
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Ph.D. DISSERTATION

SAMPLE EFFICIENT ROBOT LEARNING FOR

OPTIMAL DECISION MAKING UNDER

COMPLEX AND UNCERTAIN ENVIRONMENTS

복잡하고 불확실한 환경에서 최적 의사 결정을 위한

효율적인 로봇 학습

BY

KYUNGJAE LEE

FEBRUARY 2021

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY









Abstract

The problem of sequential decision making under an uncertain and complex envi-

ronment is a long-standing challenging problem in robotics. In this thesis, we focus

on learning a policy function of robotic systems for sequential decision making

under which is called a robot learning framework. In particular, we are inter-

ested in reducing the sample complexity of the robot learning framework. Hence,

we develop three sample efficient robot learning frameworks. The first one is the

maximum entropy reinforcement learning. The second one is a perturbation-based

exploration. The last one is learning from demonstrations with mixed qualities.

For maximum entropy reinforcement learning, we employ a generalized Tsallis

entropy regularization as an efficient exploration method. Tsallis entropy gener-

alizes Shannon-Gibbs entropy by introducing a entropic index. By changing an

entropic index, we can control the sparsity and multi-modality of policy. Based on

this fact, we first propose a sparse Markov decision process (sparse MDP) which

induces a sparse and multi-modal optimal policy distribution. In this MDP, the

sparse entropy, which is a special case of Tsallis entropy, is employed as a policy

regularization. We first analyze the optimality condition of a sparse MDP. Then,

we propose dynamic programming methods for the sparse MDP and prove their

convergence and optimality. We also show that the performance error of a sparse

MDP has a constant bound, while the error of a soft MDP increases logarith-

mically with respect to the number of actions, where this performance error is

caused by the introduced regularization term. Furthermore, we generalize sparse

MDPs to a new class of entropy-regularized Markov decision processes (MDPs),

which will be referred to as Tsallis MDPs, and analyzes different types of opti-

mal policies with interesting properties related to the stochasticity of the optimal

policy by controlling the entropic index.



Furthermore, we also develop perturbation based exploration methods to han-

dle heavy-tailed noises. In many robot learning problems, a learning signal is often

corrupted by noises such as sub-Gaussian noise or heavy-tailed noise. While most

of the exploration strategies have been analyzed under sub-Gaussian noise as-

sumption, there exist few methods for handling such heavy-tailed rewards. Hence,

to overcome heavy-tailed noise, we consider stochastic multi-armed bandits with

heavy-tailed rewards. First, we propose a novel robust estimator that does not

require prior information about a noise distribution, while other existing robust

estimators demand prior knowledge. Then, we show that an error probability

of the proposed estimator decays exponentially fast. Using this estimator, we

propose a perturbation-based exploration strategy and develop a generalized re-

gret analysis scheme that provides upper and lower regret bounds by revealing

the relationship between the regret and the cumulative density function of the

perturbation. From the proposed analysis scheme, we obtain gap-dependent and

gap-independent upper and lower regret bounds of various perturbations. We also

find the optimal hyperparameters for each perturbation, which can achieve the

minimax optimal regret bound with respect to total rounds.

For learning from demonstrations with mixed qualities, we develop a novel

inverse reinforcement learning framework using leveraged Gaussian processes

(LGP) which can handle negative demonstrations. In LGP, the correlation be-

tween two Gaussian processes is captured by a leveraged kernel function. By

using properties, the proposed inverse reinforcement learning algorithm can learn

from both positive and negative demonstrations. While most existing inverse re-

inforcement learning (IRL) methods suffer from the lack of information near low

reward regions, the proposed method alleviates this issue by incorporating neg-

ative demonstrations. To mathematically formulate negative demonstrations, we



introduce a novel generative model which can generate both positive and neg-

ative demonstrations using a parameter, called proficiency. Moreover, since we

represent a reward function using a leveraged Gaussian process which can model

a nonlinear function, the proposed method can effectively estimate the structure

of a nonlinear reward function.

Keywords: Multi-Armed Bandits, Online Learning, Reinforcement Learning, In-

verse Reinforcement Learning, Learning from Demonstrations, Imitation Learn-

ing





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Learning from Rewards . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Contextual Multi-Armed Bandits . . . . . . . . . . . . . . . 7

2.1.3 Markov Decision Processes . . . . . . . . . . . . . . . . . . 9

2.1.4 Soft Markov Decision Processes . . . . . . . . . . . . . . . . 10

2.2 Learning from Demonstrations . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Behavior Cloning . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Inverse Reinforcement Learning . . . . . . . . . . . . . . . . 13

3 Sparse Policy Learning 19

3.1 Sparse Policy Learning for Reinforcement Learning . . . . . . . . . 19

3.1.1 Sparse Markov Decision Processes . . . . . . . . . . . . . . 23

3.1.2 Sparse Value Iteration . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Performance Error Bounds for Sparse Value Iteration . . . 30

i



3.1.4 Sparse Exploration and Update Rule for Sparse Deep Q-

Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Sparse Policy Learning for Imitation Learning . . . . . . . . . . . . 46

3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Principle of Maximum Causal Tsallis Entropy . . . . . . . . 50

3.2.3 Maximum Causal Tsallis Entropy Imitation Learning . . . 54

3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Entropy-based Exploration 65

4.1 Generalized Tsallis Entropy Reinforcement Learning . . . . . . . . 65

4.1.1 Maximum Generalized Tsallis Entropy in MDPs . . . . . . 71

4.1.2 Dynamic Programming for Tsallis MDPs . . . . . . . . . . 74

4.1.3 Tsallis Actor Critic for Model-Free RL . . . . . . . . . . . . 78

4.1.4 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . 84

4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Efficient Exploration for Robotic Grasping . . . . . . . . . . . . . . 92

4.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.2 Shannon Entropy Regularized Neural Contextual Bandit

Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . 99

4.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 104

4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ii



5 Perturbation-Based Exploration 113

5.1 Perturbed Exploration for sub-Gaussian Rewards . . . . . . . . . . 115

5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.2 Heavy-Tailed Perturbations . . . . . . . . . . . . . . . . . . 117

5.1.3 Adaptively Perturbed Exploration . . . . . . . . . . . . . . 119

5.1.4 General Regret Bound for Sub-Gaussian Rewards . . . . . . 120

5.1.5 Regret Bounds for Specific Perturbations with sub-Gaussian

Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Perturbed Exploration for Heavy-Tailed Rewards . . . . . . . . . . 128

5.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.2 Sub-Optimality of Robust Upper Confidence Bounds . . . . 132

5.2.3 Adaptively Perturbed Exploration with A p-Robust Esti-

mator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.2.4 General Regret Bound for Heavy-Tailed Rewards . . . . . . 136

5.2.5 Regret Bounds for Specific Perturbations with Heavy-Tailed

Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Inverse Reinforcement Learning with Negative Demonstrations149

6.1 Leveraged Gaussian Processes Inverse Reinforcement Learning . . 151

6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.1.3 Gaussian Process Regression . . . . . . . . . . . . . . . . . 156

6.1.4 Leveraged Gaussian Processes . . . . . . . . . . . . . . . . . 159

6.1.5 Gaussian Process Inverse Reinforcement Learning . . . . . 164

iii



6.1.6 Inverse Reinforcement Learning with Leveraged Gaussian

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.1.7 Simulations and Experiment . . . . . . . . . . . . . . . . . 175

6.1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 Conclusion 185

Appendices 189

A Proofs of Chapter 3.1. 191

A.1 Useful Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

A.2 Sparse Bellman Optimality Equation . . . . . . . . . . . . . . . . . 192

A.3 Sparse Tsallis Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.4 Upper and Lower Bounds for Sparsemax Operation . . . . . . . . . 196

A.5 Comparison to Log-Sum-Exp . . . . . . . . . . . . . . . . . . . . . 200

A.6 Convergence and Optimality of Sparse Value Iteration . . . . . . . 201

A.7 Performance Error Bounds for Sparse Value Iteration . . . . . . . . 203

B Proofs of Chapter 3.2. 209

B.1 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B.2 Concavity of Maximum Causal Tsallis Entropy . . . . . . . . . . . 210

B.3 Optimality Condition of Maximum Causal Tsallis Entropy . . . . . 212

B.4 Interpretation as Robust Bayes . . . . . . . . . . . . . . . . . . . . 215

B.5 Generative Adversarial Setting with Maximum Causal Tsallis En-

tropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

B.6 Tsallis Entropy of a Mixture of Gaussians . . . . . . . . . . . . . . 217

B.7 Causal Entropy Approximation . . . . . . . . . . . . . . . . . . . . 218

iv



C Proofs of Chapter 4.1. 221

C.1 q-Maximum: Bounded Approximation of Maximum . . . . . . . . . 223

C.2 Tsallis Bellman Optimality Equation . . . . . . . . . . . . . . . . . 226

C.3 Variable Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

C.4 Tsallis Bellman Optimality Equation . . . . . . . . . . . . . . . . . 230

C.5 Tsallis Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 234

C.6 Tsallis Bellman Expectation (TBE) Equation . . . . . . . . . . . . 234

C.7 Tsallis Bellman Expectation Operator and Tsallis Policy Evaluation235

C.8 Tsallis Policy Improvement . . . . . . . . . . . . . . . . . . . . . . 237

C.9 Tsallis Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 239

C.10 Performance Error Bounds . . . . . . . . . . . . . . . . . . . . . . 241

C.11 q-Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

D Proofs of Chapter 4.2. 245

D.1 Infinite Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

D.2 Regret Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

E Proofs of Chapter 5.1. 255

E.1 General Regret Lower Bound of APE . . . . . . . . . . . . . . . . . 255

E.2 General Regret Upper Bound of APE . . . . . . . . . . . . . . . . 257

E.3 Proofs of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . 266

F Proofs of Chapter 5.2. 279

F.1 Regret Lower Bound for Robust Upper Confidence Bound . . . . . 279

F.2 Bounds on Tail Probability of A p-Robust Estimator . . . . . . . . 284

F.3 General Regret Upper Bound of APE2 . . . . . . . . . . . . . . . . 287

F.4 General Regret Lower Bound of APE2 . . . . . . . . . . . . . . . . 299

F.5 Proofs of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . 302

v



vi



List of Figures

3.1 A 2-dimensional multi-objective environment with point mass dy-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Performance Error Bounds and Supporting Set Comparison . . . . 37

