence of partition counts

and input meshes implies an underlying hardware factor.

 The architectural design of System B is defined as CUDA compute architecture 2.0 and

System A is defined as CUDA compute architecture 1.0 – significant architectural differences

for these systems exist. CUDA’s thread concept is register-bound and with System B

embodying over 32,000 on-chip registers compared to System A with a little over 8,000

provides the ability of more resources for execution threads to remain viable – more importantly

is the existence of an actual cache structure for System B that is absent from System A.

 The inclusion of the System B cache and higher memory device I/O allow for higher

throughput and a finer granularity than that provided by System A. This finer granularity and

faster memory I/O for System B creates less sensitivity to the locality alterations provided via

the BCSR2x2 data compression format, as the multiple CPU/GPU computing system has less

problems with data locality than does System A. Therefore optimizing the performance of the

presented candidate application has different requirements for the different architectures that

need to be understood.

110

 Figure 64 and Figure 65 exemplify the importance of a proper coordination of software

and hardware factors for optimizing HPC applications. Figure 64 shows that System A is

positively impacted with the application of BCSR2x2 due to a lack of hardware-level cache

whereas utilizing BCSR2x2 to increase locality for System B is both unnecessary and potentially

deleterious to performance as shown in Figure 65 using input meshes MA and MB. Increasing

the number of elements in a single clock cycle with the implementation of BCSR2x2 using the

multiple CPU/GPU computing system defined by System B is likely over-utilizing the on-chip

hardware resources as competition increases.

 The next section discusses the observed full solution performance using an augmented

version of equation (4.9.3) from chapter 4 such that the performance of multiple CPU/GPU

computing systems is endorsed.

5.6 Computational Complexity Analysis

 This section establishes the mapping of the observed performance and the derived

complexity analysis for the multiple CPU/GPU computing system, detailed in Appendix A. The

theoretical performance estimates for System A are discussed first followed by those for System

B where all results are generated under the assumption of CSR data compression format.

 The complexity analysis model for the multiple CPU/GPU systems is a natural extension

from the previous chapter’s derivation of the single CPU/GPU systems model – the results from

the single analysis model are incorporated as a critical component of the multiple analysis model.

However, the introduction of MPI as a communication amongst various sub-domains presents an

added level of communication abstraction given that the GPU cannot communicate directly with

the CPU it can neither communicate with the MPI library calls that can contain a significant

amount of overhead [105]. Building from equation (4.9.3) in chapter 4 and using value found

111

for gpuT , equation (5.3) with sdP the number of sub-domains, ATBN the number of active threads

per block, and C the cost of combined combination of intra-node communication – assuming that

sdP is no greater than 16.

 ATB

sd

N

P

sdATB

sdsd

gpu

gpumult ePN
P

C

P

T
T

_ (5.3)

 The determination of the performance modeling equation for multiple CPU/GPU systems

is more involved than the single CPU/GPU system model - the individual architectures involved

can present obfuscated operational costs which accentuate the PCIe bottleneck of the single

system. Equation (5.3) depicts a change in computational cost when the number of sub-domains

reaches 16 as CUDA waits until a half-warp is instantiated before issuing a memory transaction

[37, 93] – this condition is meant to emulate this behavior across discrete systems.

 The communication variable C from equation (5.3) is affected not only by the size of the

problem domain but also individual architectures and MPI implementations involved and it is the

inter-play of MPI and local CPU-GPU host communications that is generally deleterious to

multiple CPU/GPU computing systems [105, 106, 110]. The understanding of how these

communication factors interact with the determined modeling equation is discussed in the next

sub-section.

 5.6.1 Relationship of MPI-GPU and CPU-GPU communication. The Multiple

CPU/GPU computing systems do not yield optimal parallel performance as expected when given

P processors and a sparse matrix with zN total non-zero elements and R local GPU registers

i.e. does not result in
P

1
 benefit [28]. The reason is that as the initial system of zN elements is

broken down into smaller sets that are held at the local GPU device yields more latency to hide

112

and correspondingly less computational intensity to utilize GPU resources. This behavior was

observed to be consistent across System A and System B for both input meshes when adjusted

for local GPU register counts and associated zN elements.

 The expected behavior of a given computationally intensive application can be seen as

related to the percentage of total zN elements held locally at the GPU device and the number of

partitions distributed across the global system. The percentage of total zN elements held locally

is given by equation (5.4) and was used as the independent variable to map the observed multiple

CPU/GPU system performance against the optimal parallel behavior
P

1
.

zN

PR
R (5.4)

 The ratio of the optimal parallel performance and actual performance for a given value of

R defines the performance deviation from ideal due to the local CPU-GPU host and MPI

communication inter-play. These deviations were mapped using regression such that localNZ is

the ratio of the total number of non-zero elements, zN , from the global problem domain held by

the local GPU device and pX̂ is the value of the deviation computed as the ratio of ideal

parallelism
P

Ts and the actual execution time for the given number of partitions P and execution

time for the serial version sT represented as the solid BLACK lines in Figure 68, Figure 69,

Figure 70 and Figure 71. These are shown for System A as Figure 68 and Figure 69 for input

meshes MA and MB respectively - Figure 70 and Figure 71 illustrate these same factors for

input meshes MA and MB using System B.

113

 The equations revealed by regression, shown for convenience in Figure 68, Figure 69,

Figure 70, and Figure 71 as the dashed RED lines, vary with (5.4) as input but can be easily

replaced by the number of processors P as the proportion of zN elements held by a local GPU

device is directly related – this same precept holds for input mesh 10FT. The equations derived

via regression have a Pearson Product-Moment correlation coefficient of 1 in all cases, the

coefficient dependency is one-to-one [111] – i.e., exact match with the deviation from ideal

represented as pX̂ in the figures. The approximated equations derived with regression from pX̂

are degree 3 for all models and essentially isolate the overhead of CPU-GPU local host and intra-

nodal communication costs. These approximated polynomial equations are employed as an

asymptotic measurement. Therefore, by the definition of asymptotic behavior [91], the

relationship of MPI and local CPU-GPU communication effects on multiple CPU/GPU

computing systems can be shown as (5.5).

 3R (5.5)

 The equations derived via regression are specific to the observed performance for a given

input mesh and architecture, but extending the number of partitions i.e. increasing independent

variable against equation (5.5) and applying some constant K define the cost of intra-nodal and

local CPU-GPU host communication will not be greater than cubic.

 The asymptotic equation (5.5) is compared to the equations that were derived using

regression for both System A and System B. Figure 72 and Figure 73 show the asymptotic

behavior of the input meshes MA and MB for System A respectively and Figure 74 Figure 75

show input meshes MA and MB for System B. The results are shown in Figure 76 and Figure 77

for input mesh 10FT using computing System A and System B respectively. These figures show

that regardless of the number of partitions/sub-domains the theoretical cost of local CPU-GPU

114

and intra-nodal communication, represented as the solid line, indeed stay below cubic,

represented as the dashed line, for all models and both computing system environments.

Figure 68. Deviation from ideal mapped with regression multiple CPU/GPU mesh MA.

Figure 69. Deviation from ideal mapped with regression multiple CPU/GPU mesh MB.

115

Figure 70. Non-zeros held locally (mesh MA) and factors off with multiple CPU/GPU.

Figure 71. Non-zeros held locally (mesh MB) and factors with multiple CPU/GPU.

116

Figure 72. Asymptotic behavior of MPI and CPU-GPU communication (MA, System A).

Figure 73. Asymptotic behavior of MPI and CPU-GPU communication (MB, System A).

117

Figure 74. Asymptotic behavior of MPI and CPU-GPU communication (MA, System B).

Figure 75. Asymptotic behavior of MPI and CPU-GPU communication (MB, System B).

118

Figure 76. Asymptotic behavior of MPI and CPU-GPU communication (10FT, System A).

Figure 77. Asymptotic behavior of MPI and CPU-GPU communication (10FT, System B).

 The next sub-section examines the theoretical performance results using the model given

by equation (5.3) and altering hardware factors.

119

 5.6.2 Comparison of performance modeling. The Multiple CPU/GPU computing

system performance predictive model is compared to the actual time for each sub-domains for

both System A and System B for input meshes MA and MB with the same input parameters.

Figure 78, Figure 79 and Figure 80 show a strong correlation to the modeled performance given

by equation (5.3) and the actual full solution execution time for the multiple CPU/GPU system

defined by System A. Figure 81, Figure 82 and Figure 83 show a strong correlation to the

modeled performance equation (5.3) and the actual full solution execution time for the multiple

CPU/GPU system by System B.

Figure 78. Multiple CPU/GPU theoretical performance with input MA (System A).

120

Figure 79. Multiple CPU/GPU theoretical performance with input MB (System A).

Figure 80. Multiple CPU/GPU theoretical performance with input 10FT (System A).

121

Figure 81. Multiple CPU/GPU theoretical performance with input MA (System B).

Figure 82. Multiple CPU/GPU theoretical performance with input MB (System B).

122

Figure 83. Multiple CPU/GPU theoretical performance with input 10FT (System B).

 5.6.3 Contribution of Hardware Factors. This section establishes a relationship to

hardware factors and the resulting application performance via the derived equation (5.3),

adjusting hardware variables and then projecting against the actual performance of the

application. The resulting differentials are analyzed and the impact of the adjusted parameter(s)

on performance of the CPU/GPU computing system is theorized. The number of SMPs for each

of the defined computing systems is adjusted while the rest of the model is held as constant to

isolate the specific hardware.

