43 research outputs found

    λ³΅μž‘ν•˜κ³  λΆˆν™•μ‹€ν•œ ν™˜κ²½μ—μ„œ 졜적 μ˜μ‚¬ 결정을 μœ„ν•œ 효율적인 λ‘œλ΄‡ ν•™μŠ΅

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·정보곡학뢀, 2021. 2. Songhwai Oh.The problem of sequential decision making under an uncertain and complex environment is a long-standing challenging problem in robotics. In this thesis, we focus on learning a policy function of robotic systems for sequential decision making under which is called a robot learning framework. In particular, we are interested in reducing the sample complexity of the robot learning framework. Hence, we develop three sample efficient robot learning frameworks. The first one is the maximum entropy reinforcement learning. The second one is a perturbation-based exploration. The last one is learning from demonstrations with mixed qualities. For maximum entropy reinforcement learning, we employ a generalized Tsallis entropy regularization as an efficient exploration method. Tsallis entropy generalizes Shannon-Gibbs entropy by introducing a entropic index. By changing an entropic index, we can control the sparsity and multi-modality of policy. Based on this fact, we first propose a sparse Markov decision process (sparse MDP) which induces a sparse and multi-modal optimal policy distribution. In this MDP, the sparse entropy, which is a special case of Tsallis entropy, is employed as a policy regularization. We first analyze the optimality condition of a sparse MDP. Then, we propose dynamic programming methods for the sparse MDP and prove their convergence and optimality. We also show that the performance error of a sparse MDP has a constant bound, while the error of a soft MDP increases logarithmically with respect to the number of actions, where this performance error is caused by the introduced regularization term. Furthermore, we generalize sparse MDPs to a new class of entropy-regularized Markov decision processes (MDPs), which will be referred to as Tsallis MDPs, and analyzes different types of optimal policies with interesting properties related to the stochasticity of the optimal policy by controlling the entropic index. Furthermore, we also develop perturbation based exploration methods to handle heavy-tailed noises. In many robot learning problems, a learning signal is often corrupted by noises such as sub-Gaussian noise or heavy-tailed noise. While most of the exploration strategies have been analyzed under sub-Gaussian noise assumption, there exist few methods for handling such heavy-tailed rewards. Hence, to overcome heavy-tailed noise, we consider stochastic multi-armed bandits with heavy-tailed rewards. First, we propose a novel robust estimator that does not require prior information about a noise distribution, while other existing robust estimators demand prior knowledge. Then, we show that an error probability of the proposed estimator decays exponentially fast. Using this estimator, we propose a perturbation-based exploration strategy and develop a generalized regret analysis scheme that provides upper and lower regret bounds by revealing the relationship between the regret and the