3.3 Simulation Environments . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Reward maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Qualitative results for multi-goal environments . . . . . . . . . . . 42

3.6 Qualitative results for multi-goal environments . . . . . . . . . . . 43

3.7 Results for Multiple Local Optima Environments . . . . . . . . . . 44

3.8 Results for multi-goal environments . . . . . . . . . . . . . . . . . . 59

3.9 Results for multi-goal environments . . . . . . . . . . . . . . . . . . 60

3.10 Results for MuJoCo simulations . . . . . . . . . . . . . . . . . . . . 62

4.1 Hardware Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Example of π�q (a) with various coefficients of entropy α varying

from 2.0 to 0.1 and entropic indices varying from 1.0 to 10.0, re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Example of q-maximum operator with different q values. . . . . . . 86

4.4 Results of TAC with different q values for MuJoCo simulations . . 87

4.5 Results of TAC of scheduling q values for MuJoCo simulations . . 88

vii



4.6 Comparison to existing actor-critic methods on four MuJoCo tasks. 90

4.7 Comparison to existing actor-critic methods on training a Tripod

mobile robot. (a) Average returns over five trials. (b) Final average

performance. The number in parentheses is a standard deviation. . 91

4.8 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.9 Grasp candidates sampled from SERN and ε-Greedy . . . . . . . . 110

5.1 Error of Robust Estimators with Pareto Noises . . . . . . . . . . . 145

5.2 Time-Averaged Cumulative Regret . . . . . . . . . . . . . . . . . . 146

6.1 The proposed leveraged kernel function with different values of γi

and γj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Examples of Leveraged Gaussian Processes Regression . . . . . . . 163

6.3 A 16× 16 objectworld. . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.4 Generative Model of Negative Demonstrations . . . . . . . . . . . . 170

6.5 Sampled trajectories from demonstrators with different proficiencies.171

6.6 Average expected value differences . . . . . . . . . . . . . . . . . . 179

6.7 The results of 64-car-length highway driving with varying the num-

ber of 32 length demonstrations. The EVD of LIRL with 10%

mixed demonstrations and GPIRL are shown. LIRL has better

performance than GPIRL . . . . . . . . . . . . . . . . . . . . . . . 181

viii



List of Tables

3.1 Table of the maximum average returns . . . . . . . . . . . . . . . . 39

3.2 Table of the hitting times . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 The best performed parameters for each algorithm in each problem. 40

3.4 Network Structures. ReLU indicates a rectified linear unit. . . . . . 40

4.1 Grasp success rate in simulation. . . . . . . . . . . . . . . . . . . . 108

4.2 Grasp success rate in the real-world experiments . . . . . . . . . . 109

5.1 Regret Bounds of Various Perturbations . . . . . . . . . . . . . . . 142

6.1 Classification of IRL algorithms . . . . . . . . . . . . . . . . . . . . 152

6.2 Results from the 32× 32 objectworld experiment. . . . . . . . . . . 180

6.3 Results from the highway driving experiment . . . . . . . . . . . . 182

A.1 Notations and Properties . . . . . . . . . . . . . . . . . . . . . . . 207

ix



x



Chapter 1

Introduction

1.1 Motivation

Conventional robotics have been developed under structured and controlled en-

vironments such as industrial factories without humans. Under such structured

and unmanned environment, traditional robots have been manually programmed

based on rules and have shown satisfactory performances for repetitive tasks.

Furthermore, automation using industrial robots has improved efficiency and has

increased safety of a risky task by replacing human labors. However, recently,

robots are gradually permeating into our daily life to enhance our quality of life.

Such robots are required to perform more complex operations, e.g., autonomous

driving [2] and socially adaptive path planning [65]. In such cases, the traditional

method of manually programming a robot based on rules has a clear limitation

in that unexpected situations and complex tasks cannot be clearly represented

by rules. In this regard, robot learning method, which can adapt unexpected sit-

uation and learn a new task autonomously, has been getting more attention. In

particular, robot learning method has a great advantage over rule-based meth-

1



Chapter 1. Introduction

ods when it comes to learning a complex and unstructured task using less prior

knowledge.

Robot learning is a technique for a robot to learn a optimal behavior from

observations which have partial or full information about given tasks. Based on

a type of given information, robot learning techniques can be categorized into

two groups. The first group is called learning from rewards where a learning

signal is given as a reward function. The second group is called learning from

demonstrations where information about tasks is given as a demonstration of the

expert.

Each group of methods has a clear benefit over rule-based methods. For ex-

ample, learning from rewards can be applied to a personal service robot which

requires high adaptability. Since every person has different preferences, it is hardly

represented by rules. Then, learning from rewards is a nice approach for adapting

a personal preference. For example of robotic grasping, conditions for successfully

grasping an object depends on a friction and geometry of surface. However, it is

difficult to define grasping rules depending on every type of surfaces. In this case,

learning from rewards approach is required rather than a rule-based controller.

Learning from demonstrations also has a benefit over rule-based methods. Fur-

thermore, demonstration-based approaches can cover the problem that cannot be

solved by learning from rewards. In other words, learning from demonstrations

has great advantages over both rule-based methods and learning from rewards ap-

proaches when it is difficult to model a reward function with multiple desiderata

to be traded off [1]. Autonomous driving, for example, has to consider multi-

ple criteria such as maintaining the center of a lane and avoiding collisions with

other cars and pedestrians. While each of the criteria is easy to model, combining

them into a single reward function is not straightforward. On the contrary, it

2



Chapter 1. Introduction

is more natural to demonstrate driving behaviors and let the agent learn from

demonstrations [1], which is also referred to as apprenticeship learning.

While robot learning is an important technique for future robotics industry,

there still have lots of hurdles to apply this technique for the real-world problem.

This dissertation focuses on improving sample efficiency Sample efficiency plays

an important role for a success of robot learning. In learning from rewards, a

reward-based robot learning find an optimal policy via trial and errors without

the prior knowledge of the environment, such as the dynamics of environments

and the structure of rewards. The absence of environmental information gives

rise to an innate trade-off between exploration and exploitation during a learning

process. If the algorithm decides to explore the environment, then, it will lose the

chance to exploit the best decision based on collected experiences and vice versa.

Such trade-off should be appropriately scheduled in order to learn an optimal

policy through a small number of interactions with an environment. Especially,

the efficiency of exploration becomes more important when training a robot since

a hardware system of a robot can be damaged if the robot exceeds its durability.

In this regard, improving sample efficiency is a main issue to be addressed in this

dissertation.

In learning from demonstrations framework, optimality assumption for demon-

strations makes data collecting process difficult. Learning from demonstrations

aims to find the reward function which best explains demonstrations by experts.

A key assumption is that experts follow the optimal policy induced by the un-

derlying reward function. However, since demonstrations of experts are often dis-

tributed near high reward regions, the resulting robot behaviors cannot properly

perform in low reward regions. For example, when learning how to drive, an au-

tonomous vehicle occasionally encounters a risky situation, e.g. heading towards

3



Chapter 1. Introduction

the side of the road. In order to avoid a catastrophic situation, the autonomous

vehicle should recover back to the center of the road. However, such recovery

behavior rarely appears in demonstrations from a good driver. In [109], Ross and

Bargnell tackled this problem via continuous interaction with experts. However,

it is not practical to rely on experts frequently. To handle lack of demonstra-

tions near low reward regions, we incorporate demonstrations about both what

to do and what not to do. As demonstrations about what not to do will be often

distributed near low reward regions, we can obtain information to avoid catas-

trophic failures from such demonstrations. Demonstrations of failures had been

considered before.

1.2 Organization of the Dissertation

This dissertation is organized as follows: In Chapter 2, backgrounds for robot

learning methods are introduced. In particular, mathematical framework to for-

mulate robot learning problems, such as multi-armed bandit, contextual bandit,

or Markov decision processes, are mainly introduced. In Chapter 3 and 4, entropy

based exploration method will be described. Especially, sparse entropy framework

is proposed in Chapter 3 and it will be generalized to a unified framework us-

ing Tsallis entropy in Chapter 4. In Chapter 5, perturbation based exploration

method will be described. in this chapter, we mainly address multi-armed bandit

problem with stochastic noises and will introduce a novel exploration framework

using random perturbation. Especially, we propose a . In Chapter 6, learning from

negative demonstrations will be introduced. The framework which can handle a

negative demonstrations is proposed and modeling data generating processes for

negative demonstrations.