 Figure 84 and Figure 85 show that as the number of SMPs drops the corresponding

theoretical performance decreases for System A for both input mesh MA and MB respectively –

due to the lower computational power of the individual processing elements. Increasing the

number of SMPs for System A has the opposite effect on theoretical performance for both input

mesh MA and MB, directly related to the greater computational power that is leveraged at this

alteration. These theoretical performance results are consistent for Figure 84 and Figure 85 with

123

the decrease of SMPs, shown as the dashed RED lines, producing greater effect when compared

to the corresponding increase of SMPs shown as the dotted BLUE lines.

 Figure 86 shows the less structured input mesh 10FT and depicts a theoretical behavior

across increasing partitions/sub-domains as roughly reflective of that for the more structured

input meshes MA and MB for System A shown in Figure 84 and Figure 85. Increasing the

number of SMPs will lower the total execution time and decreasing the number of SMPs will

raise the total execution time. However, the degree of change is significantly higher for the 10FT

mesh using System A – likely due to the more distributed nature of the mesh, generating a

correspondingly less regular sparse matrix and coercing more indirection in the data compression

format. The increased indirection of the sparse matrix-vector multiplication for the 10FT model

combined with lower SMPs means lower process throughput hindered by higher levels of

irregular memory access patterns, significantly deteriorating latency hiding.

 Figure 87 and Figure 88 show that System B has a similar theoretical behavior to that

produced by System A; however the theoretical performance is much less pronounced.

Theoretical performance drops for both increasing and decreasing the number of SMPs at 4

partitions as the computational intensity becomes less salient and the communication costs for

intra-nodal communication overtake the final results.

 The next sub-section discusses the software factors on theoretical performance for

multiple CPU/GPU computing systems.

124

Figure 84. Multiple CPU/GPU performance with MA - hardware factor (System A).

Figure 85. Multiple CPU/GPU performance with MB - hardware factor (System A).

125

Figure 86. Multiple CPU/GPU performance with 10FT - hardware factor (System A).

Figure 87. Multiple CPU/GPU performance with MA - hardware factor (System B).

126

Figure 88. Multiple CPU/GPU performance with MB - hardware factor (System B).

Figure 89. Multiple CPU/GPU performance with 10FT - hardware factor (System B).

 5.6.4 Contribution of Software Factors. This section establishes a relationship to

software factors and the resulting application performance via the derived equation (5.3),

127

adjusting hardware variables and then projecting against the actual performance of the

application. The resulting differentials are analyzed and the impact of the adjusted parameter(s)

on performance of the CPU/GPU computing system is theorized.

 Thread occupancy is a common practice for increasing the performance of GPU-based

systems in the GPGPU computing community and this paradigm is followed to achieve

theoretical performance boost, altering the number of Threads-Per-Block (TPB). Increasing the

TPB value in equation (4.9.3) is carried through to equation (5.3) and allows higher probability

of coalesced memory accesses and utilizes more floating-point operational units – e.g. improved

theoretical performance. Once again, System A displays the clearest benefits for both input

meshes as shown in Figure 90 and Figure 91 - Figure 92 clearly illustrates the best performance

at 256 threads per block.

 Lower the number of TPB to less than optimal for System A, defined as 256, provides

less opportunity for address coalescing as well as lower throughput whereas increasing the TPB

has the converse theoretical effect. Figure 93, Figure 94 and Figure 95 for System B display

similar effects on theoretical performance observed on System A excepting the sudden “dip”

encountered at 4 partitions for both input meshes.

 The observed theoretical “dip” at 4 partitions for System B is an artifact of equation (4.7)

with the cost of the denominator B . System B with input mesh MB shows a lowering of the

effects of both higher and lower TPB as the number of partitions increase due to the growing

influence of intra-nodal communication latency as well as increasing calls to the local CPU via

the PCIe bus for each node in the global system.

128

Figure 90. Multiple CPU/GPU performance with MA - software factor (System A).

Figure 91. Multiple CPU/GPU performance with MB - software factor (System A).

129

Figure 92. Multiple CPU/GPU performance with 10FT - software factor (System A).

Figure 93. Multiple CPU/GPU performance with MA - software factor (System B).

130

Figure 94. Multiple CPU/GPU performance with MB - software factor (System B).

Figure 95. Multiple CPU/GPU performance with 10FT - software factor (System B).

 The next section relates the observations of hardware and software factors to the final

performance results of the presented candidate application, reasoning the importance of careful

131

use for multiple CPU/GPU computing systems for optimal HPC modeling application

performance.

5.7 Performance and Relation to Software and Hardware Factors

 The resulting performance of the multiple CPU/GPU computing system is directly tied to

the interplay of software and hardware factors of the environments in which they executed and

are related in this section – simply expanding hardware chips will not necessarily produce the

desired performance boost if the algorithm poorly incorporates the hardware and vice versa.

Point in fact, just loading a system with the largest possible number of threads (a software factor)

will overload the register file (a hardware factor) with resource demands enforcing less

utilization as well as register spilling to device memory and increasing the number of clock

cycles to hundreds. Increasing the number of computational chips via the increasing number of

SMPs (a hardware factor) will mean little if the access pattern of a matrix system defined by the

application (an algorithmic factor) is accessed by Kernel threads in a row-major order when the

GPU device is optimized for column-major causing non-contiguous addressing.

 The single CPU/GPU systems from the previous chapter illustrate the overlap of software

and hardware artifacts on resulting performance and the multiple CPU/GPU systems in this

chapter show the same influence. However, this is not as easy to spot as the aggregate costs

imposed by intra-node communication can abrogate any performance benefits observed. And

determining the cost of this intra-node communication is difficult given its combination of the

local PCIe overhead of CPU/GPU communications.

 The current state of the GPU is one of isolation from the CPU as well as the MPI

standards – this is an area of current research and concern for future co-processor accelerators

[36, 96, 97, 112, 113]. Equation (5.3) takes liberties and employs approximation with regard to

132

the final cost of this communication between nodes and the local CPU-GPU costs as there is an

inherent double-copy when using MPI library calls for a set of one or more CPU/GPU systems

[105].

 Establishing a direct and dynamic relation among all the defined software, hardware, and

algorithmic factors is necessary to elicit optimal performance boost for the presented candidate

application. This same judicious application of software and algorithmic methodologies are

needed for many other HPC computational modeling applications as the iterative solution to the

sparse matrix system defined by the presented candidate application is common to many

scientific and engineering applications [20, 21, 23, 39, 55, 80] that wish to fully utilize the

substantial performance boosting capabilities of not only GPU accelerators but the inexorable

domination of multi-core CPUs [3, 4, 114].

133

CHAPTER 6

Summary and Future Directions

 The major conclusions of this dissertation can be summarized as follows:

(i) The relationship of software and hardware factors on the performance of

computationally intense applications that wish to execute within the context of the

modern CPU/GPU computing systems must be judiciously applied for optimal

performance.

(ii) A predictive performance model was adapted for this research and is within the range

of acceptable normalized error for functionality. This model can be used to assist

with the proper determination of cost/benefit optimal manipulation of software and

hardware factors.

(iii) Intra-nodal communication and local CPU/GPU host communication can be

deleterious to performance benefits for multiple CPU/GPU computing environments

and the asymptotic upper bound on this communicational cost was calculated as

asymptotically bound to cubic values with data locality.

(iv) The more regular an input matrix being solved by a CPU/GPU computing system,

single or multiple node, the more exposed software factors are to final performance

whereas the less regular a resulting matrix system, the greater the impact of

hardware.

 Computing systems are fast approaching a time when the non-deterministic paradigm of

parallelism inherent in multi-cored architectures like the GPU will become common-place. High

Performance Computing applications wishing to harness this computational power optimally will

have to be adjusted as per three categories of factors – software, hardware, and algorithmic.

134

Computing system environments will continue to evolve but the basic understanding of these

performance factors will provide solid foundations upon which robust and efficient legacy and

new computational modeling applications can be developed.

 Chapters 2 and 3 provided the underlying hardware architectural and software

algorithmic principles of two separate CPU/GPU computing systems defined in this work as

System A and System B. Algorithmic factor adjustments such as switching from a one thread

per row to one warp per row to solve the sparse matrix system bxA engender an immediate

performance boost. The same statement can be made for software factor adjustments such as

data structure layout via the CSR to BCSR2x2, as the general improvement in locality mitigated

the lack of real memory cache inherent to GPU devices. System B illustrated a distinct hardware

architectural advantage over System A, providing more than 3-times processing cores as well as

4-times the number of registers and memory devices that executed on both sides of the clock

pulse – affecting a double-pumped graphics pipeline. These initial chapter results were reflected

for both the single and multiple CPU/GPU computing systems in chapters 4 and 5, with the

added complexity of MPI communication for the latter.

 Chapter 4 also produced a computational complexity analysis of the CPU/GPU

computing system that was used to project the performance of the presented candidate

application within the context of both System A and System B machine environments.