cumulative density function of the perturbation. From the proposed analysis scheme, we obtain gap-dependent and gap-independent upper and lower regret bounds of various perturbations. We also find the optimal hyperparameters for each perturbation, which can achieve the minimax optimal regret bound with respect to total rounds. For learning from demonstrations with mixed qualities, we develop a novel inverse reinforcement learning framework using leveraged Gaussian processes (LGP) which can handle negative demonstrations. In LGP, the correlation between two Gaussian processes is captured by a leveraged kernel function. By using properties, the proposed inverse reinforcement learning algorithm can learn from both positive and negative demonstrations. While most existing inverse reinforcement learning (IRL) methods suffer from the lack of information near low reward regions, the proposed method alleviates this issue by incorporating negative demonstrations. To mathematically formulate negative demonstrations, we introduce a novel generative model which can generate both positive and negative demonstrations using a parameter, called proficiency. Moreover, since we represent a reward function using a leveraged Gaussian process which can model a nonlinear function, the proposed method can effectively estimate the structure of a nonlinear reward function.λ³Έ ν•™μœ„ λ…Όλ¬Έμ—μ„œλŠ” μ‹œλ²”κ³Ό λ³΄μƒν•¨μˆ˜λ₯Ό κΈ°λ°˜μœΌλ‘œν•œ λ‘œλ΄‡ ν•™μŠ΅ 문제λ₯Ό 닀룬닀. λ‘œλ΄‡ ν•™μŠ΅ 방법은 λΆˆν™•μ‹€ν•˜κ³  볡작 업무λ₯Ό 잘 μˆ˜ν–‰ ν•  수 μžˆλŠ” 졜적의 μ •μ±… ν•¨μˆ˜λ₯Ό μ°ΎλŠ” 것을 λͺ©ν‘œλ‘œ ν•œλ‹€. λ‘œλ΄‡ ν•™μŠ΅ λΆ„μ•Όμ˜ λ‹€μ–‘ν•œ 문제 쀑에, μƒ˜ν”Œ λ³΅μž‘λ„λ₯Ό μ€„μ΄λŠ” 것에 μ§‘μ€‘ν•œλ‹€. 특히, 효율적인 탐색 방법과 ν˜Όν•© μ‹œλ²”μœΌλ‘œ λΆ€ν„°μ˜ ν•™μŠ΅ 기법을 κ°œλ°œν•˜μ—¬ 적은 수의 μƒ˜ν”Œλ‘œλ„ 높은 νš¨μœ¨μ„ κ°–λŠ” μ •μ±… ν•¨μˆ˜λ₯Ό ν•™μŠ΅ν•˜λŠ” 것이 λͺ©ν‘œμ΄λ‹€. 효율적인 탐색 방법을 κ°œλ°œν•˜κΈ° μœ„ν•΄μ„œ, μš°λ¦¬λŠ” μΌλ°˜ν™”λœ μŒ€λ¦¬μŠ€ μ—”νŠΈλ‘œν”Όλ₯Ό μ‚¬μš©ν•œλ‹€. μŒ€λ¦¬μŠ€ μ—”νŠΈλ‘œν”ΌλŠ” 샀논-깁슀 μ—”νŠΈλ‘œν”Όλ₯Ό μΌλ°˜ν™”ν•œ κ°œλ…μœΌλ‘œ μ—”νŠΈλ‘œν”½ μΈλ±μŠ€λΌλŠ” μƒˆλ‘œμš΄ νŒŒλΌλ―Έν„°λ₯Ό λ„μž…ν•œλ‹€. μ—”νŠΈλ‘œν”½ 인덱슀λ₯Ό μ‘°μ ˆν•¨μ— 따라 λ‹€μ–‘ν•œ ν˜•νƒœμ˜ μ—”νŠΈλ‘œν”Όλ₯Ό λ§Œλ“€μ–΄ λ‚Ό 수 있고 각 μ—”νŠΈλ‘œν”ΌλŠ” μ„œλ‘œ λ‹€λ₯Έ λ ˆκ·€λŸ¬λΌμ΄μ œμ΄μ…˜ 효과λ₯Ό 보인닀. 이 μ„±μ§ˆμ„ 기반으둜, 슀파슀 마λ₯΄μ½”ν”„ 결정과정을 μ œμ•ˆν•œλ‹€. 슀파슀 마λ₯΄μ½”ν”„ 결정과정은 슀파슀 μŒ€λ¦¬μŠ€ μ—”νŠΈλ‘œν”Όλ₯Ό μ΄μš©ν•˜μ—¬ ν¬μ†Œν•˜λ©΄μ„œ λ™μ‹œμ— λ‹€λͺ¨λ“œμ˜ μ •μ±… 뢄포λ₯Ό ν‘œν˜„ν•˜λŠ”λ° νš¨κ³Όμ μ΄λ‹€. 이λ₯Ό ν†΅ν•΄μ„œ 샀논-깁슀 μ—”νŠΈλ‘œν”Όλ₯Ό μ‚¬μš©ν•˜μ˜€μ„λ•Œμ— λΉ„ν•΄ 더 쒋은 μ„±λŠ₯을 κ°–μŒμ„ μˆ˜ν•™μ μœΌλ‘œ 증λͺ…ν•˜μ˜€λ‹€. λ˜ν•œ 슀파슀 μŒ€λ¦¬μŠ€ μ—”νŠΈλ‘œν”Όλ‘œ μΈν•œ μ„±λŠ₯ μ €ν•˜λ₯Ό 이둠적으둜 κ³„μ‚°ν•˜μ˜€λ‹€. 슀파슀 마λ₯΄μ½”ν”„ 결정과정을 λ”μš± μΌλ°˜ν™”μ‹œμΌœ μΌλ°˜ν™”λœ μŒ€λ¦¬μŠ€ μ—”νŠΈλ‘œν”Ό 결정과정을 μ œμ•ˆν•˜μ˜€λ‹€. λ§ˆμ°¬κ°€μ§€λ‘œ μŒ€λ¦¬μŠ€ μ—”νŠΈλ‘œν”Όλ₯Ό 마λ₯΄μ½”ν”„ 결정과정에 μΆ”κ°€ν•¨μœΌλ‘œμ¨ μƒκΈ°λŠ” 졜적 μ •μ±…ν•¨μˆ˜μ˜ 변화와 μ„±λŠ₯ μ €ν•˜λ₯Ό μˆ˜ν•™μ μœΌλ‘œ 증λͺ…ν•˜μ˜€λ‹€. λ‚˜μ•„κ°€, μ„±λŠ₯μ €ν•˜λ₯Ό 없앨 수 μžˆλŠ” 방법인 μ—”νŠΈλ‘œν”½ 인덱슀 μŠ€μΌ€μ₯΄λ§μ„ μ œμ•ˆν•˜μ˜€κ³  μ‹€ν—˜μ μœΌλ‘œ 졜적의 μ„±λŠ₯을 κ°–μŒμ„ λ³΄μ˜€λ‹€. λ˜ν•œ, ν—€λΉ„ν…ŒμΌλ“œ 작음이 μžˆλŠ” ν•™μŠ΅ 문제λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•΄μ„œ μ™Έλž€(Perturbation)을 μ΄μš©ν•œ 탐색 기법을 κ°œλ°œν•˜μ˜€λ‹€. λ‘œλ΄‡ ν•™μŠ΅μ˜ λ§Žμ€ λ¬Έμ œλŠ” 작음의 영ν–₯이 μ‘΄μž¬ν•œλ‹€. ν•™μŠ΅ μ‹ ν˜Έμ•ˆμ— λ‹€μ–‘ν•œ ν˜•νƒœλ‘œ 작음이 λ“€μ–΄μžˆλŠ” κ²½μš°κ°€ 있고 μ΄λŸ¬ν•œ κ²½μš°μ— μž‘μŒμ„ 제거 ν•˜λ©΄μ„œ 졜적의 행동을 μ°ΎλŠ” λ¬Έμ œλŠ” 효율적인 탐사 기법을 ν•„μš”λ‘œ ν•œλ‹€. 