4



Chapter 2

Background

In this chapter, we introduce several frameworks for formulating a robot learn-

ing problem. In general, the main goal of a robot learning problem is to find

a policy, also called a controller, to best perform a given task. Hence, a robot

learning framework is often formulated as a sequential decision making problem

for learning an optimal policy. The robot learning problem can be categorized

into two groups based on which information is given: a reward signal or expert’s

demonstration. In reward-based learning framework, a reward signal provides a

performance measure of a given task and the goal of a learning algorithm is to

find the optimal policy maximizing the rewards (or cumulative rewards). On the

contrary, in demonstration-based learning framework, expert demonstrations pro-

vide information about how to perform a given task. Hence, in this framework,

the goal of a learning algorithm is to optimize a policy function to reproduce the

expert’s demonstrations.

5



Chapter 2. Background

2.1 Learning from Rewards

For reward-based learning, a robot learning problem can be formulated as a se-

quential decision making problem. In this framework, a robot chooses an action

at consecutively for T rounds. T is called a horizon of the problem. Then, for

each decision, a robot receives a reward signal Rt which is a real value indicat-

ing an instance performance of a given task for the decision at. Then, the goal

of decision making is to maximize the expected reward E [Rt] (or the cumula-

tive rewards). The basic assumption on this reward-based learning framework is

the absence of prior knowledge about a reward signal. In other words, a robot

does not know which action induces high rewards. A robot should verify an op-

timal action by consistently interacting with an environment while does not lose

much rewards. Hence, a robot falls into a natural dilemma called exploration-

exploitation trade-off. Many exploration strategies try to solve this dilemma by

achieving the maximum rewards with the minimum trials.

The reward-based sequential decision making problems are categorized into

three main frameworks based on how to represent an environment. Especially,

representation of a reward function is a key difference. The first framework is

an multi-armed bandit (MAB) which consists of rewards and actions. Hence, a

reward only depends on an action. The second framework is a contextual bandit

(CB) defined by adding a contextual space (or state space). In this framework,

a reward depends on state and action. The final framework is the most general

framework called a Markov decision process (MDP). An MDP consists of state

and action space and a transition probability. Unlike MAB and CB, in an MDP,

states are dependent through time. In other words, the next state depends on

the current state where the Markov property makes the next state independent

on the past states if the current state is conditioned. More detail definitions and

6



Chapter 2. Background

notations are introduced in the following sections.

2.1.1 Multi-Armed Bandits

A stochastic multi-armed bandit problem is defined as a tuple {A, r} A learning

agent plays T rounds. For each round t ∈ {1, . . . , T}, the agent takes an action

(or arm) at ∈ A from an exploration strategy and obtains a stochastic reward

Rt,at = rat + εt, E[εt] = 0 (2.1)

with deterministic mean function rat and random noise εt. In this section, we

assume ra ∈ [0, 1] which is widely used in bandit algorithms. The goal of the

agent is to minimize the sum of pseudo regret over T rounds, which is defined as

RT :=

T∑
t=1

ra� − rat , a� := argmax
a∈A

ra. (2.2)

In our analysis, we often derive the upper bound of expectation of RT , which can

be restated by,

E [RT ] =
∑
a∈A

T∑
t=1

ΔaP(at = a), (2.3)

where Δa := ra� − ra. RT indicates how much rewards are lost during the explo-

ration, hence, it means the efficiency of the exploration strategy.

2.1.2 Contextual Multi-Armed Bandits

A contextual bandit problem is defined by a tuple with three elements: {S,A, r}

where S is a context space, A is an action space, r is a reward which is a random

variable indicating goodness of an action given a context. In this framework,

the expected reward of pulling a ∈ A given s ∈ S is defined as a conditional

expectation of the reward, ra(s) := E [R|s, a]. Similarly to MAB problems, the

7



Chapter 2. Background

goal of the contextual bandit problem is to find the best arm whose expected

reward is the maximum by consecutively pulling arms and obtaining contexts

and rewards every rounds.

An agent plays 1, · · · , t, · · · , T . For each round, an arbitrary context st is given,

then, a contextual bandit algorithm proposes a policy πt based on st and sample

an action at from πt. The feedback of at is given as a rewardRt. Since an expected

reward ra(st) of each arm is unknown, rewards of each arm given st should be

estimated. To estimate the expected rewards, r̂a(s; θ) is maintained where θ is the

parameter of an estimator. r̂a(s) is trained from the collected context and reward

pairs. Generally, as the number of data increases, the error of reward estimations

decreases. After estimators become accurate, the best arm can be selected based

on r̂a(s). Collecting more data to train r̂ more accurately is called exploration

and choosing the estimated best arm based on r̂ is called exploitation. The main

hurdle of bandit problem is balancing the exploration and exploration.

The efficiency of a bandit algorithm is often measured by the expected cumu-

lative regret defined as

RT := Es1:T ,a1:T

[
T∑
t=1

max
a′

ra′(st)− rat(st)
]

(2.4)

where s1:T indicates contexts given during T rounds and a1:T indicates actions

selected during T rounds. If the algorithm focus on exploring arbitrary arms, RT

linearly increases. On the contrary, if the exploitation is focused, the estimation

error of rewards is hardly reduced and RT also linearly increases. When RT sub-

linearly increases, such algorithms are called no regret and have the property that

the error converges to zero as the number of rounds increases, i.e., limT→∞ RT
T =

0.

8



Chapter 2. Background

2.1.3 Markov Decision Processes

A Markov decision process (MDP) has been widely used to formulate a sequen-

tial decision making problem. An MDP can be characterized by a tuple M =

{S,F ,A, d, T, γ, r}, where S is the state space, F is the corresponding feature

space, A is the action space, d(s) is the distribution of an initial state, T (s′|s, a)

is the transition probability from s ∈ S to s′ ∈ S by taking a ∈ A, γ ∈ (0, 1) is a

discount factor, and r is the reward function, i.e., r(s, a, s′) := E [R|s, a, s′], and

R is a noisy reward. The objective of an MDP is to find a policy which maxi-

mize E
[∑∞

t=0 γ
tRt
∣∣π, d, T ] = E

[∑∞
t=0 γ

tr(st, at, st+1)
∣∣π, d, T ], where policy π is

a mapping from the state space to the action space. For notational simplicity,

we denote the expectation of a discounted summation of function f(s, a), i.e.,

E[
∑∞

t=0 γ
tf(st, at, st+1)|π, d, T ], by Eπ[f(s, a, s

′)], where f(s, a, s′) is a function

of state and action, such as a reward function r(s, a, s′) or an indicator function

1{st=s}. We also denote the expectation of a discounted summation of function

f(s, a, s′) conditioned on the initial state, i.e., E[
∑∞

t=0 γ
tf(st, at, st+1)|π, s0 =

s, T ], by Eπ[f(s, a, s
′)|s0 = s]. Finding an optimal policy for an MDP can be

formulated as follows:

maximize
π

Eπ [r(st, at, st+1)]

subject to ∀ s
∑
a′
π(a′|s) = 1,

∀ s, a π(a′|s) ≥ 0.

(2.5)

The necessary condition for the optimal solution of (2.5) is called the Bellman

equation. The Bellman equation is derived from the Bellman’s optimality princi-

9



Chapter 2. Background

pal as follows:

Qπ(s, a) =
∑
s′

(
r(s, a, s′) + γVπ(s

′)
)
T (s′|s, a)

Vπ(s) = max
a′

Q(s, a′)

π(s) = argmax
a′

Q(s, a′), (2.6)

where Vπ(s) is a value function of π, which is the expected sum of discounted

rewards when the initial state is given as s, and Qπ(s, a) is a state-action value

function of π, which is the expected sum of discounted rewards when the initial

state and action are given as s and a, respectively. Note that the optimal solution

is a deterministic function, which is referred to as a deterministic policy.

2.1.4 Soft Markov Decision Processes

An entropy-regularized MDP, also known as a soft MDP, has been widely used

to represent a multi-modal policy function [134, 19, 115, 138]. In a soft MDP,

causal entropy regularization over π is introduced to obtain a multi-modal policy

distribution, i.e., π(a|s). Since causal entropy regularization penalizes a deter-

ministic distribution, it makes an optimal policy of a soft MDP to be a softmax

distribution. A soft MDP is formulated as follows:

maximize
π

Eπ [r(st, at, st+1)] + αH(π)

subject to ∀ s
∑
a′
π(a′|s) = 1, ∀ s, a π(a′|s) ≥ 0,

(2.7)

where H(π) � Eπ [− log(π(at|st))] is a γ-discounted causal entropy and α is a

regularization coefficient. This problem (A.2) has been extensively studied in

[50, 19, 115]. In [19], a soft Bellman equation and the optimal policy distribution

10



Chapter 2. Background

are derived from the Karush Kuhn Tucker (KKT) conditions as follows:

Qsoftπ (s, a) =
∑
s′

(
r(s, a, s′) + γV soft

π (s′)
)
T (s′|s, a)

V soft
π (s) = α log

(∑
a′

exp

(
Qsoftπ (s, a′)

α

))

π(a|s) =
exp
(
Qsoft

π (s,a)
α

)
∑

a′ exp
(
Qsoft

π (s,a′)
α

) ,

where

V soft
π (s) = Eπ [r(st, at, st+1)− α log(π(at|st))|s0 = s]

Qsoftπ (s, a) = Eπ [r(st, at, st+1)− α log(π(at|st))|s0 = s, a0 = a] .

V soft
π (s) is a soft value of π indicating the expected sum of rewards including the

entropy of a policy, obtained by starting at state s and Qsoftπ (s, a) is a soft state-

action value of π, which is the expected sum of rewards obtained by starting at

state s by taking action a. Note that the optimal policy distribution is a softmax

distribution. In [19], a soft value iteration method is also proposed and the op-

timality of soft value iteration is proved. By using causal entropy regularization,

the optimal policy distribution of a soft MDP is able to represent a multi-modal

distribution.