Adjusting the software and hardware variables in the complexity equation reflected actual

performance results to within reasonable limits cohobating the interdependence of software and

hardware factors of the CPU/GPU computing architecture at a mathematical level. The

introduction of multiple CPU/GPU computing systems in chapter 5 further advanced the concept

of these performance factors as the mathematical complexity was shown to be an exponential

135

factor of the number of SMPs per system utilized. Chapter 5 also exposed the cost of intra-

nodal and CPU-GPU local host communication as a correlation of the percentage of locally

defined non-zero elements held by a given GPU device registers and the factors off from the

calculated ideal parallelism via domain decomposition as multiple processors/nodes – found as a

negative factor on performance that is cubic in nature. The performance results determined with

the presented candidate application can be applied to other computationally intensive HPC

applications as well. Chapter 5 also revealed that the less regular input mesh defined by 10FT

the less effect locality plays with regards to data compression formats – due to smaller likelihood

of dense sub-matrices that are critical to blocked compression formats e.g., BCSR2x2.

 The presented candidate application is designed around computational elements built up

using the FEM methodology, resulting in a sparse matrix system that is a well documented point

of computational intensity [21, 48, 71, 79, 110, 112]. The solution of systems involving sparse

matrices is a common paradigm in the HPC modeling applications, all facing the same

computational dilemma – how to optimally solve these algorithms using modern computing

environments. Thus, the methodologies presented in this work can be applied to a wide range of

computationally intensive applications built around sparse matrix systems and their solution in

the computational modeling analysis.

 The current popularity of the GPU as a computationally powerful co-processor will

continue to grow as demand for more powerful machines to execute HPC applications grows –

this will be exacerbated by the trend in mobile computing. The on-chip architectures of mobile

computing tables and smart phones have provided a new and interesting opportunity for GPGPU

computing – fused addresses [115]. The PCIe CPU-GPU communication bottleneck is well

documented [21, 48, 71, 79, 110, 112] but a fusing of CPU and GPU on the same chip will likely

136

change this but will also create some new issues, e.g. memory device I/O. The fused systems,

such as AMD APC processor use the slower DDR memory device rather than GDDR of the GPU

resulting in the unusual situation of an efficient sparse matrix solution but with the opposite

effect on dense matrix systems [114, 115].

 The inexorable growth in multi-cored CPUs will also provide more computationally

intensive power and a unique dynamic will develop as the GPU gets closer to the flexible

memory structure of the CPU, and vice versa such as processors like Intel’s Sandy Bridge [114].

The developer wishing to attain optimal performance with these new machines will need to

understand the intricacies of the software, hardware, and algorithmic factors as presented in this

work.

137

References

1 Boggan, S.K., and Pressel, D.M.: ‘GPUs: An Emerging Platform for General-Purpose

 Computation’, in Editor (Ed.)^(Eds.): ‘Book GPUs: An Emerging Platform for General-

 Purpose Computation’ (Army Research Lab, 2007, edn.), pp. 50

2 Fatahalian, K., and Houston, M.: ‘GPUs: A Closer Look’, ACM Queue, 2008, 6, (2), pp.

 10

3 Ross, P.E.: ‘Why CPU Frequency Stalled’, IEEE Spectrum, 2008, 45, (4), pp. 1

4 Tian, D.Z.: ‘Editorial (Moore's Law)’, IEEE Potentials, 2008, 27, (6), pp. 3

5 Kang, S., Choi, H.J., Kim, C.H., Chung, S.W., Kwon, D., and Na, J.C.: ‘Exploration of

 CPU/GPU co-execution: from the perspective of performance, energy, and temperature’,

 in Editor (Ed.)^(Eds.): ‘Book Exploration of CPU/GPU co-execution: from the

 perspective of performance, energy, and temperature’ (ACM New York, NY, USA 2011,

 edn.), pp. 38-43

6 Hong, S., and Kim, H.: ‘An integrated GPU power and performance model’, in Editor

 (Ed.)^(Eds.): ‘Book An integrated GPU power and performance model’ (ACM New

 York, NY, USA, 2010, edn.), pp. 280-289

7 Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Hanrahan,

 P.: ‘Brook for GPUs: Stream Computing on Graphics Hardware’, ACM Transactions on

 Graphics - Proceedings of ACM SIGGRAPH 2004 2004, 23, (3), pp. 777-786

8 Rumpf, M., and Strzodka, R.: ‘Graphics Processor Units: New Prospects for Parallel

 Computing’, in Bruaset, A.M.a.T., Aslak (Ed.): ‘Numerical Solution of Partial

 Differential Equations on Parallel Computers’ (Springer, 2005), pp. 89-134

138

9 Silberschatz, A., Galvin, P., and Gagne, G.: ‘Applied Operating System Concepts:

 windows XP update’ (John Wiley & Sons, Inc., 2003, 1st edn. 2003)

10 Silberschatz, A., Galvin, P., and Gagne, G.: ‘Applied Operating System Concepts’ (John

 Wiley & Sons, Inc., 2000, 1 edn. 2000)

11 Ross, P.E.: ‘Why CPU Frequency Stalled’, IEEE Spectrum, 2008, 45, (4), pp. 72-72

12 Patterson, D.: ‘Computer Organization and Design : The Hardware/Software Interface’

 (Elsevier Science Ltd, 1997. 1997)

13 Patterson, D.A., and Hennessy, J.L.: ‘Computer Organization & Design: The

 Hardware/Software Interface’ (Morgan Kaufmann Publishers, Inc., 1998, 2nd edn. 1998)

14 Liang, Y.: ‘The Use of Parallel Polynomial Preconditioners in the Solution of Systems of

 Linear Equations’, University of Ulster, 2005

15 Cheng, H.: ‘Vector Pipelining, Chaining, and Speed on the IBM 3090 and Cray X-MP’,

 Computer, 1989, 22, (9), pp. 9

16 Sivasubramaniam, A., Singla, A., Ramachandran, U., and Venkateswaran, H.: ‘Machine

 Abstractions and Locality Issues in Studying Parallel Systems’, in Editor (Ed.)^(Eds.):

 ‘Book Machine Abstractions and Locality Issues in Studying Parallel Systems’ (Georgia

 Institute of Technology, 1993, edn.), pp.

17 Thomas, S.: ‘Preconditioned Conjugate Gradient Methods for Semiconductor Device

 Simulation on a CRAY C90 Vector Processor’. Proc. VECPAR '96 Selected papers from

 the Second International Conference on Vector and Parallel Processing, 1997 1996 pp.

 Pages

139

18 Thomas, S.: ‘Preconditioned conjugate gradient methods for semiconductor device

 simulation on a CRAY C90 vector processor’, Vector and Parallel Processing —

 VECPAR'96, 1997, 1215

19 Tagaya, S., Nishida, M., Hagiwara, T., Yanagawa, T., Yokoya, Y., Takahara, H., stadler,

 J.o., and Galle, M.: ‘The NEC SX-8 Vector Supercomputer System’: ‘High Performance

 Computing on Vector Systems’ (Springer-Verlag Berlin, Heidelberg, 2006), pp. Part-1,

 3-24

20 Bustamam, A., Burrage, K., and Hamilton, N.A.: ‘Fast Parallel Markov Clustering in

 Bioinformatics Using Massively Parallel Computing on GPU with CUDA and

 ELLPACK-R Sparse Format’, IEEE/ACM Trans Comput Biol Bioinform., 2012, 3, (9),

 pp. 13

21 Corrigan, A., Camelli, F.F., Lohner, R., and Wallin, J.: ‘Running unstructured grid-based

 CFD solvers on modern graphics hardware’, International Journal for Numerical Methods

 in Fluids, 2011, 66, (2), pp. 221-229

22 Grozea, C., Bankovic, Z., and Laskov, P.: ‘FPGA vs. Multi-Core CPUs vs. GPUs:

 Hands-on Experience with a Sorting Application’: ‘Facing the multicore-challenge ’

 (Springer-Verlag Berlin, Heidelberg 2010), pp. 105-117

23 Hamada, T., Narumi, T., Yasuoka, K., Nitadori, K., and Taiji, M.: ‘42 TFlops

 Hierarchical N-body Simulations on GPUs with Applications in both Astrophysics and

 Turbulence’, in Editor (Ed.)^(Eds.): ‘Book 42 TFlops Hierarchical N-body Simulations

 on GPUs with Applications in both Astrophysics and Turbulence’ (ACM New York, NY,

 USA, 2009, edn.), pp. 12

24 Luebke, D., and Humphreys, G.: ‘How GPUs Work’, IEEE Computer, 2007, 2007

140

25 Luebke, D.: ‘CUDA: Scalable parallel programming for high-performance scientific

 computing’, in Editor (Ed.)^(Eds.): ‘Book CUDA: Scalable parallel programming for

 high-performance scientific computing’ (ACM New York, NY, USA 2008, edn.), pp. 836

 - 838

26 El-Ghazawi, T.A., Cantonnet, F., Yao, Y., Annareddy, S., and Mohamed, A.S.:

 ‘Benchmarking parallel compilers: A UPC case study’, Future Generation Computer

 Systems - Systems performance analysis and evaluation 2006, 22, (7), pp. 11

27 Polze, A., and Troger, P.: ‘Trends and challenges in operating systems—from parallel

 computing to cloud computing’, Concurrency and Computation: Practice & Experience,

 2012, 24, (7), pp. 10

28 Wilkinson, B., and Allen, M.: ‘Parallel Programming: Techniques and Applications

 Using Networked Workstations and Parallel Computers’ (Pearson Education, Inc., 2005,

 2nd edn. 2005)

29 Haney, R.H.: ‘Study and Evaluation of Domain Decomposition Approaches in two

 Parallel Software Code Developments for Process Flow Modeling in Liquid Composite

 Molding’, North Carolina A & T State University, 2006

30 Mohan, D.R., Shires, D., and Mark, A.: ‘Scalable Large Scale Process Modeling and

 Simulations in Liquid Composite Molding’: ‘Computational Science - ICCS 2001’

 (Springer Berlin Heidelberg, 2001), pp. 1199-1208

31 Angel, E., and Shreiner, D.: ‘An introduction to shader-based OpenGL programming’, in

 Editor (Ed.)^(Eds.): ‘Book An introduction to shader-based OpenGL programming’

 (ACM, 2009, edn.), pp.