기쑴의 방법둠듀은 μ„œλΈŒ κ°€μš°μ‹œμ•ˆ(sub-Gaussian) μž‘μŒμ—λ§Œ 적용 κ°€λŠ₯ν–ˆλ‹€λ©΄, λ³Έ ν•™μœ„ λ…Όλ¬Έμ—μ„œ μ œμ•ˆν•œ 방식은 ν—€λΉ„ν…ŒμΌλ“œ μž‘μŒμ„ ν•΄κ²° ν•  수 μžˆλ‹€λŠ” μ μ—μ„œ 기쑴의 방법둠듀보닀 μž₯점을 κ°–λŠ”λ‹€. λ¨Όμ €, 일반적인 μ™Έλž€μ— λŒ€ν•΄μ„œ 리그렛 λ°”μš΄λ“œλ₯Ό 증λͺ…ν•˜μ˜€κ³  μ™Έλž€μ˜ λˆ„μ λΆ„ν¬ν•¨μˆ˜(CDF)와 리그렛 μ‚¬μ΄μ˜ 관계λ₯Ό 증λͺ…ν•˜μ˜€λ‹€. 이 관계λ₯Ό μ΄μš©ν•˜μ—¬ λ‹€μ–‘ν•œ μ™Έλž€ λΆ„ν¬μ˜ 리그렛 λ°”μš΄λ“œλ₯Ό 계산 κ°€λŠ₯ν•˜κ²Œ ν•˜μ˜€κ³  λ‹€μ–‘ν•œ λΆ„ν¬λ“€μ˜ κ°€μž₯ 효율적인 탐색 νŒŒλΌλ―Έν„°λ₯Ό κ³„μ‚°ν•˜μ˜€λ‹€. ν˜Όν•©μ‹œλ²”μœΌλ‘œ λΆ€ν„°μ˜ ν•™μŠ΅ 기법을 κ°œλ°œν•˜κΈ° μœ„ν•΄μ„œ, μ˜€μ‹œλ²”μ„ λ‹€λ£° 수 μžˆλŠ” μƒˆλ‘œμš΄ ν˜•νƒœμ˜ κ°€μš°μ‹œμ•ˆ ν”„λ‘œμ„ΈμŠ€ νšŒκ·€λΆ„μ„ 방식을 κ°œλ°œν•˜μ˜€κ³ , 이 방식을 ν™•μž₯ν•˜μ—¬ λ ˆλ²„λ¦¬μ§€ κ°€μš°μ‹œμ•ˆ ν”„λ‘œμ„ΈμŠ€ μ—­κ°•ν™”ν•™μŠ΅ 기법을 κ°œλ°œν•˜μ˜€λ‹€. 개발된 κΈ°λ²•μ—μ„œλŠ” μ •μ‹œλ²”μœΌλ‘œλΆ€ν„° 무엇을 ν•΄μ•Ό ν•˜λŠ”μ§€μ™€ μ˜€μ‹œλ²”μœΌλ‘œλΆ€ν„° 무엇을 ν•˜λ©΄ μ•ˆλ˜λŠ”μ§€λ₯Ό λͺ¨λ‘ ν•™μŠ΅ν•  수 μžˆλ‹€. 기쑴의 λ°©λ²•μ—μ„œλŠ” 쓰일 수 μ—†μ—ˆλ˜ μ˜€μ‹œλ²”μ„ μ‚¬μš© ν•  수 있게 λ§Œλ“¦μœΌλ‘œμ¨ μƒ˜ν”Œ λ³΅μž‘λ„λ₯Ό 쀄일 수 μžˆμ—ˆκ³  μ •μ œλœ 데이터λ₯Ό μˆ˜μ§‘ν•˜μ§€ μ•Šμ•„λ„ λœλ‹€λŠ” μ μ—μ„œ 큰 μž₯점을 κ°–μŒμ„ μ‹€ν—˜μ μœΌλ‘œ λ³΄μ˜€λ‹€.1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . 4 2 Background 5 2.1 Learning from Rewards . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Contextual Multi-Armed Bandits . . . . . . . . . . . . . . . 7 2.1.3 Markov Decision Processes . . . . . . . . . . . . . . . . . . 9 2.1.4 Soft Markov Decision Processes . . . . . . . . . . . . . . . . 10 2.2 Learning from Demonstrations . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Behavior Cloning . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Inverse Reinforcement Learning . . . . . . . . . . . . . . . . 13 3 Sparse Policy Learning 19 3.1 Sparse Policy Learning for Reinforcement Learning . . . . . . . . . 19 3.1.1 Sparse Markov Decision Processes . . . . . . . . . . . . . . 23 3.1.2 Sparse Value Iteration . . . . . . . . . . . . . . . . . . . . . 29 3.1.3 Performance Error Bounds for Sparse Value Iteration . . . 30 3.1.4 Sparse Exploration and Update Rule for Sparse Deep QLearning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Sparse Policy Learning for Imitation Learning . . . . . . . . . . . . 46 3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.2 Principle of Maximum Causal Tsallis Entropy . . . . . . . . 50 3.2.3 Maximum Causal Tsallis Entropy Imitation Learning . . . 54 3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 Entropy-based Exploration 65 4.1 Generalized Tsallis Entropy Reinforcement Learning . . . . . . . . 65 4.1.1 Maximum Generalized Tsallis Entropy in MDPs . . . . . . 71 4.1.2 Dynamic Programming for Tsallis MDPs . . . . . . . . . . 74 4.1.3 Tsallis Actor Critic for Model-Free RL . . . . . . . . . . . . 78 4.1.4 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . 79 4.1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . 84 4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.2 E cient Exploration for Robotic Grasping . . . . . . . . . . . . . . 