The causal entropy regularization has an effect of making the resulting policy of

a soft MDP closer to a uniform distribution as the number of actions increases. To

handle this issue, we propose a novel regularization method whose resulting policy

distribution still has multiple modes (a stochastic policy) but the performance

loss is less than a softmax policy distribution.

11



Chapter 2. Background

2.2 Learning from Demonstrations

For demonstration-based learning, there are two main streams: behavior cloning

and inverse reinforcement learning. A behavior cloning learns a policy function

(or distribution) of an expert from given demonstrations by using a supervised

learning technique. An inverse reinforcement learning learns both reward function

and policy of an expert from demonstrations.

Learning from demonstrations (LfD) is a technique of learning a skill from a

set of expert’s demonstrations which consist of state action pairs as follows,

τ = {s0, a0, · · · , sT , aT , sT+1}

where T is a length of demonstrations. In LfD, it is assumed that a set of demon-

strations are given ,i.e., D := {τi}Ni=1 where N is the number of demonstrations.

Furthermore, LfD also assumed that D is generated by an expert policy πE which

is an optimal policy for the underlying reward function r. The methods for LfD

can be categorized into two groups: behavior cloning (BC) and inverse reinforce-

ment learning (IRL). BC focuses on learning an optimal policy using a supervised

learning method. On the contrary, an IRL method find not only optimal policy

but also the underlying reward function of an experts. While IRL can lear both

policy and rewards, the algorithm of IRL is often more complex and requires

more computational resource than that of BC.

2.2.1 Behavior Cloning

Behavior cloning (BC) is a imitation learning method which focuses on finding

an optimal policy from expert’s demonstrations by using a supervised learning

method. Since BC models an expert’s policy using a function approximation, BC

methods can be categorized into two groups based on an action space. First, for

12



Chapter 2. Background

discrete action space, a classification method is generally used and the policy π̂ is

modeled as a classifier. Then, LfD problem can be formulated as the classification

problem. The policy π̂ is trained by minimizing a classification loss such as cross

entropy loss,

minimize
φ

− Est,at∈D [ln (πφ(at|st))]

subject to ∀ s
∑
a′
πφ(a

′|s) = 1, ∀ s, a πφ(a
′|s) ≥ 0,

(2.8)

where φ is a parameter of classifier. Note that, since BC with discrete action space

is formulated as a classification problem, other classification method also can be

used. Second, for continuous action space, BC becomes a regression task. In this

setting, BC is formulated as a regression problem, hence, the policy is optimized

by minimizing the log-likelihood similarly to (2.8). However, the constraint is

changed into the integral condition,

∀ s
∫
a∈A

πφ(a|s)da = 1, ∀ s, a πφ(a
′|s) ≥ 0.

The proposed methods in this dissertation is often focused on handling continuous

action spaces.

2.2.2 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) problem aims to learn rewards function

from expert’s demonstrations by assuming that expert follows optimal policy

induced by the underlying rewards function. The expert generates demonstrations

D = {ζ0, · · · , ζN} where N is the number of demonstrations and ζi is a sequence

of state and action pairs whose length is T , i.e., ζi = {(s0, a0), · · · , (sT , aT )}.

Then, the goal of IRL is to recover both rewards r and corresponding optimal

policy π from D when M/r is given. However, IRL problem inherently contains

ill-posedness due to the data inconsistency and ambiguity of rewards function.

13



Chapter 2. Background

Maximum Shannon-Gibbs Entropy Framework

Zeibart et al. [152] proposed the maximum causal entropy framework, which is

also known as maximum entropy inverse reinforcement learning (MaxEnt IRL).

MaxEnt IRL maximizes the causal entropy of a policy distribution while the

feature expectation of the optimized policy distribution is matched with that of

expert’s policy. The maximum causal entropy framework is defined as follows:

maximize
π∈Π

αH(π)

subject to Eπ [φ(s, a)] = EπE
[φ(s, a)] ,

(2.9)

where H(π) � Eπ [− log(π(a|s))] is the causal entropy of policy π, α is a scale

parameter, πE is the policy distribution of the expert, and φ is a feature mapping

from a state action space to a feature space. Maximum causal entropy estima-

tion finds the most uniformly distributed policy satisfying feature matching con-

straints. The feature expectation of the expert policy is used as a statistic to repre-

sent the behavior of an expert and is approximated from expert’s demonstrations

D = {ζ0, · · · , ζN}, where N is the number of demonstrations and ζi is a sequence

of state and action pairs whose length is T , i.e., ζi = {(s0, a0), · · · , (sT , aT )}. The

principle of maximum causal entropy tells us that, if expert’s demonstration is

not enough to fully understand its underlying rewards, then, it is best to select

a random action at the undemonstrated state in perspective of the worst case

performance guarantee. In [151], it is shown that the optimal solution of (2.9) is

a softmax distribution and the reward function is obtained as θᵀφ(s, a) where θ

is the Lagrangian multiplier of the problem (2.9).

In [151], (2.9) was solved using Lagrangian method finding primal and dual

variables alternatively. The dual problem of (2.9) is

min
θ

min
π∈Π

LH(θ, c, λ, π) (2.10)

14



Chapter 2. Background

where LH is a Lagrangian objective function deinfed as

LH(θ, c, λ, π) =− αH(π)− Eπ [θ
ᵀφ(s, a)] + EπE [θᵀφ(s, a)]

+
∑
s

cs

(∑
a′
π(a′|s)− 1

)
−
∑
s,a

λsaπ(a|s),
(2.11)

θ is a dual variable for feature matching constraints and has the same dimension

with feature vector φ(s, a), c ∈ R
|S| is a dual variable for sum to one constraints,

and λ ∈ R
|S||A| is a dual variable for non-negative inequality. Note that the max-

imization is changed into the minimization with the negative objective function.

From the Lagrangian objective function, [151] showed that min
π
LH(θ, c, λ, π) is

equivalent to solve the soft MDP under the rewards function θᵀφ(s, a) and the

optimal policy is obtained as a softmax distribution, i.e., π(a|s) = exp(q(s,a))∑
a′ exp(q(s,a′))

where q(s, a) = E [
∑∞

t=0 θ
ᵀφ(st, at)|s0 = s, a0 = a, π].

Ho and Ermon further proposed Generative adversarial imitation learning

(GAIL) by showing the equivalence between the unified IRL framework and

generative adversarial networks (GANs) where the reward function and policy

function in IRL correspond to discriminator and generator in GAN, respectively.

Generative Adversarial Framework For Model-Free Imitation Learning

In [55], Ho and Ermon have extended (2.9) to a unified framework for IRL by

adding a reward regularization as follows:

max
c

min
π∈Π

− αH(π) + Eπ [c(s, a)]− EπE
[c(s, a)]− ψ(c), (2.12)

where c is a cost function and ψ is a convex regularization for cost c. As shown

in [55], many existing IRL methods can be interpreted with this framework, such

as MaxEnt IRL [152], apprenticeship learning [1], and multiplicative weights ap-

prenticeship learning [124]. Existing IRL methods based on (2.12) often require

15



Chapter 2. Background

to solve the inner minimization over π for fixed c in order to compute the gradient

of c. The inner minimization with cost c. In [151], Ziebart showed that the inner

minimization is equivalent to a soft Markov decision process (soft MDP) under

the reward −c and proposed soft value iteration to solve the soft MDP. How-

ever, solving a soft MDP every iteration is often intractable for problems with

large state and action spaces and also requires the transition probability which

is not accessible in many cases. To address this issue, the generative adversar-

ial imitation learning (GAIL) framework is proposed in [55] to avoid solving the

soft MDP problem directly. It is proven that the minimization and maximization

of (2.12) are interchangeable by the mini-max theorem [86]. Before explaining

interchangability of (2.12), we introduce the settings about the rewards regu-

larization and the feature space used in [152]. Ho and Ermon assumed that F

is a set of |S||A|-dimensional unit vector es′a′ whose element is determined as

[es′a′ ]sa = I{s′=s,a′=a} where I{s′=s,a′=a} is an indicator function and φ is set to

the function which maps a state action pair to the corresponding unit vector, i.e.,

φ(s, a) := esa, where the third input s′ is ignored. Then, the feature expectation

in (2.9) is equivalent to state-action visitation as follows:

Eπ

[[
φ(s′, a′)

]
sa

]
= Eπ [[es′a′ ]sa]

= Eπ

[
I{s′=s,a′=a}

]
= ρπ(s, a).

Consequently, the feature expectation constraints in (2.9) is converted into

state-action visitation matching constraints as follows:

∀ s, a ρπ(s, a) = ρπE (s, a).

Then, the corresponding Lagrangian multiplier θ becomes a |S||A|-dimensional

vector and is equivalent to the rewards function r since r(s, a) = θᵀφ(s, a) =

θᵀesa = θsa. Hence, in this problem, we only consider state action dependent

16



Chapter 2. Background

rewards, i.e., r(s, a) = r(s, a, s′) for all s′. By using interchangability, unified

framework can be converted as follows:

minimize
π

ψ∗ (ρπ − ρπE )− αH(π)

where ψ∗ is a conjugate function of the policy regularization, i.e., ψ∗(x) =

maxr−ψ(r) +
∑

s,a r(s, a)xsa for any x ∈ R
|S||A|. By using the interchangeability

and using the specific rewards regularization,

ψGA(r) �

⎧⎪⎪⎨
⎪⎪⎩
EπE [g(r(s, a))] , if r > 0

∞, otherwise

where

g(x) �

⎧⎪⎪⎨
⎪⎪⎩
x− log(1− exp(−x)), if x > 0

∞, otherwise,

The unified imitation learning problem (2.12) can be converted into the GAIL

framework as follows:

min
π∈Π

max
D

Eπ [log(D(s, a))] + EπE
[log(1−D(s, a))]− αH(π), (2.13)

where D ∈ (0, 1)|S||A| indicates a discriminator, which returns the probability

that a given demonstration is from a learner, i.e., 1 for learner’s demonstrations

and 0 for expert’s demonstrations. Notice that we can interpret log(D) as cost c

(or reward of −c).