141

32 Udupa, A., Govindarajan, R., and Thazhuthaveetil, M.J.: ‘Software Pipelined Execution

 of Stream Programs on GPUs’, in Editor (Ed.)^(Eds.): ‘Book Software Pipelined

 Execution of Stream Programs on GPUs’ (IEEE Computer Society Washington, DC,

 USA, 2009, edn.), pp. 200-209

33 Chen, J.X., and Wegman, E.J.: ‘Foundations of 3D Graphics Programming: Using JOGL

 and Java3D’ (Springer-Verlag London Limited, 2006, 1 edn. 2006)

34 Hearn, D., and Baker, P.M.: ‘Computer Graphics C version - 2nd Edition’ (Pearson

 Education, 1997, 1996, 2nd edn. 1996)

35 http://www.opengl-tutorial.org, accessed 12-02-2012 2012

36 Leeser, M., Yablonski, D., Brooks, D., and King, L.S.: ‘The Challenges of Writing

 Portable, Correct and High Performance Libraries for GPUs’, ACM SIGARCH

 Computer Architecture News, 2011, 39, (4), pp. 5

37 Nvidia: ‘CUDA C BEST PRACTICES GUIDE’, in Editor (Ed.)^(Eds.): ‘Book CUDA C

 BEST PRACTICES GUIDE’ (Nvidia Corporation, 2011, edn.), pp. 76

38 Nvidia: ‘PARALLEL THREAD EXECUTION ISA VERSION 3.1’, in Editor

 (Ed.)^(Eds.): ‘Book PARALLEL THREAD EXECUTION ISA VERSION 3.1’ (Nvidia

 Corporation, 2012, edn.), pp. 241

39 Ayanda, D., and Adejumo, Y.: ‘A Prototype Model of High Performance Computing

 Using Beowulf Cluster’, International Journal of Emerging Sciences, 2011, 1, (4), pp.

 696-705

40 Goddeke, D., Wobker, H., Strzodka, R., Mohd-Yusof, J., McCormick, P., and Turek, S.:

 ‘Co-Processor Acceleration of an Unmodified Parallel Solid Mechanics Code with

http://www.opengl-tutorial.org/

142

 FeastGPU’, International Journal of Computational Science and Engineering, 2009, 4,

 (4), pp. 254-269

41 Lu, F., Song, J., Yin, F., and Zhu, X.: ‘Performance evaluation of hybrid programming

 patterns for large CPU/GPU heterogeneous clusters’, Computer Physics

 Communications, 2011, 183, (6), pp. 1172-1181

42 Mohan, R., Ngo, N.D., Tamma, K.K., and Fickie, K.D.: ‘Three-Dimensional Resin

 Transfer Molding Process: Developments for Thick Composite Manufacturing

 Applications’, in Editor (Ed.)^(Eds.): ‘Book Three-Dimensional Resin Transfer Molding

 Process: Developments for Thick Composite Manufacturing Applications’ (U.S. Army

 Research Laboratory, 1996, edn.), pp. 32

43 Mohan, R.V., Ngo, N.D., Tamma, K.K., and Fickie, K.D.: ‘On a Pure Finite-Element-

 Based Methodology for Resin Transfer Mold Filling Simulations’, in Editor (Ed.)^(Eds.):

 ‘Book On a Pure Finite-Element-Based Methodology for Resin Transfer Mold Filling

 Simulations’ (Army Research Lab, 1996, edn.), pp. 18

44 Chandrupatla, T.R., and Belegundu, A.D.: ‘Introduction To Finite Elements In

 Engineering’ (Prentice-Hall, Inc., 2002, 3 edn. 2002)

45 Rao, S.S.: ‘Applied Numerical Methods For Engineers And Scientists’ (Prentice-Hall,

 Inc., 2002, 1st edn. 2002)

46 Shewchuk, J.R.: ‘An Introduction to the Conjugate Gradient Method Without the

 Agonizing Pain’, in Editor (Ed.)^(Eds.): ‘Book An Introduction to the Conjugate

 Gradient Method Without the Agonizing Pain’ (Carnegie Mellon University, 1994, edn.),

 pp. 64

143

47 Mohan, D.R., Ngo, N.D., and Tamma, K.K.: ‘On a pure finite-element-based

 methodology for resin transfer molds filling simulations’, Polymer Engineering &

 Science, 1999, 39, (1), pp. 26-43

48 Baskaran, M.M., and Bordawekar, R.: ‘Optimizing Sparse Matrix-Vector Multiplication

 on GPUs’, in Editor (Ed.)^(Eds.): ‘Book Optimizing Sparse Matrix-Vector Multiplication

 on GPUs’ (IBM Research, 2008, edn.), pp. 11

49 Bell, N., and Garland, M.: ‘Effcient Sparse Matrix-Vector Multiplication on CUDA’, in

 Editor (Ed.)^(Eds.): ‘Book Effcient Sparse Matrix-Vector Multiplication on CUDA’

 (NVIDIA Corporation, 2008, edn.), pp. 32

50 Buatois, L., Caumon, G., and Levy, B.: ‘Concurrent number cruncher: a GPU

 implementation of a general sparse linear solver’, International Journal of Parallel,

 Emergent and Distributed Systems, 2009, 24, (3), pp. 18

51 Helfenstein, R., and Koko, J.: ‘Parallel preconditioned conjugate gradient algorithm on

 GPU’, Journal of Computational and Applied Mathematics, 2011, 236, (15), pp. 6

52 Shahnaz, R., Usman, A., and Chughtai, I.R.: ‘Review of Storage Techniques for Sparse

 Matrices’, in Editor (Ed.)^(Eds.): ‘Book Review of Storage Techniques for Sparse

 Matrices’ (IEEE, 2005, edn.), pp. 1-7

53 Hugues, M.R., and Petiton, S.G.: ‘Sparse Matrix Formats Evaluation and Optimization on

 a GPU’, in Editor (Ed.)^(Eds.): ‘Book Sparse Matrix Formats Evaluation and

 Optimization on a GPU’ (IEEE Computer Society Washington, DC, USA, 2010, edn.),

 pp. 122-129

54 Rehman, M.S.: ‘Exploring Irregular Memory Access Applications on the GPU’,

 International Institute of Information Technology, 2010

144

55 De Jong, M.A.: ‘Developing a CUDA solver for large sparse matrices for MARIN’.

 Master thesis, Delft University of Technology, 2012

56 Corporation, A.: ‘AMD Family 10h Server and Workstation Processor Power and

 Thermal Data Sheet’, in Editor (Ed.)^(Eds.): ‘Book AMD Family 10h Server and

 Workstation Processor Power and Thermal Data Sheet’ (2010, edn.), pp. 98

57 Corporation, I.: ‘Intel® Xeon® Processor 5600 Series: The Next Generation of

 Intelligent Server Processors’, in Editor (Ed.)^(Eds.): ‘Book Intel® Xeon® Processor

 5600 Series: The Next Generation of Intelligent Server Processors’ (Intel Corporation,

 2010, edn.), pp. 8

58 Corporation, N.: ‘NVIDIA Quadro® FX 5600 Datasheet’, in Editor (Ed.)^(Eds.): ‘Book

 NVIDIA Quadro® FX 5600 Datasheet’ (2008, edn.), pp. 2

59 Corporation, N.: ‘TESLA M2050 AND TESLA M2070/M2070Q DUAL-SLOT

 COMPUTING PROCESSOR MODULES’, in Editor (Ed.)^(Eds.): ‘Book TESLA

 M2050 AND TESLA M2070/M2070Q DUAL-SLOT COMPUTING PROCESSOR

 MODULES’ (Nvidia Corporation, 2010, edn.), pp. 18

60 Nvidia: ‘NVIDIA GeForce 8800 Architecture Technical Brief’, in Editor (Ed.)^(Eds.):

 ‘Book NVIDIA GeForce 8800 Architecture Technical Brief’ (Nvidia Corporation, 2006,

 edn.), pp. 55

61 Nvidia: ‘NVIDIA’s Next Generation CUDA Compute Architecture: Fermi - Whitepaper’,

 in Editor (Ed.)^(Eds.): ‘Book NVIDIA’s Next Generation CUDA Compute Architecture:

 Fermi - Whitepaper’ (NVIDIA Corporation, 2009, edn.), pp. 22

145

62 Nvidia: ‘NVIDIA CUDA C Programming Guide: Version 4.2’, in Editor (Ed.)^(Eds.):

 ‘Book NVIDIA CUDA C Programming Guide: Version 4.2’ (Nvidia Corporation, 2012,

 edn.), pp. 173

63 Komatitsch, D., Michea, D., and Erlebacher, G.: ‘Porting a high-order finite-element

 earthquake modeling application to NVIDIA graphics cards using CUDA’, Journal of

 Parallel Computing, 2009, 69, (5), pp. 9

64 Kuznik, F., Obrecht, C., Rusaouen, G., and Roux, J.-J.: ‘LBM based flow simulation

 using GPU computing processor’, Computers & Mathematics with Applications, 2010,

 59, (7), pp. 12

65 Garland, M., Le Grand, S., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips,

 E., Zhang, Y., and Volkov, V.: ‘Parallel Computing Experiences with CUDA ’, Micro,

 IEEE 2008, 28, (4), pp. 13-27

66 Parakh, A.: ‘Performance estimation and application mapping on different GPUs’. Proc.

 HiPC - High Performance Computing Confrence, Pune, INDIA, December 18-21, 2012

 2012 pp. Pages

67 Bernaschi, M., Bisson, M., and Rossetti, D.: ‘Benchmarking of communication

 techniques for GPUs’, Journal of Parallel and Distributed Computing, 2013, 73, (2), pp. 5

68 Micikevicius, P.: ‘3D Finite Difference Computation on GPUs using CUDA’, in Editor

 (Ed.)^(Eds.): ‘Book 3D Finite Difference Computation on GPUs using CUDA’ (ACM

 New York, NY, USA, 2009, edn.), pp.