92 4.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2.2 Shannon Entropy Regularized Neural Contextual Bandit Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . 99 4.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 104 4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5 Perturbation-Based Exploration 113 5.1 Perturbed Exploration for sub-Gaussian Rewards . . . . . . . . . . 115 5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.1.2 Heavy-Tailed Perturbations . . . . . . . . . . . . . . . . . . 117 5.1.3 Adaptively Perturbed Exploration . . . . . . . . . . . . . . 119 5.1.4 General Regret Bound for Sub-Gaussian Rewards . . . . . . 120 5.1.5 Regret Bounds for Speci c Perturbations with sub-Gaussian Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.2 Perturbed Exploration for Heavy-Tailed Rewards . . . . . . . . . . 128 5.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2.2 Sub-Optimality of Robust Upper Con dence Bounds . . . . 132 5.2.3 Adaptively Perturbed Exploration with A p-Robust Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.2.4 General Regret Bound for Heavy-Tailed Rewards . . . . . . 136 5.2.5 Regret Bounds for Speci c Perturbations with Heavy-Tailed Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6 Inverse Reinforcement Learning with Negative Demonstrations149 6.1 Leveraged Gaussian Processes Inverse Reinforcement Learning . . 151 6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.1.3 Gaussian Process Regression . . . . . . . . . . . . . . . . . 156 6.1.4 Leveraged Gaussian Processes . . . . . . . . . . . . . . . . . 159 6.1.5 Gaussian Process Inverse Reinforcement Learning . . . . . 164 6.1.6 Inverse Reinforcement Learning with Leveraged Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.1.7 Simulations and Experiment . . . . . . . . . . . . . . . . . 175 6.1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7 Conclusion 185 Appendices 189 A Proofs of Chapter 3.1. 191 A.1 Useful Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 A.2 Sparse Bellman Optimality Equation . . . . . . . . . . . . . . . . . 192 A.3 Sparse Tsallis Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 195 A.4 Upper and Lower Bounds for Sparsemax Operation . . . . . . . . . 196 A.5 Comparison to Log-Sum-Exp . . . . . . . . . . . . . . . . . . . . . 200 A.6 Convergence and Optimality of Sparse Value Iteration . . . . . . . 201 A.7 Performance Error Bounds for Sparse Value Iteration . . . . . . . . 203 B Proofs of Chapter 3.2. 209 B.1 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.2 Concavity of Maximum Causal Tsallis Entropy . . . . . . . . . . . 210 B.3 Optimality Condition of Maximum Causal Tsallis Entropy . . . . . 212 B.4 Interpretation as Robust Bayes . . . . . . . . . . . . . . . . . . . . 215 B.5 Generative Adversarial Setting with Maximum Causal Tsallis Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 B.6 Tsallis Entropy of a Mixture of Gaussians . . . . . . . . . . . . . . 217 B.7 Causal Entropy Approximation . . . . . . . . . . . . . . . . . . . . 218 C Proofs of Chapter 4.1. 