Since existing IRL methods, including GAIL, are often based on the maximum

causal entropy, they model the expert’s policy using a softmax distribution, which

can assign non-zero probability to non-expert actions in a discrete action space.

Furthermore, in a continuous action space, expert’s behavior is often modeled

using a uni-modal Gaussian distribution, which is not proper to model multi-

modal behaviors.

17



Chapter 2. Background

18



Chapter 3

Sparse Policy Learning

3.1 Sparse Policy Learning for Reinforcement Learn-

ing

Reinforcement learning (RL) has been widely used to solve stochastic sequential

decision problems, such as autonomous driving [23], path planning [102], and

quadrotor control [57]. In general, the goal of RL is to find the optimal policy

function which maximizes the expected return. As we mentioned in Chapter 2.1, a

Markov decision process (MDP) is often used to formulate reinforcement learning

(RL) [68], which aims to find the optimal policy without the explicit specification

of stochasticity of an environment, and inverse reinforcement learning (IRL) [92],

whose goal is to search the proper reward function that can explain the behavior

of an expert who follows the underlying optimal policy.

In Chapter 2.1, the optimal solution of an MDP is a deterministic policy.

However, it is not desirable to apply an MDP to the problems with multiple

optimal actions. In perspective of RL, the knowledge of multiple optimal actions

makes it possible to cope with unexpected situations. For example, suppose that

19



Chapter 3. Sparse Policy Learning

(a) Reward map and action values at state s.

(b) Proposed policy model and value differences (darker is better).

(c) Softmax policy model and value differences (darker is better).

Figure 3.1: A 2-dimensional multi-objective environment with point mass dynam-

ics.

an autonomous vehicle has multiple optimal routes to reach a given goal. If a

traffic accident occurs at the currently selected optimal route, it is possible to

avoid the accident by choosing another safe optimal route without additional

20



Chapter 3. Sparse Policy Learning

computation of a new optimal route. For this reason, it is more desirable to

learn all possible optimal actions in terms of robustness of a policy function.

In perspective of IRL, since the experts often make multiple decisions in the

same situation, a deterministic policy has a limitation in expressing the expert’s

behavior. For this reason, it is indispensable to model the policy function of an

expert as a multi-modal distribution. These reasons give a rise to the necessity

of a multi-modal policy model.

In order to address the issues with a deterministic policy function, a causal

entropy regularization method has been utilized [50, 53, 115, 134, 138]. This is

mainly due to the fact that the optimal solution of an MDP with causal entropy

regularization becomes a softmax distribution of state-action values Q(s, a), i.e.,

π(a|s) = exp(Q(s,a))∑
a′ exp(Q(s,a′)) , which is often referred to as a soft MDP [19]. While a

softmax distribution has been widely used to model a stochastic policy, it has a

weakness in modeling a policy function when the number of actions is large. In

other words, the policy function modeled by a softmax distribution is prone to

assign non-negligible probability mass to non-optimal actions even if state-action

values of these actions are dismissible.

This tendency gets worse as the number of actions increases as demonstrated

in Figure 3.1. In this example, the state is a location and the action is a velocity

bounded with [−3, 3] × [−3, 3]. Then, Figure 3.1(a) shows the reward map and

action value functions for different discretization of action spaces. The left figure

of Figure 3.1(a) shows the reward map with four maxima (multiple objectives).

The action space is discretized into two levels: 9 (low resolution) and 49 (high

resolution). The middle (resp., right) figure of Figure 3.1(a) shows the optimal

action value at state s indicated as red cross point when the number of action

is 9 (resp., 49). In Figure 3.1(b), the first and third figure indicate the proposed

21



Chapter 3. Sparse Policy Learning

policy distributions at state s induced by the action values in Figure 3.1(a).

The second and fourth figure of Figure 3.1(b) show a map of the performance

difference between the proposed policy and the optimal policy at each state when

the number of action is 9 and 49, respectively. The larger the error, the brighter

the color of the state. Furthermore, all figures in Figure 3.1(c) are obtained in

the same way as Figure 3.1(b) by replacing the proposed policy with a softmax

policy. This example shows that the proposed policy model is less affected when

the number of actions increases.

In this paper, we propose a sparse MDP by presenting a novel causal sparse

Tsallis entropy regularization method, which can be interpreted as a special case

of the Tsallis generalized entropy [135]. The proposed regularization method has

a unique property in that the resulting policy distribution becomes a sparse distri-

bution. In other words, the supporting action set which has a non-zero probability

mass contains a sparse subset of the action space.

We provide a full mathematical analysis about the proposed sparse MDP. We

first derive the optimality condition of a sparse MDP, which is named as a sparse

Bellman equation. We show that the sparse Bellman equation is an approximation

of the original Bellman equation. Interestingly, we further find the connection

between the optimality condition of a sparse MDP and the probability simplex

projection problem [140]. We present a sparse value iteration method for solving

a sparse MDP problem, where the optimality and convergence are proven using

the Banach fixed point theorem [120]. We further analyze the performance gaps

of the expected return of the optimal policies obtained by a sparse MDP and a

soft MDP compared to that of the original MDP. In particular, we prove that the

performance gap between the proposed sparse MDP and the original MDP has

a constant bound as the number of actions increases, whereas the performance

22



Chapter 3. Sparse Policy Learning

gap between a soft MDP and the original MDP grows logarithmically. From this

property, sparse MDPs have benefits over soft MDPs when it comes to solving

problems in robotics with a continuous action space.

To validate effectiveness of a sparse MDP, we apply the proposed method to

the exploration strategy and the update rule of Q-learning and compare to the ε-

greedy method and softmax policy [134]. The proposed method is also compared

to the deep deterministic policy gradient (DDPG) method [79], which is designed

to operate in a continuous action space without discretization. The proposed

method shows the state of the art performance compared to other methods as

the discretization level of an action space increases.

3.1.1 Sparse Markov Decision Processes

We propose a sparse Markov decision process by introducing a novel causal sparse

Tsallis entropy regularizer:

W (π) := E

[ ∞∑
t=0

γt
1

2
(1− π(at|st))

∣∣∣∣∣π, d, T
]

= Eπ

[
1

2
(1− π(a|s))

]
.

(3.1)

By adding W (π) to the objective function of (2.5), we aim to solve the following

optimization problem:

maximize
π

Eπ

[
r(s, a, s′)

]
+ αW (π)

subject to ∀ s
∑
a′
π(a′|s) = 1, ∀ s, a π(a′|s) ≥ 0,

(3.2)

where α > 0 is a regularization coefficient. We will first derive the sparse Bellman

equation from the necessary condition of (3.2). Then by observing the connection

between the sparse Bellman equation and the probability simplex projection, we

show that the optimal policy becomes a sparsemax distribution, where the sparsity

23



Chapter 3. Sparse Policy Learning

can be controlled by α. In addition, we present a sparse value iteration algorithm

where the optimality is guaranteed using the Banach’s fixed point theorem. The

detailed derivations of lemmas and theorems in this paper can be found in the

supplementary material.

Notations

Before explaining the proposed MDP, let us introduce some useful notations:

Jspπ := Eπ

[
r(s, a, s′) +

α

2
(1− π(a|s))

]
V sp
π (s) := Eπ

[
r(s, a, s′) +

α

2
(1− π(a|s))

∣∣∣s0 = s
]

Qspπ (s, a) := Eπ

[
r(s, a, s′) +

α

2
(1− π(a|s))

∣∣∣s0 = s, a0 = a
]

rspπ (s) :=
∑
a

(
r(s, a, s′) +

α

2
(1− π(a|s))

)
π(a|s),

where Jspπ is the objective function of a sparse MDP, V sp
π and Qspπ are a value

function and an action value function of a sparse MDP, respectively, and rspπ is

the expectation of rewards at state s. Here, the superscript sp indicates a sparse

MDP problem.

Sparse Bellman Equation from Karush-Kuhn-Tucker conditions

The sparse Bellman equation can be derived from the necessary conditions of

an optimal solution of a sparse MDP. We carefully investigate the Karush Kuhn

Tucker (KKT) conditions, which indicate necessary conditions for a solution to

be optimal when some regularity conditions about the feasible set are satisfied.

The feasible set of a sparse MDP satisfies linearity constraint qualification [146]

since the feasible set consists of linear affine functions. In this regards, the optimal

solution of a sparse MDP necessarily satisfy KKT conditions as follows.