69 Papadrakakis, M., Stavroulakis, G., and Karatarakis, A.: ‘A new era in scientific

 computing: Domain decomposition methods in hybrid CPU–GPU architectures’,

146

 Computer Methods in Applied Mechanics and Engineering, 2011, 200, (13-16), pp. 1490-

 1508

70 Di, P., Wu, H., Xue, J., Wang, F., and Yang, C.: ‘Parallelizing SOR for GPGPUs using

 alternate loop tiling’, Journal of Parallel Computing, 2012, 38, (6-7), pp. 18

71 Goddeke, D., Strzodka, R., and Turek, S.: ‘Performance and accuracy of hardware-

 oriented native-, emulated- and mixed-precision solvers in FEM simulations’,

 International Journal of Parallel, Emergent and Distributed Systems 2007, 22, (4), pp.

 221-256

72 Kothapalli, K., Mukherjee, R., Rehman, M.S., Patidar, S., Narayanan, P.J., and Srinathan,

 K.: ‘A Performance Prediction Model for the CUDA GPGPU Platform’, in Editor

 (Ed.)^(Eds.): ‘Book A Performance Prediction Model for the CUDA GPGPU Platform’

 (IEEE, 2009, edn.), pp. 463 - 472

73 Lukash, M., and Rupp, K.: ‘Sparse Approximate Inverse Preconditioners for Iterative

 Solvers on GPUs’, in Editor (Ed.)^(Eds.): ‘Book Sparse Approximate Inverse

 Preconditioners for Iterative Solvers on GPUs’ (Society for Computer Simulation

 International 2012, edn.), pp.

74 Huo, X., Ravi, V., Ma, W., and Agrawal, G.: ‘An Execution Strategy and Optimized

 Runtime Support for Parallelizing Irregular Reductions on Modern GPUs’, in Editor

 (Ed.)^(Eds.): ‘Book An Execution Strategy and Optimized Runtime Support for

 Parallelizing Irregular Reductions on Modern GPUs’ (ACM New York, NY, USA, 2011,

 edn.), pp. 2-11

147

75 Wald, I.: ‘Active thread compaction for GPU path tracing’, in Editor (Ed.)^(Eds.): ‘Book

 Active thread compaction for GPU path tracing’ (ACM New York, NY, USA, 2011,

 edn.), pp. 51-58

76 Hewlett-Packard Development Company, L.P.: ‘QuickSpecs NVIDIA Quadro FX 5600

 PCIe Graphics Card’, in Editor (Ed.)^(Eds.): ‘Book QuickSpecs NVIDIA Quadro FX

 5600 PCIe Graphics Card’ (2009, edn.), pp. 4

77 Gou, C., and Gaydadjiev, G.N.: ‘Elastic Pipeline: Addressing GPU On-chip Shared

 Memory Bank Conflicts’, in Editor (Ed.)^(Eds.): ‘Book Elastic Pipeline: Addressing

 GPU On-chip Shared Memory Bank Conflicts’ (ACM New York, NY, USA, 2011, edn.),

 pp.

78 Nvidia: ‘CUDA CUBLAS Library: Version 1.1’, in Editor (Ed.)^(Eds.): ‘Book CUDA

 CUBLAS Library: Version 1.1’ (Nvidia Corporation, 2007, edn.), pp. 84

79 Corporation, N.: ‘CUDA CUSPARSE Users Guide’, in Editor (Ed.)^(Eds.): ‘Book

 CUDA CUSPARSE Users Guide’ (Nvidia Corporation, 2012, v5.0 edn.), pp. 123

80 Bahi, J.M., Couturier, R., and Khodja, L.Z.: ‘Parallel GMRES implementation for

 solving sparse linear systems on GPU clusters’, in Editor (Ed.)^(Eds.): ‘Book Parallel

 GMRES implementation for solving sparse linear systems on GPU clusters’ (Society for

 Computer Simulation International San Diego, CA, USA, 2011, edn.), pp. 12-19

81 Kruger, J., and Westermann, R.: ‘Linear Algebra Operators for GPU Implementation of

 Numerical Algorithms’, ACM Transactions on Graphics (TOG) - Proceedings of ACM

 SIGGRAPH 2003, 2003, 22, (3), pp. 8

82 Holk, E., Byrd, W., Mahajan, N., Wilcock, J., Chauhan, A., and Lumsdaine, A.:

 ‘Declarative Parallel Programming for GPUs’: ‘Advances in Parallel Computing, Volume

148

 22: Applications, Tools and Techniques on the Road to Exascale Computing’ (IOS

 Press, 2011)

83 Kahan, W.: ‘IEEE Standard 754 for Binary Floating-Point Arithmetic’, in Editor

 (Ed.)^(Eds.): ‘Book IEEE Standard 754 for Binary Floating-Point Arithmetic’

 (University of California Berkeley CA, USA, 1997, edn.), pp. 30

84 Dimitrov, M., Mantor, M., and Zhou, H.: ‘Understanding Software Approaches for

 GPGPU Reliability’, in Editor (Ed.)^(Eds.): ‘Book Understanding Software Approaches

 for GPGPU Reliability’ (ACM New York, NY, USA, 2009, edn.), pp. 94-104

85 Hillesland, K., and Lastra, A.: ‘GPU floating-point paranoia’. Proc. ACM Workshop on

 General Purpose Computing on Graphics Processors In ACM Workshop on General

 Purpose Computing on Graphics Processors 2004 2004 pp. Pages

86 Whitehead, N., and Fit-Florea, A.: ‘Precision & Performance: Floating Point and IEEE

 754 Compliance for NVIDIA GPUs’, in Editor (Ed.)^(Eds.): ‘Book Precision &

 Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs’ (Nvidia,

 2011, edn.), pp. 7

87 Castaldo, A.M.: ‘ERROR ANALYSIS OF VARIOUS FORMS OF FLOATING POINT

 DOT PRODUCTS’, The University of Texas at San Antonio, 2007

88 Volkov, V., and Demmel, J.W.: ‘Benchmarking GPUs to tune dense linear algebra’. Proc.

 International Conference for High Performance Computing, Networking, Storage and

 Analysis, 2008. SC 2008., Austin, TX, USA, 15-21 Nov. 2008 2008 pp. Pages

89 Mohan, R.V., Ngo, N.D., and Tamma, K.K.: ‘On a Pure Finite Element Methodology for

 Resin Transfer Mold Filling Simulations’, Polymer Engineering and Science, 1999, 39,

 pp. 26-43

149

90 Fatahalian, K., Sugerman, J., and Hanrahan, P.: ‘Understanding the Effciency of GPU

 Algorithms for Matrix-Matrix Multiplication’, in Editor (Ed.)^(Eds.): ‘Book

 Understanding the Effciency of GPU Algorithms for Matrix-Matrix Multiplication’

 (ACM New York, NY, USA 2004, edn.), pp. 133-137

91 Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C.: ‘Introduction To Algorithms’

 (The MIT Press, 2001, 2nd edn. 2001)

92 Resios, A.: ‘GPU performance prediction using parametrized models’. Masters, Utrecht

 University, 2011

93 Zhang, Y., and Owens, J.D.: ‘A quantitative performance analysis model for GPU

 architectures’. Proc. High Performance Computer Architecture (HPCA), 2011 IEEE 17th

 International Symposium on San Antonio, TX, 12-16 Feb. 2011 2011 pp. Pages

94 Wang, H., Potluri, S., Luo, M., Singh, A.K., Sur, S., and Panda, D.K.: ‘MVAPICH2-

 GPU: optimized GPU to GPU communication for InfiniBand clusters’, Computer

 Science - Research and Development, 2011, 26, (3-4), pp. 257-266

95 Karunadasa, N.P., and Ranasinghe, D.N.: ‘Accelerating High Performance Applications

 with CUDA and MPI’. Proc. 2009 International Conference on Industrial and

 Information Systems (ICIIS), Sri Lanka, December 28-31, 2009 2009 pp. Pages

96 Tipparaju, V., and Vetter, J.S.: ‘GA-GPU: Extending a Library-based Global Address

 Space Programming Model for Scalable Heterogeneous Computing Systems’, in Editor

 (Ed.)^(Eds.): ‘Book GA-GPU: Extending a Library-based Global Address Space

 Programming Model for Scalable Heterogeneous Computing Systems’ (ACM New York,

 NY, USA 2012, edn.), pp. 53-64

150

97 Wang, L., Huang, M., Narayana, V., and El-Ghazawi, T.A.: ‘Scaling Scientific

 Applications on Clusters of Hybrid Multicore/GPU Nodes’, in Editor (Ed.)^(Eds.): ‘Book

 Scaling Scientific Applications on Clusters of Hybrid Multicore/GPU Nodes’ (ACM New

 York, NY, USA, 2011, edn.), pp.