221 C.1 q-Maximum: Bounded Approximation of Maximum . . . . . . . . . 223 C.2 Tsallis Bellman Optimality Equation . . . . . . . . . . . . . . . . . 226 C.3 Variable Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 C.4 Tsallis Bellman Optimality Equation . . . . . . . . . . . . . . . . . 230 C.5 Tsallis Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 234 C.6 Tsallis Bellman Expectation (TBE) Equation . . . . . . . . . . . . 234 C.7 Tsallis Bellman Expectation Operator and Tsallis Policy Evaluation235 C.8 Tsallis Policy Improvement . . . . . . . . . . . . . . . . . . . . . . 237 C.9 Tsallis Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 239 C.10 Performance Error Bounds . . . . . . . . . . . . . . . . . . . . . . 241 C.11 q-Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 D Proofs of Chapter 4.2. 245 D.1 In nite Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 D.2 Regret Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 E Proofs of Chapter 5.1. 255 E.1 General Regret Lower Bound of APE . . . . . . . . . . . . . . . . . 255 E.2 General Regret Upper Bound of APE . . . . . . . . . . . . . . . . 257 E.3 Proofs of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . 266 F Proofs of Chapter 5.2. 279 F.1 Regret Lower Bound for Robust Upper Con dence Bound . . . . . 279 F.2 Bounds on Tail Probability of A p-Robust Estimator . . . . . . . . 284 F.3 General Regret Upper Bound of APE2 . . . . . . . . . . . . . . . . 287 F.4 General Regret Lower Bound of APE2 . . . . . . . . . . . . . . . . 299 F.5 Proofs of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . 302Docto

    Sparse Randomized Shortest Paths Routing with Tsallis Divergence Regularization

    Full text link
    This work elaborates on the important problem of (1) designing optimal randomized routing policies for reaching a target node t from a source note s on a weighted directed graph G and (2) defining distance measures between nodes interpolating between the least cost (based on optimal movements) and the commute-cost (based on a random walk on G), depending on a temperature parameter T. To this end, the randomized shortest path formalism (RSP, [2,99,124]) is rephrased in terms of Tsallis divergence regularization, instead of Kullback-Leibler divergence. The main consequence of this change is that the resulting routing policy (local transition probabilities) becomes sparser when T decreases, therefore inducing a sparse random walk on G converging to the least-cost directed acyclic graph when T tends to 0. Experimental comparisons on node clustering and semi-supervised classification tasks show that the derived dissimilarity measures based on expected routing costs provide state-of-the-art results. The sparse RSP is therefore a promising model of movements on a graph, balancing sparse exploitation and exploration in an optimal way

    Generalized Munchausen Reinforcement Learning using Tsallis KL Divergence

    Full text link