24



Chapter 3. Sparse Policy Learning

Theorem 1. If a policy distribution π is the optimal solution of a sparse MDP

(3.2), then π and the corresponding sparse value function V sp
π necessarily satisfy

the following equations for all state and action pairs:

Qspπ (s, a) =
∑
s′

(
r(s, a, s′) + γV sp

π (s′)
)
T (s′|s, a)

V sp
π (s) = α

⎡
⎣1
2

∑
a∈S(s)

((
Qspπ (s, a)

α

)2

− τ
(
Qspπ (s, ·)

α

)2
)

+
1

2

⎤
⎦

π(a|s) = max

(
Qspπ (s, a)

α
− τ
(
Qspπ (s, ·)

α

)
, 0

)
, (3.3)

where τ
(
Qsp

π (s,·)
α

)
=

∑
a∈S(s)

Q
sp
π (s,a)

α
−1

Ks
, S(s) is a set of actions satisfying 1 +

i
Qsp

π (s,a(i))

α >
∑i

j=1
Qsp

π (s,a(j))

α with a(i) indicating the action with the ith largest

action value Qspπ (s, a(i)), and Ks is the cardinality of S(s).

The full proof of Theorem 1 is provided in the supplementary material. The

proof depends on the KKT condition where the derivative of a Lagrangian objec-

tive function with respect to policy π(a|s) becomes zero at the optimal solution,

the stationary condition. From (3.3), it can be shown that the optimal solution

obtained from the sparse MDP assigns zero probability to the action whose ac-

tion value Qsp(s, a) is below the threshold τ
(
Qsp

π (s,·)
α

)
and the optimal policy

assigns positive probability to near optimal actions in proportion to their action

values, where the threshold τ
(
Qsp

π (s,·)
α

)
determines the range of near optimal

actions. This property makes the optimal policy to have a sparse distribution

and prevents the performance drop caused by assigning non-negligible positive

probabilities to non-optimal actions, which often occurs in a soft MDP.

From the definitions of S(s) and π(a|s), we can further observe an interesting

connection between the sparse Bellman equation and the probability simplex

projection problem [140].

25



Chapter 3. Sparse Policy Learning

Probability Simplex Projection and SparseMax Operation

The probability simplex projection [140] is a well known problem of projecting a

d-dimensional vector into a d− 1 dimensional probability simplex in a Euclidean

metric sense. A probability simplex projection problem is defined as follows:

minimize
p

1

2
||p− z||22

subject to

d∑
i=1

pi = 1, pi ≥ 0, ∀i = 1, · · · , d,
(3.4)

where z is a given d-dimensional vector, d is the dimension of p and z, and pi is

the ith element of p. Let z(i) be the ith largest element of z and supp(z) be the

supporting set of the optimal solution as defined by supp(z) = {z(i)|1 + iz(i) >∑i
j=1 z(j)}. It is a well known fact that the problem (3.4) has a closed form

solution which is p∗i (z) = max(zi − τ(z), 0), where i indicates the ith dimension,

p∗i (z) is the ith element of the optimal solution for fixed z, and τ(z) =
∑K

i=1 z(i)−1

K

with K = |supp(z)| [140, 85].

Interestingly, the optimal solution p∗(·), τ(·) and the supporting set supp(·)

of (3.4) can be precisely matched to those of the sparse Bellman equation (3.3).

From this observation, it can be shown that the optimal policy distribution of a

sparse MDP is the projection of Qspπ (s, ·) into a probability simplex. Note that

we refer to p∗(·) as a sparsemax distribution and denote it as spdist(·).

More surprisingly, V sp
π can be represented as an approximation of the max

operation derived from p∗(z). A differentiable approximation of themax operation

is defined as follows:

spmax(z) � 1

2

K∑
i=1

(
z2(i) − τ(z)2

)
+

1

2
(3.5)

We call spmax(·) as a sparsemax operation. In [85], it is proven that spmax(z) is

an indefinite integral of p∗(z), i.e., spmax(z) =
∫
(p∗(z))ᵀ dz + C, where C is a

26



Chapter 3. Sparse Policy Learning

constant and, in our case, C = 1
2 . We provide simple upper and lower bounds of

spmax(z) with respect to max(z)

max(z) ≤ αspmax
( z
α

)
≤ max(z) + α

d− 1

2d
. (3.6)

The lower bound of spmax(·) is shown in [85]. However, we provide another proof

of the lower bound and the proof for the upper bound in the supplementary

material .

The bounds (3.6) show that spmax(·) is a bounded and smooth approximation

of max and, from this fact, (3.3) can be interpreted as an approximation of the

original Bellman equation. Using this notation, V sp
π can be rewritten as,

V sp
π (s) = αspmax

(
Qspπ (s, ·)

α

)
. (3.7)

Supporting Set of Sparse Optimal Policy

The supporting set S(s) of a sparse MDP is a set of actions with nonzero proba-

bilities and the cardinality of S(s) can be controlled by regularization coefficient

α, while the supporting set of a soft MDP is always the same as the entire action

space. In a sparse MDP, actions assigned with non-zero probability must satisfy

the following inequality:

α+ iQspπ (s, a(i)) >

i∑
j=1

Qspπ (s, a(j)), (3.8)

where a(i) indicates the action with the ith largest action value. From this in-

equality, it can be shown that α controls the margin between the largest action

value and the others included in the supporting set. In other words, as α in-

creases, the cardinality of a supporting set increases since the action values that

satisfy (3.8) increase. Conversely, as α decreases, the supporting set decreases. In

extreme cases, if α goes zero, only optimal actions will be included in S(s) and if

27



Chapter 3. Sparse Policy Learning

α goes infinity, the entire actions will be included in S(s). On the other hand, in

a soft MDP, the supporting set of a softmax distribution cannot be controlled by

the regularization coefficient α even if the sharpness of the softmax distribution

can be adjusted. This property makes sparse MDPs have an advantage over soft

MDPs, since we can give a zero probability to non-optimal actions by controlling

α.

Connection to Tsallis Generalized Entropy

The notion of the Tsallis entropy was introduced by C. Tsallis as a general ex-

tension of entropy [135] and the Tsallis entropy has been widely used to describe

thermodynamic systems and molecular motions. Surprisingly, the proposed reg-

ularization is closely related to a special case of the Tsallis entropy. The Tsallis

entropy is defined as follows:

Sq(p) =
1

q − 1

(
1−
∑
i

pqi

)
,

where p is a probability mass function and q is a parameter called entropic-index.

Note that, if q → 1, S1(p) is the same as entropy, i.e., −∑i pi log(pi). In [151, 19],

it is shown that H(π) is an extension of S1(π(·|s)) since H(π) = Eπ[S1(π(·|s))] =∑
s,a−π(a|s) log(π(a|s))ρ(s) where ρ(s) is the state visitation of s defined as

E
[∑∞

t=0 γ
t
I(st = s)

]
.

We discover the connection between the Tsallis entropy and the proposed reg-

ularization when q = 2.

Theorem 2. The proposed policy regularization W (π) is an extension of the

Tsallis entropy with parameters q = 2 to the version of causal entropy, i.e.,

W (π) =
1

2
Eπ[S2(π(·|s))].

28



Chapter 3. Sparse Policy Learning

From this theorem, W (π) can be interpreted as an extension of 1
2S2(p) to the

case of a causally conditioned distribution, similarily to the causal entropy.

3.1.2 Sparse Value Iteration

In this section, we propose an algorithm for solving a causal sparse Tsallis entropy

regularized MDP problem. Similar to the original MDP and a soft MDP, the

sparse version of value iteration can be induced from the sparse Bellman equation.

We first define a sparse Bellman operation U sp : R|S| → R
|S| as follows: for all s,

U sp(x)(s) := αspmax

(∑
s′ (r(s, ·, s′) + γx(s′))T (s′|s, ·)

α

)
,

where x is a vector in R
|S| and U sp(x) is the resulting vector after applying U sp

to x and U sp(x)(s) is the element for state s in U sp(x). Then, the sparse value

iteration algorithm can be described simply as

xi+1 = U sp(xi),

where i is the number of iterations. In the following section, we show the conver-

gence and the optimality of the proposed sparse value iteration method.

Optimality of Sparse Value Iteration

In this section, we prove the convergence and optimality of the sparse value iter-

ation method. We first show that U sp has monotonic and discounting properties

and, by using those properties, we prove that U sp is a contraction. Then, by

the Banach fixed point theorem, with repeated applications of U sp, it always

converges to a unique fixed point from an arbitrary initial point.

Lemma 1. U sp is monotone: for x, y ∈ R
|S|, if x ≤ y, then U sp(x) ≤ U sp(y),

where ≤ indicates an element-wise inequality.

29



Chapter 3. Sparse Policy Learning

Lemma 2. For any constant c ∈ R, U sp(x+ c1) = U sp(x)+ γc1, where 1 ∈ R
|S|

is a vector of all ones.

The full proofs can be found in the supplementary material. The proofs of

Lemma 1 and Lemma 2 rely on the bounded property of the sparsemax operation.

It is possible to prove that the sparse Bellman operator U sp is a contraction using

Lemma 1 and Lemma 2 as follows:

Lemma 3. U sp is a γ-contraction mapping and have a unique fixed point, where

γ is in (0, 1) by definition.

Using Lemma 1, Lemma 2, and Lemma 3, the optimality and convergence of

sparse value iteration can be proven.

Theorem 3. Sparse value iteration converges to the optimal value of (3.2).

The proof can be found in the supplementary material. Theorem 3 is proven

using the uniqueness of the fixed point of U sp and the sparse Bellman equation.

3.1.3 Performance Error Bounds for Sparse Value Iteration

We prove the bounds of the performance gap between the policy obtained by a

sparse MDP and the policy obtained by the original MDP, where this performance

error is caused by regularization. The boundedness of (3.6) plays a crucial role

to prove the error bounds. The performance bounds can be derived from bounds

of sparsemax. A similar approach can be applied to prove the error bounds of a

soft MDP since a log-sum-exp function is also a bounded approximation of the

max operation.