98 Wilkinson, B., and Allen, M.: ‘Parallel Programming: Techniques and Applications

 Using Networked Workstations and Parallel Computers’ (Pearson Prentice Hall, 2005, 2

 edn. 2005)

99 Sun Microsystems, I.: ‘Sun HPC ClusterTools 8.2 (software tools)’, in Editor

 (Ed.)^(Eds.): ‘Book Sun HPC ClusterTools 8.2 (software tools)’ (Oracle, Inc., 2009,

 edn.), pp.

100 Geist, G.A., Kohl, J.A., and Papadopoulos, P.M.: ‘PVM and MPI: A comparison of

 features’, Calculateurs Paralleles, 1996, 8, (2)

101 Song, J.P., and Shires, D.: ‘Central Processing Unit/Graphics Processing Unit

 (CPU/GPU) Hybrid Computing of Synthetic Aperture Radar Algorithm’, in Editor

 (Ed.)^(Eds.): ‘Book Central Processing Unit/Graphics Processing Unit (CPU/GPU)

 Hybrid Computing of Synthetic Aperture Radar Algorithm’ (U.S. Army Research

 Laboratory, 2010, edn.), pp.

102 Khajeh-Saeed, A., and Perot, J.B.: ‘Computational Fluid Dynamics Simulations Using

 Many Graphics Processors’, Computing in Science & Engineering, 2011, 14, (3), pp. 10-

 19

103 Komatitsch, D., Michea, D., and Erlebacher, G.: ‘Porting a high-order finite-element

 earthquake modeling application to NVIDIA graphics cards using CUDA’, Journal of

 Parallel and Distributed Computing, 2009, 69, (5), pp. 451-460

151

104 Fengshun, L., Song, J., Yin, F., and Zhu, X.: ‘Performance evaluation of hybrid

 programming patterns for large CPU/GPU heterogeneous clusters’, Computer Physics

 Communications, 2012, 183, (6), pp. 1172-1181

105 Ji, F., Ajiy, A.M., Dinanz, J., Buntinasz, D., Balajiz, P., Fengy, W.-c., and Ma, X.:

 ‘Efficient Intranode Communication in GPU-Accelerated Systems’. Proc. Parallel and

 Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE

 26th International Shanghai 21-25 May 2012 2012 pp. Pages

106 Belviranli, M.E., Bhuyan, L.N., and Gupta, R.: ‘A Dynamic Self-Scheduling Scheme for

 Heterogeneous Multiprocessor Architectures’, ACM Transactions on Architecture and

 Code Optimization (TACO) - Special Issue on High-Performance Embedded

 Architectures and Compilers, 2013, 9, (4), pp. 19

107 Filipovic, J., Peterlik, I., and Fousek, J.: ‘GPU Acceleration of Equations Assembly in

 Finite Elements Method – Preliminary Results’, SAAHPC: Symposium on Application

 Accelerators in HPC, 2009

108 Fousek, J., Filipovic, J., and Madzin, M.: ‘Automatic Fusions of CUDA-GPU Kernels for

 Parallel Map’, ACM SIGARCH Computer Architecture News, 2011, 39, (4), pp. 1

109 Khajeh-Saeed, A., and Perot, J.B.: ‘Computational Fluid Dynamics Simulations Using

 Many Graphics Processors’, Computing in Science & Engineering, 2012, 14, (3), pp. 9

110 Goddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Buijssen, S.H.M.,

 Grajewski, M., and Turek, S.: ‘Exploring weak scalability for FEM calculations on a

 GPU-enhanced cluster’, Journal of Parallel Computing, 2007, 33, (10-11), pp. 685-699

111 Samuels, M.L., and Witmer, J.A.: ‘Statistics for the Life Sciences’ (Pearson Education,

 Inc., 2003, 3 edn. 2003)

152

112 Che, S., Sheaffer, J.W., and Skadron, K.: ‘Dymaxion: Optimizing Memory Access

 Patterns for Heterogeneous Systems’, in Editor (Ed.)^(Eds.): ‘Book Dymaxion:

 Optimizing Memory Access Patterns for Heterogeneous Systems’ (ACM New York, NY,

 USA, 2011, edn.), pp.

113 Steinberger, M., Kainz, B., Kerbl, B., Hauswiesner, S., Kenzel, M., and Schmalstieg, D.:

 ‘Softshell: Dynamic Scheduling on GPUs’, ACM Transactions on Graphics (TOG) -

 Proceedings of ACM SIGGRAPH Asia 2012, 2012, 31, (6), pp. 12

114 Solutions, A.E.: ‘Intel Sandy Bridge Brings Many Benefits the PC/104 Form Factor’, in

 Editor (Ed.)^(Eds.): ‘Book Intel Sandy Bridge Brings Many Benefits the PC/104 Form

 Factor’ (Embedded Solutions, 2011, edn.), pp. 5

115 Spafford, K.L., Meredith, J.S., Lee, S., Li, D., Roth, P.C., and Vetter, J.S.: ‘The Tradeoffs

 of Fused Memory Hierarchies in Heterogeneous Computing Architectures’, in Editor

 (Ed.)^(Eds.): ‘Book The Tradeoffs of Fused Memory Hierarchies in Heterogeneous

 Computing Architectures’ (ACM New York, NY, USA, 2012, edn.), pp. 103-112

153

Appendix A

 The CUDA Kernel code and associated functions and structures for the execution of

sparse matrix-vector multiplication discussed in chapter 3 are presented below.

CUDA File (matvec.cu):

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <cuda.h>

#include <cublas.h>

#define BLOCK_SIZE 16

// HOST-Side C-Code interface for generalized matrix multiplication operation of the form

// 'Ax = b' using CRS compression.

extern "C" void mul_multBlocks_CRS(float *val, unsigned int vLength, unsigned int *rp,

 unsigned int rpLength, unsigned int *cp, unsigned int cpLength, float *b,

 float *x, unsigned int m, unsigned int n, unsigned int p, float &time);

// HOST-Side C-Code interface for generalized matrix multiplication operation of the form

// 'Ax = b' using BCRS 2x2 compression.

extern "C" void mul_multBlocks_BCRS(float *val, unsigned int vLength, unsigned int *rp,

 unsigned int rpLength, unsigned int *cp, unsigned int cpLength, float *b,

 float *x, unsigned int m, unsigned int n, unsigned int p, float &time);

// GPU-Code for generalized matrix multiplication operation of the form 'Ax = b' for CSR

// format.

__global__ void mul_multipleblocks_CRS(float *val, float *b, float *x, uint2 *rp,

 unsigned int *cp, unsigned int m, unsigned int n);

// GPU-Code for generalized matrix multiplication operation of the form 'Ax = b' for BCRS 2x2

// format.

__global__ void mul_multipleblocks_BCRS(float4 *val, float2 *b, float2 *x, uint2 *rp,

 unsigned int *cp, unsigned int m, unsigned int n);

// Computes the current THREAD index.

__device__ unsigned int compute_thread_index() {

 return (blockIdx.x*BLOCK_SIZE*BLOCK_SIZE

 + blockIdx.y*BLOCK_SIZE*BLOCK_SIZE*gridDim.x

 + threadIdx.x + threadIdx.y*BLOCK_SIZE);

}

154

void mul_multBlocks_CRS(float *val, unsigned int vLength, unsigned int *rp,

 unsigned int rpLength, unsigned int *cp, unsigned int cpLength,float *b, float *x,

 unsigned int m, unsigned int n, unsigned int p, float &time) {

 // Timing this operation.

 cudaEvent_t start, stop; time = 0.0f;

 // Initialize EVENT Timers - CUDA.

 cudaEventCreate(&start); cudaEventCreate(&stop);

 // Variables to be placed on GPU.

 float *val_d = NULL; float *b_d = NULL;

 float *x_d = NULL; uint2 *rp_d = NULL;

 unsigned int *cp_d = NULL;

 // Compute ROW "pointer" BOUNDS to be pushed on the GPU

 uint2 *cpu_rp = new uint2[rpLength - 1];

 {

 for(unsigned int i = 0; i < rpLength - 1; i++)

 {

 cpu_rp[i].x = rp[i];

 cpu_rp[i].y = rp[i + 1];

 }

 }

 // Allocate and initialize values for GPU

 cudaMalloc((void**)&val_d, vLength*sizeof(float));

 cudaMalloc((void**)&x_d, m*p*sizeof(float));

 cudaMalloc((void**)&b_d, n*p*sizeof(float));

 cudaMalloc((void**)&cp_d, cpLength*sizeof(unsigned int));

 cudaMalloc((void**)&rp_d, rpLength*sizeof(uint2));

 cudaMemcpy(cp_d, cp, cpLength*sizeof(unsigned int), cudaMemcpyHostToDevice);

 cudaMemcpy(rp_d, cpu_rp, rpLength*sizeof(uint2), cudaMemcpyHostToDevice);

 cudaMemcpy(val_d, val, vLength*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(b_d, b, n*p*sizeof(float), cudaMemcpyHostToDevice);