    Many policy optimization approaches in reinforcement learning incorporate a Kullback-Leilbler (KL) divergence to the previous policy, to prevent the policy from changing too quickly. This idea was initially proposed in a seminal paper on Conservative Policy Iteration, with approximations given by algorithms like TRPO and Munchausen Value Iteration (MVI). We continue this line of work by investigating a generalized KL divergence -- called the Tsallis KL divergence -- which use the qq-logarithm in the definition. The approach is a strict generalization, as q=1q = 1 corresponds to the standard KL divergence; q>1q > 1 provides a range of new options. We characterize the types of policies learned under the Tsallis KL, and motivate when q>1q >1 could be beneficial. To obtain a practical algorithm that incorporates Tsallis KL regularization, we extend MVI, which is one of the simplest approaches to incorporate KL regularization. We show that this generalized MVI(qq) obtains significant improvements over the standard MVI(q=1q = 1) across 35 Atari games.Comment: Accepted by NeurIPS 202

    A Theory of Regularized Markov Decision Processes

    Full text link
    Many recent successful (deep) reinforcement learning algorithms make use of regularization, generally based on entropy or Kullback-Leibler divergence. We propose a general theory of regularized Markov Decision Processes that generalizes these approaches in two directions: we consider a larger class of regularizers, and we consider the general modified policy iteration approach, encompassing both policy iteration and value iteration. The core building blocks of this theory are a notion of regularized Bellman operator and the Legendre-Fenchel transform, a classical tool of convex optimization. This approach allows for error propagation analyses of general algorithmic schemes of which (possibly variants of) classical algorithms such as Trust Region Policy Optimization, Soft Q-learning, Stochastic Actor Critic or Dynamic Policy Programming are special cases. This also draws connections to proximal convex optimization, especially to Mirror Descent.Comment: ICML 201

    Identifiability and Generalizability in Constrained Inverse Reinforcement Learning

    Full text link
    Two main challenges in Reinforcement Learning (RL) are designing appropriate reward functions and ensuring the safety of the learned policy. To address these challenges, we present a theoretical framework for Inverse Reinforcement Learning (IRL) in constrained Markov decision processes. From a convex-analytic perspective, we extend prior results on reward identifiability and generalizability to both the constrained setting and a more general class of regularizations. In particular, we show that identifiability up to potential shaping (Cao et al., 2021) is a consequence of entropy regularization and may generally no longer hold for other regularizations or in the presence of safety constraints. We also show that to ensure generalizability to new transition laws and constraints, the true reward must be identified up to a constant. Additionally, we derive a finite sample guarantee for the suboptimality of the learned rewards, and validate our results in a gridworld environment.Comment: Published at ICML 202
    corecore