Before explaining the performance error bounds, we introduce two useful propo-

sitions which are employed to prove the performance error bounds of a sparse

MDP and a soft MDP. We first prove an important fact which shows that the

30



Chapter 3. Sparse Policy Learning

optimal values of sparse value iteration and soft value iteration are greater than

that of the original MDP.

Lemma 4. Let U and U soft be the Bellman operations of an original MDP and

soft MDP, respectively, such that, for state s and x ∈ R
|S|,

U(x)(s) = max
a′

∑
s′

(
r(s, a′, s′) + γx(s′)T (s′|s, a′)

)
U soft(x)(s) = α log

∑
a′

exp

(∑
s′ (r(s, a

′, s′) + γx(s′))T (s′|s, a′)
α

)
.

Then following inequalities hold for every integer n > 0:

Un(x) ≤ (U sp)n(x), Un(x) ≤ (U soft)n(x),

where Un (resp., (U sp)n) is the result after applying U (resp., U sp) n times. In

addition, let x∗, x
sp
∗ and xsoft∗ be the fixed points of U, U sp and U soft, respectively.

Then, following inequalities also hold:

x∗ ≤ xsp∗ , x∗ ≤ xsoft∗ .

Lemma 4 shows that the optimal values, V sp
π and V soft

π , obtained by sparse

value iteration and soft value iteration are always greater than the original op-

timal value Vπ. Intuitively speaking, the reason for this inequality is due to the

regularization term, i.e., W (π) or H(π), added to the objective function.

Now, we discuss other useful properties about the proposed causal sparse Tsallis

entropy regularization W (π) and causal entropy regularization H(π).

Lemma 5. W (π) and H(π) have following upper bounds:

W (π) ≤ 1

1− γ
|A| − 1

2|A| , H(π) ≤ log(|A|)
1− γ

where |A| is the cardinality of the action space A.

31



Chapter 3. Sparse Policy Learning

Using Lemma 4 and Lemma 5, the performance bounds for a sparse MDP and

a soft MDP can be derived as follows.

Theorem 4. Following inequalities hold:

Eπ∗
[
r(s, a, s′)

]
− α

1− γ
|A| − 1

2|A| ≤ Eπsp

[
r(s, a, s′)

]
≤ Eπ∗

[
r(s, a, s′)

]
,

where π∗ and πsp are the optimal policy obtained by the original MDP and a

sparse MDP, respectively.

Theorem 5. Following inequalities hold:

Eπ∗
[
r(s, a, s′)

]
− α

1− γ log(|A|) ≤ Eπsoft

[
r(s, a, s′)

]
≤ Eπ∗

[
r(s, a, s′)

]
where π∗ and πsoft are the optimal policy obtained by the original MDP and a

soft MDP, respectively.

These error bounds show us that the expected return of the optimal policy of a

sparse MDP has always tighter error bounds than that of a soft MDP. Moreover,

it can be also known that the bounds for the proposed sparse MDP converges to

a constant α
2(1−γ) as the number of actions increases, whereas the error bounds

of soft MDP grows logarithmically.

This property has a clear benefit when a sparse MDP is applied to a robotic

problem with a continuous action space. To apply an MDP to a continuous action

space, a discretization of the action space is essential and a fine discretization

is required to obtain a solution which is closer to the underlying continuous

optimal policy. Accordingly, the number of actions becomes larger as the level of

discretization increases. In this case, a sparse MDP has advantages over a soft

MDP in that the performance error of a sparse MDP is bounded by a constant

factor as the number of actions increases, whereas performance error of optimal

policy of a soft MDP grows logarithmically.

32



Chapter 3. Sparse Policy Learning

3.1.4 Sparse Exploration and Update Rule for Sparse Deep Q-

Learning

In this section, we first propose sparse Q-learning and further extend to sparse

deep Q-learning, where a sparsemax policy and the sparse Bellman equation are

employed as a exploration method and update rule. Sparse Q-learning is a model

free method to solve the proposed sparse MDP without the knowledge of tran-

sition probabilities. In other words, when the transition probability T (s′|a, s) is

unknown but sampling from T (s′|a, s) is possible, sparse Q-learning estimates an

optimal Qsp of the sparse MDP using sampling, as Q-learning finds an approxi-

mated value of an optimal Q of the conventional MDP. Similar to Q-learning, the

update equation of sparse Q-learning is derived from the sparse Bellman equation,

Qsp(si, ai)← Qsp(si, ai)+

η(i)

[
r(si, ai, si+1) + γαspmax

(
Qsp(si+1, ·)

α

)
−Qsp(si, ai)

]
,

where i indicates the number of iterations and η(i) is a learning rate. If the

learning rate η(i) satisfies
∑∞

i=0 η(i) = ∞ and
∑∞

i=0 η(i)
2 < ∞, then, as the

number of samples increases to infinity, sparse Q-learning converges to the optimal

solution of a sparse MDP. The proof of the convergence and optimality of sparse

Q-learning is the same as that of the standard Q-learning [142].

The proposed sparse Q-learning can be easily extended to sparse deep Q-

learning using a deep neural network as an estimator of the sparse Q value.

In each iteration, sparse deep Q-learning performs a gradient descent step to

minimize the squared loss (y − Q(s, a; θ))2, where θ is the parameter of the Q

network. Here, y is the target value defined as follows:

y = r(s, a, s′) + γαspmax

(
Q(s′, ·; θ)

α

)
,

33



Chapter 3. Sparse Policy Learning

where s′ is the next state sampled by taking action a at the state s and θ are

network parameters.

Moreover, we employ the sparsemax distribution as a exploration strategy.

To guarantee that all state and action pairs are sufficiently visited, we propose

sparsemax exploration by combining a sparsemax distribution and the ε-greedy

method as follows:

πt(·|s) = (1− εt)spdist
(
Q(s, ·; θ)

α

)
+

εt
|A|1, (3.9)

where πt indicates the exploration policy at iteration t. εt ∈ (0, 1] is the pro-

portion of ε-greedy, which can be scheduled similar to the learning rate. When

εt is close to one, sparsemax exploration acts like a uniform distribution, simi-

larly to ε-greedy. After εt is reduced to a sufficiently small number, sparsemax

exploration converges to a sparemax distribution. Hence, sparsemax exploration

selectively re-explore the meaningful actions when εt is small. The effectiveness

of the sparsemax exploration is investigated in Section 3.1.5.

For stable convergence of a Q network, we utilize double Q-learning [139],

which prevents instability of deep Q-learning by slowly updating the target value.

Prioritized experience replay [112] is also applied using weighted loss function for

training Q network. The whole process of sparse deep Q-learning is summarized

in Algorithm 1.

3.1.5 Experiments

We first verify Theorem 4, Theorem 5 and the effect of (3.8) in simulation. For

the verification of Theorem 4 and Theorem 5, we measure the performance of the

expected return while increasing the number of actions, |A|. For the verification

of the effect of (3.8), the cardinality of the supporting set of optimal policies of

sparse and soft MDP are compared at different values of α.

34



Chapter 3. Sparse Policy Learning

Algorithm 1 Sparse Deep Q-Learning

1: Initialize prioritized replay memory M = ∅, Q network parameters θ and θ−,

ε0 = 1

2: for i = 0 to N do

3: Sample initial state s0 ∼ d0(s)

4: for t = 0 to T do

5: Sample action at ∼ πt(a|st) (3.9)

6: Execute at and observe next state st+1 and reward rt

7: Add experiences to replay memoryM with an initial importance weight,

M ← (st, at, rt, st+1, w0) ∪M

8: Sample mini-batch B from M with importance weight

9: Set a target value yj of (sj , aj , rj , sj+1, wj) in B, yj = rj +

γαspmax
(
Q(sj+1,·;θ−)

α

)
10: Minimize

∑
j wj (yj −Q(sj , aj ; θ))

2 using a gradient descent method

11: Update εt and importance weights {wj} based on temporal difference

error δj = |yj −Q(sj , aj ; θ)| [112]

12: end for

13: Update θ− = θ every c iteration

14: end for

To investigate effectiveness of the proposed method, we test sparsemax ex-

ploration and the sparse Bellman update rule on reinforcement learning with a

continuous action space. To apply Q-learning to a continuous action space, a

fine discretization is necessary to obtain a solution which is closer to the original

continuous optimal policy. As the level of discretization increases, the number

of actions to be explored becomes larger. In this regards, an efficient exploration

method is required to obtain high performance. We compare our method to other

35



Chapter 3. Sparse Policy Learning

exploration methods with respect to the convergence speed and the expected sum

of rewards. We further check the effect of the update rule.

Experiments on Performance Bounds and Supporting Set

To verify our theorem about performance error bounds, we create a transition

model T by discretization of unicycle dynamics defined in a continuous state and

action space and solve the original MDP, a soft MDP and a sparse MDP under

predefined rewards while increasing the discretization level of the action space.

The reward function is defined as a linear combination of two squared exponential

functions, i.e., r(x) = exp
( ||x−x1||2

2σ2
1

)
− exp

( ||x−x2||2
2σ2

2

)
, where x is a location of

a unicycle, x1 is a goal point, x2 is the point to avoid, and σ1 and σ2 are scale

parameters. The reward function is designed to let an agent to navigate towards

x1 while avoiding x2. The absolute value of differences between the expected

return of the original MDP and that of sparse MDP (or soft MDP) is measured.