 // Calculate dimensions for GPU Device

 dim3 grid; dim3 block;

 grid.x = (unsigned int)(sqrt((float)n)/BLOCK_SIZE + 1);

 grid.y = (unsigned int)(sqrt((float)n)/BLOCK_SIZE + 1);

 block.x = BLOCK_SIZE; block.y = BLOCK_SIZE;

 cudaEventRecord(start, 0);

155

 // Kernel call

 mul_multipleblocks_CRS<<<grid, block>>>(val_d, b_d, x_d, rp_d, cp_d, m, n);

 // "Record" the stopping of this EVENT - i.e. return from kernel call.

 cudaEventRecord(stop, 0); cudaEventSynchronize(stop);

 // Get the amount of time elapsed (in milliseconds) and DESTROY the CUDA timer

 // objects.

 cudaEventElapsedTime(&time, start, stop);

 cudaEventDestroy(start); cudaEventDestroy(stop);

 // Retrieve results pointed by 'x_d'

 cudaMemcpy(x, x_d, m*p*sizeof(float), cudaMemcpyDeviceToHost);

 // Free Memory - CPU.

 delete [] cpu_rp;

 // Free Memory - GPU.

 cudaFree(val_d);

 cudaFree(b_d);

 cudaFree(x_d);

 cudaFree(rp_d);

 cudaFree(cp_d);

}

void mul_multBlocks_BCRS(float *val, unsigned int vLength, unsigned int *rp,

 unsigned int rpLength, unsigned int *cp, unsigned int cpLength, float *b, float *x,

 unsigned int m, unsigned int n, unsigned int p, float &time) {

 // Timing this operation.

 cudaEvent_t start, stop; time = 0.0f;

 // Initialize EVENT Timers - CUDA.

 cudaEventCreate(&start); cudaEventCreate(&stop);

 // Variables to be placed on GPU.

 float4 *val_d = NULL; float2 *x_d = NULL;

 float2 *b_d = NULL; uint2 *rp_d = NULL;

 unsigned int *cp_d = NULL;

 // Compute ROW "pointer" BOUNDS to be pushed on the GPU.

 uint2 *cpu_rp = new uint2[rpLength - 1];

 {

 for(unsigned int i = 0; i < rpLength - 1; i++)

 {

 cpu_rp[i].x = rp[i];

 cpu_rp[i].y = rp[i + 1];

156

 }

 }

 // Allocate and initialize values for GPU.

 cudaMalloc((void**)&val_d, vLength*sizeof(float4));

 cudaMalloc((void**)&x_d, m*p*sizeof(float2));

 cudaMalloc((void**)&b_d, n*p*sizeof(float2));

 cudaMalloc((void**)&cp_d, cpLength*sizeof(unsigned int));

 cudaMalloc((void**)&rp_d, rpLength*sizeof(uint2));

 cudaMemcpy(cp_d, cp, cpLength*sizeof(unsigned int), cudaMemcpyHostToDevice);

 cudaMemcpy(rp_d, cpu_rp, rpLength*sizeof(uint2), cudaMemcpyHostToDevice);

 cudaMemcpy(val_d, val, vLength*sizeof(float), cudaMemcpyHostToDevice);

 cudaMemcpy(b_d, b, n*p*sizeof(float), cudaMemcpyHostToDevice);

 // Calculate dimensions for GPU device.

 dim3 grid; dim3 block;

 grid.x = (unsigned int)(sqrt((float)n/2.0f)/BLOCK_SIZE + 1);

 grid.y = (unsigned int)(sqrt((float)n/2.0f)/BLOCK_SIZE + 1);

 block.x = BLOCK_SIZE; block.y = BLOCK_SIZE;

 cudaEventRecord(start, 0);

 // Kernel call.

 mul_multipleblocks_BCRS<<<grid, block>>>(val_d, b_d, x_d, rp_d, cp_d, m, n);

 // "Record" the stopping of this EVENT - i.e. return from kernel call.

 cudaEventRecord(stop, 0); cudaEventSynchronize(stop);

 // Get the amount of time elapsed (in milliseconds) and DESTROY the CUDA

 // timer objects.

 cudaEventElapsedTime(&time, start, stop); cudaEventDestroy(start);

 cudaEventDestroy(stop);

 // Retrieve results pointed by 'x_d'

 cudaMemcpy(x, x_d, m*p*sizeof(float), cudaMemcpyDeviceToHost);

 // Free Memory - CPU.

 delete [] cpu_rp;

 // Free Memory - GPU.

 cudaFree(val_d);

 cudaFree(b_d);

 cudaFree(x_d);

 cudaFree(rp_d);

 cudaFree(cp_d);

}

157

C/C++ Matrix Class

template <class T> class Matrix {

private:

 T *data_;

 // Number of Rows and Cols.

 unsigned int m_; unsigned int n_;

 // Matrix Compression Format.

 FORMAT_TYPE type_;

 // I-Index (e.g. ROW "pointer" in CRS).

 unsigned int *rowptr_;

 // J-Index (e.g. COLUMN "pointer" in CRS).

 unsigned int *colind_;

 // First Index into Sub-Block for BCRS (i.e. 2x2 sub-blocks) Format.

 unsigned int *nzptr_;

 // Non-Zero(s) from ORIGINAL matrix for CRS (i.e. 1x1 Sub-Blocks).

 T *val_;

 // The LENGTH of 'val', 'colind_', 'rowptr_', and 'nzptr' Vectors respectively.

 unsigned int vLength_; unsigned int cLength_; unsigned int rLength_;

 // Compute the total number of Non-Zeros in this matrix.

 unsigned int numNNZ();

 // Compress current matrix to CRS Format.(i.e. 1x1 Block.)

 void compressCRS();

 // Compress current matrix to BCRS Format.(i.e. 2x2 Block.)

 void compressBCRS();

 // CPU-Based Matrix-Vector Multiplication(s) using CRS, BCRS (2x2), and

 // NO Compression.

 void matVecMultCRS(T *b, T *x, unsigned int n);

 void matVecMultBCRS(T *b, T *x, unsigned int n);

 void matVecMultNONE(T *b, T *x, unsigned int n);

 void matMatMult_NONE(T *b, T *x);

 // GPU-Based Matrix-Vector Multiplication(s) using CRS, BCRS (2x2), and

 // NO Compression.

158

 void matVecMultCRS_GPU(T *b, T *x, unsigned int p);

 void matVecMultBCRS_GPU(T *b, T *x, unsigned int p);

 void matVecMultNONE_GPU(T *b, T *x, unsigned int p);

public:

 // Create Matrix object from argument data of m-by-n dimensions.

 Matrix(T **data, unsigned int m, unsigned int n);

 // Create Matrix object from argument data of m-by-m dimensions.

 Matrix(T *data, unsigned int m);

 // Compress current data element (i.e. matrix), REMOVING the ORIGINAL

 // Matrix elements.

 // PARAM: type The Matrix Compression used (e.g. CRS).

 void compress(FORMAT_TYPE type = CRS);

 // Computes Matrix-Vector Product as defined by the current matrix compression

 // format (if any).

 // PARAM: b Right-Hand Side

 // PARAM: x Solution Vector (holds solution)

 // PARAM: n Length of Right-Hand Side Vector and Solution Vector

 void matrixVectorMult(T *b, T *x, unsigned int n);

 void matrixMultCPU(T *b, T *x);

 // Computes Matrix-Vector Product as defined by the current matrix compression

 // format (if any) for the

 // GPU Device.

 // PARAM: b Right-Hand Side

 // PARAM: x Solution Vector (holds solution)

 void matrixVectorMultGPU(T *b, T *x, unsigned int p);

 void matrixMultGPU(T *B, T *C);

 T& operator()(unsigned int i, unsigned int j);

 void printCompressType();

 ~Matrix();

};

159

C/C++ Class Template (calls CUDA file with Kernels)

template <class T>

void Matrix<T>::matVecMultCRS_GPU(T *b, T *x, unsigned int p){

 if(val_ == NULL || rowptr_ == NULL || colind_ == NULL)

 throw MatrixException("Exception with GPU call!\n");

 float gTime = 0.0f;

 // Call kernel via C-Code interface.

 mul_multBlocks_CRS(val_, vLength_, rowptr_, rLength_, colind_, cLength_, b, x, m_,

 n_, p, gTime);

 cout << "GPU Execution Time: " << gTime << " (milliseconds).\n";

}

Derivations of Presented Equations:

 Equation (4.5) to calculate the average number of non-zeros per row when using the

Compressed Sparse Row (CSR) data compression format is detailed below.

 The data-type utilized in this work is the single-precision float each of which is defined

by 4-bytes. The assumption is an initial square matrix of MM dimension so the number of non-

zero elements for each row M is generated as a ratio subtracted from the GPU device global

memory memG . The numerator of the ratio is 4 times the number of rows M plus 1, to account for

even numbers of elements as well as 4-byte floats. The denominator is the number of rows

M times 8 which defines the square of a single float – generating a ratio that is less than 1 and an

average of length of a single row in the original matrix. The maximum of 1 or the generated

average number of non-zeros per row is chosen as the result NZR since the value should at least

be a placeholder for any equation that employees this computed value.

160

M

M
GMAXR memNZ

44

14
,1 (4.5)

 Equation (4.6) to calculate the number of blocks when using the Compressed Sparse

Row (CSR) data compression format is detailed below.

 Each calculated block of data input to the GPU, BN , is partitioned such that a single warp

(32 threads) is given for each row M . The number of blocks is a ratio such that the numerator is

the product of the number of rows M and the average number of non-zero elements per row

NZR and the denominator is the total number of warps and SMPs for the GPU device multiplied

by the number of threads per warp, 32.

smpwt

NZ
B

NNN

RM
N

 (4.6)

 Equation (5.3) to calculate the total solution time for multiple CPU/GPU computing

systems when using Compressed Sparse Row (CSR) data compression format is detailed below.

 The estimated solution time for the multiple CPU/GPU computing system is adapted

from the estimated time for the single CPU/GPU computing system which is detailed in equation

(4.9.3) of chapter 4 given as gpuT , and the cost of local CPU-GPU host and intra-nodal MPI

communication defined asC .

 The assumption is made that the single CPU/GPU computing system solution time

estimation gpuT and the number of active thread blocks per SMP ATBN are already known. The

naïve approach of computing the ratio of the single CPU/GPU solution time by the number of

partitions sdP must be modified to account for overhead of communications defined asC . Given

161

each partition will produce an individual cost C , C is divided by the number of partitions of the

original global domain sdP - this result is multiplied by the sum of the number of active thread

blocks per SMP ATBN and the square root of the number of partitions sdP represented in equation

(5.3) as sdATB PN . Multiplying sdATB PN by the communication ratio
sdP

C
 generates

an average cost of communication assuming a square matrix, thus the sdP variable.

 The estimated solution time of multiple CPU/GPU computing system is not complete

until the rate of growth/decay is calculated using an exponent of the ratio of the total number of

partitions to the number of active thread blocks represented in equation (5.3) as ATB

sd

N

P

e . Using the

generated rate of growth/decay ATB

sd

N

P

e , the cost of communication will increase as the number of

partitions increase and conversely will decrease as the number of active thread blocks increase.

 ATB

sd

N

P

sdATB

sdsd

gpu

gpumult ePN
P

C

P

T
T

_ (5.3)

162

Appendix B

 The CUDA Kernels and C/C++ code for the execution of full candidate application

discussed in chapters 4 and 5 are presented below.

Main-point-of-entry (fertm2d.cpp):

// Name : fertm2d.cpp

// Author : Richard Haney

// Version : 1.1a

// Description : Simulated Resin Transfer Molding (RTM) such that the global solution is solved

// using Finite Element Method (FEM) and is based on original FORTRAN

// COMPOSE2D code by Dr. Ram Mohan and Dale Shires.

#include <stdio.h>

#include <stdlib.h>

#include <iostream>

#include "Fertm.h"

using namespace std;

int main(int argc, char **argv) {

 Fertm fertm_(argc, argv);

 int nfill = 0; double sumf = 0.0;

 long long int flops = 0; double soltime = 0.0;

 // initialize system

 fertm_.initialize();

 // preprocess

 fertm_.preprocess(nfill);

 // process/solve system

 fertm_.process(nfill, sumf, flops, soltime);

 return EXIT_SUCCESS;

}

163

Interface and implementation of parent RTM object (IRTM.h):

#ifndef IRTM_H_

#define IRTM_H_

#include <string>

#include <iostream>

#include <stdlib.h>

using namespace std;

// Interface for Resin Transfer Molding (RTM) to be used to in the simulation program.

class IRtm {

public:

 IRtm();

 virtual ~IRtm();

 virtual string get_filename() = 0;

 /*

 * Function initializes all value(s) to prepare for the execution of the RTM program

 * **

 * PLEASE NOTE: Function must be called FIRST!

 * **

 */

 virtual void initialize() = 0;

 /*

 * Function executes preprocessing operations for RTM program returning the

 * initial volume filled.

 * **

 * PLEASE NOTE: Function must be called AFTER the initialize() and BEFORE the

 * process()

 * **

 * @param numfill is the current number of filled nodes - assumed zero at this point

 * @return total volume filled in model

 */

 virtual void preprocess(int &numfill) = 0;

164

 /*

 * Function executes the processing operations for RTM program - solving the system.

 * **

 * PLEASE NOTE: Function must only be called AFTER calling the preprocess()

 * function.

 * **

 * @param num is the number of filled nodes

 * @param sumf sum filled/volume

 * @param flops number of floating-point operations

 * @param solve_time total time for execution – in milliseconds

 * @param verbose if true outputs verbose info.

 */

 virtual void process(int &num, double &sumf, long long int &flops, double &solve_time,

 bool verbose = false) = 0;

};

#endif /*IRTM_H_*/

Sub-class of RTM (Fertm.h):

#ifndef FERTM_H_

#define FERTM_H_

#include "IRtm.h"

#include "FertmModel.h"

#include "FertmParser.h"

#include "CStopWatch.h"

#include "CircValidate.h"

#include "Write.h"

class Fertm : public IRtm {

protected:

 FertmModel model_; FertmParser parse_;

public:

 Fertm(int argc, char **argv);

 virtual ~Fertm();

 // Function returns the current filename of the input file being "solved" by this class.

 string get_filename();

 // Function returns the current "partitioned" filename being used for MPI-based

 // parallelism, if any

 string get_pfilename();

 // Function performs initialization operations such that the FERTM 2D program can

 // execute properly.

 void initialize();

165

 /*

 * Function executes all preprocessing operations for the FERTM 2D program to execute

 * properly.

 * @param numfill current number of filled nodes - assumed zero at this point

 * @return total filled volume after preprocessing

 */

 void preprocess(int &numfill);

 /*

 * Function executes the processing operations for the FERTM 2D RTM - solving the

 * system.

 * ***

 * PLEASE NOTE: Function must only be called AFTER calling the preprocess()

 * function.

 * ***

 * @param num is the number of filled nodes

 * @param sumf sum filled/volume

 * @param flops number of floating-point operations

 * @param solve_time total time for execution – in milliseconds

 * @param verbose if true outputs verbose info.

 */

 void process(int &num, double &sumf, long long int &flops, double &solve_time,

 bool verbose = false);

};

#endif /*FERTM_H_*/

166

Appendix C

 The algorithms from chapter 2 of this dissertation defining the LCM solution strategy,

sparse matrix-vector, and the preconditioned conjugate gradient iterative solver for sparse

symmetric positive definitive matrices.

Algorithm 2.1: Implicit Pure FE methodology for LCM Computation

 (For time step 1n and iteration m)

1. REPEAT

2. SET 1

n

mi to n

i (save previous fill factor values)

3. CALL assembleC for iC (assembleC forms lump mass matrix)

4. CALL assembleK for ijK (assembleK forms stiffness matrix K)

5. CALL assembleLoad on iq (assembleLoad forms load vector q)

6. REPEAT

7. SET boundary conditions on ijK

 (Modified load vector g)

8. SET
mig to

mi

n

miii

n

iii qtCC
1

 (Where ijK̂ is K matrix with boundary conditions applied)

9. SOLVE
mimjmij gPK ˆ

 (Compute new nodal resin fraction field using equation (4))

10. SET
mimjij

n

iii

n

miii qtPKtCC

1

1

11. IF

11

1

n

miii

n

miii CC THEN

12. BREAK

13. ELSE

14. SET 1

n

mi to 1

1

n

mi

15. ENDIF

16. UNTIL mass resin convergence

17. UNTIL all nodes are filled

167

Algorithm 2.2: Preconditioned conjugate gradient (solves bAx)

Input: Matrix A and load/force vector b

Output: solution vector x

1. Set 00 Axbr

2. Set 0

1

0 rMz

3. Set 00 zp

4. Set 0k

5. DO UNTIL CONVERGENCE

6.
k

T

k

k

T

k

k
App

zr

7. kkkk pxx 1

8. kkkk Aprr 1

9. IF 1kk rr BREAK

10. 1

1

1

 kk rMz

11.
k

T

k

k

T

k

k
rz

rz 11

12. kkkk pzp 11

13. 1 kk

14. END DO

168

Algorithm 2.3: Sparse Matrix-Vector Multiplication (CSR Compression)

Input: Non-zero vector dat , load/force vector b , row pointer rptr , column indices cidx , and row

length M

Output: solution vector x

1. Set 0i

2. Set 0j

3. Set 0k

4. DO WHILE Mi

5. Set irptrj

6. Set 1 irptrk

7. DO WHILE kj

9. Set jcidxbjdatixix

10. Set 1 jj

11. END DO

12. Set 1 ii

13. END DO

169

Appendix D

 This appendix contains TECPLOT visualized results of resin flow progression contours

of the input unstructured meshes.

Figure 96. Time filled for unstructured mesh MA CPU-Only (System A)

170

Figure 97. Time filled for unstructured mesh MA single CPU/GPU (System A)

 The following are the time-filled TECPLOT images for validation using the 2D circular

plate model that was compared to analytical solution.

171

Figure 98. Time filled single CPU/GPU with circular plate (System A)

Figure 99. Time filled multiple CPU/GPU with circular plate (System A)

172

Figure 100. Time filled single CPU/GPU with circular plate (System B)

Figure 101. Time filled multiple CPU/GPU with circular plate (System B)

173

Figure 102. Input mesh model 10FT multiple partition time-filled comparison (System A)

174

Figure 103. Input mesh model 10FT multiple partition time-filled comparison (System B)

	Architecture--Performance Interrelationship Analysis In Single/Multiple Cpu/Gpu Computing Systems: Application To Composite Process Flow Modeling
	Recommended Citation

	tmp.1588277911.pdf.wj7k6