As shown in Figure 3.2(a), the performance gap of sparse MDP converges to a

constant bound while the performance of the soft MDP grows logarithmically.

Note that the performance gaps of the sparse MDP and soft MDP are always

smaller than their error bounds. Supporting set experiments are conducted using

discretized unicycle dynamics. The cardinality of optimal policies are measured

while α varies from 0.1 to 100. In Figure 3.2(b), while the ratio of the supporting

set for a soft MDP is changed from 0.79 to 1.00, the ratio for a sparse MDP is

changed from 0.24 to 0.99, demonstrating the sparseness of the proposed sparse

MDPs compared to soft MDPs.

36



Chapter 3. Sparse Policy Learning

(a) Performance Bounds (b) Supporting Set Comparison

Figure 3.2: (a) The performance gap is calculated as the absolute value of the

difference between the performance of sparse MDP or soft MDP and the perfor-

mance of an original MDP. (b) The ratio of the number of supporting actions to

the total number of actions is shown. The action space of unicycle dynamics is

discretized into 25 actions.

Reinforcement Learning in a Continuous Action Space

We test our method in OpenAI Gym and MuJoCo [133], a physics-based sim-

ulator, using four problems with a continuous action space: inverted pendulum,

reacher, lunar lander, and Walker2D. The action space is discretized to apply

Q-learning to a continuous action space and experiments are conducted with

fine discretization to validate the effectiveness of sparsemax exploration and the

sparse Bellman update rule.

We compare the sparsemax exploration method to the ε-greedy and softmax

exploration [138] and further compare the sparse Bellman update rule to the

original Bellman [142] and the soft Bellman [19] update rule. In total, we test

9 combinations of variants of deep Q-learning by combining three exploration

methods and three update rules. The deep deterministic policy gradient (DDPG)

37



Chapter 3. Sparse Policy Learning

(a) Inverted Pendulum (b) Reacher (c) Lunar Lander (d) Walker2D

Figure 3.3: (a) An inverted pendulum is mounted on a cart. The cart can only

move horizontally. The goal of this task is to control a cart to keep the pendulum

upright. (b) Two joint arm is fixed at the center point. The goal of this task is

to control the end effector of arm to reach the goal point. (c) The point mass

is dropped by gravity. The goal of this task is to land safely inside the landing

pad (between two flags) and use less fuel. (d) 7 joint bipedal robot should move

forward as quickly as possible.

method [79], which operates in a continuous action space without discretization

of the action space, is also compared1. Hence, a total of 10 algorithms are tested.

The experiments are repeated with five different random seeds. We find the best

α and ε value for each algorithm using a brute force search. A Q network with

two 512 dimensional hidden layers is used for inverted pendulum and Walker2D

problems and a Q network with four 256 dimensional hidden layers is used for

reacher and lunar lander problems. Each Q-learning algorithm utilizes the same

network topology for the same problem. More details about the problems and

experiment settings can be found in the supplementary material .

Results are shown in Table 3.1 and 3.2, where the maximum average return

and the number of episodes to reach a given threshold return value are shown.

For the inverted pendulum problem, every algorithm achieves the maximum av-

1To test DDPG, we used the code from Open AI available at https://github.com/openai/

baselines.

38



Chapter 3. Sparse Policy Learning

Task |A| Sps+SpsB Sps+SftB Sps+B Stf+SpsB Stf+StfB Stf+B Eps+SpsB Eps+StfB Eps+B DDPG

Inv. Pend. 20011 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0

Reacher 512 -4.9 -5.5 -5.0 -5.5 -5.6 -5.5 -5.6 -5.6 -5.5 -5.9

Lun. Lan. Cont. 512 216.5 223.4 215.5 214.7 211.2 212.9 -324.7 -337.1 -349.5 216.5

Walker2D 36 1218.9 1189.8 1853.6 1625.8 1222.4 1269.5 1416.7 1244.7 690.5 1312.2

Table 3.1: Maximum average return with consecutive 100 episodes for five differ-

ent random seeds. Sps, Sft, and Eps stand for Sparsemax, Softmax, and ε-greedy

exploration, respectively, and SpsB, SftB, B stand for the sparse, soft, and stan-

dard Bellman update rule, respectively. Algorithms are named as <exploration

method>+<update rule>. (The best result is shown in bold.)

erage return of 1000. However, algorithms with sparsemax exploration reach the

threshold value, 980, slightly faster than softmax exploration. For the reacher

problem, algorithms with sparsemax exploration outperform other exploration

methods with respect to the maximum average expected return while softmax

exploration converges faster than other methods. For the lunar lander, sparsemax

exploration shows the best expected return and the smallest number of episodes

needed to reach the threshold value. For the Walker2D problem, the method com-

bining sparsemax exploration and Bellman update rule shows the best expected

return value while its convergence speed is the second best. DDPG shows a slower

convergence speed than sparsemax and softmax exploration since training actor

and critic networks requires more episodes. The experimental results show that

the sparsemax exploration method has an advantage over softmax exploration,

ε-greedy method and DDPG with respect to the number of episodes to reach the

optimal performance.

39



Chapter 3. Sparse Policy Learning

Task Threshold Sps+SpsB Sps+SftB Sps+B Stf+SpsB Stf+StfB Stf+B Eps+SpsB Eps+StfB Eps+B DDPG

Inv. Pend. 980 673 573 957 583 835 700 1693 1717 1488 1009

Reacher -7.0 1155 1205 1256 1363 1064 2636 2502 2588 2298 2298

Lun. Lan. Cont. 170.0 574 397 480 494 753 529 - - - 2213

Walker2D 1000.0 1341 1447 1194 1119 1403 1429 1333 1440 - 1388

Table 3.2: The number of episodes required to cross a given threshold of the

average expected return. ‘-’ indicates that the algorithm has not reached the

given threshold within the given training episode from all runs. The performance

is measured after exploring 4000, 10000, 3000, and 1500 episodes for inverted

pendulum, reacher, lunar lander, and Walker2D, respectively. (The best result is

shown in bold.)

Task Sps+SpsB Sps+SftB Sps+B Stf+SpsB Stf+StfB Stf+B Eps+SpsB Eps+StfB Eps+B

Inv. Pend.
α : 0.1 α : 0.01 α : 0.01 α : 0.01 α : 0.1 α : 0.1 α : 0.1 α : 1 -

ε : 0.995 ε : 0.995 ε : 0.995 - - - ε : 0.995 ε : 0.995 ε : 0.995

Reacher
α : 0.1 α : 0.1 α : 0.1 α : 0.01 α : 0.01 α : 0.01 α : 0.01 α : 1 -

ε : 0.99 ε : 0.99 ε : 0.99 - - - ε : 0.995 ε : 0.995 ε : 0.995

Lun. Lan.
α : 0.1 α : 1 α : 1 α : 0.1 α : 0.1 α : 0.1 α : 1 α : 0.1 -

ε : 0.999 ε : 0.999 ε : 0.999 - - - ε : 0.99 ε : 0.99 ε : 0.99

Walker2D
α : 0.01 α : 0.1 α : 0.5 α : 0.1 α : 0.1 α : 0.1 α : 1.0 α : 1.0 -

ε : 0.9995 ε : 0.9995 ε : 0.9995 - - - ε : 0.9995 ε : 0.9995 ε : 0.9995

Table 3.3: The best performed parameters for each algorithm in each problem.

Task Deep Q learning DDPG

Inv. Pend.
Two 512 ReLU layers Two 128 ReLU layers

Walker2D

Reacher
Four 256 ReLU layers Two 64 ReLU layers

Lun. Lan. Cont.

Table 3.4: Network Structures. ReLU indicates a rectified linear unit.

Multi-Objective Exploration

In order to verify that sparsemax exploration can successfully learn multi-modal

optimal actions, we designed a simple multi-objective environment where an agent

40



Chapter 3. Sparse Policy Learning

(a) Multiple Global Optima (b) Multiple Local Optima

Figure 3.4: (a) Reward maps with multiple global optima and (b) multiple local

optima. Red dot indicates goal points. The agent always starts at the center.

follows point mass dynamics and tries to reach one of equally distributed multi-

ple modes. The reward function is defined as a mixture of squared exponential

functions whose centers are placed at the goal positions (see Figure 3.4(a)). If

the exploration method successfully explores the environment, then the resulting

policy distribution will equally reach the multiple modes. We compare the sparse-

max, softmax, and ε-greedy methods and measure the average return and ratio

of reached modes to given modes while changing the number of global optima

with five different random seeds. The values of α and ε are found by a brute force

search. α is set to 3 and 5 for softmax and sparsemax policy, respectively, and the

decay rate of ε is set to 0.9995. The results are shown in Figure 3.5. The average

performance and the reached mode ratio are shown in Figure 3.5(a). The result-

ing sparsemax policy can reach every modes while maintaining its performance

when the number of global optima increases. However, the softmax policy shows

a performance drop since it assigns nonzero probability to non-optimal actions

to explore the every optimal points during the exploration phase and this effect

hampers the convergence of Q network to the multiple modes. The example of

41



Chapter 3. Sparse Policy Learning

(a) Expected Return (Multiple Global Op-

tima)

(b) Reached Mode Ratio (Multiple Global

Optima)

(c) Expected Return (Multiple Local Op-

tima)

(d) Required Episodes (Multiple Local Op-

tima)

Figure 3.5: (a) The average performance of each algorithm averaging over 500 test

episodes after training with 3000 episodes. (b) The ratio of the number of given

goals to the number of the goals reached by a trained policy. (c) The average

performance of each algorithm averaging over 500 test episodes sampled from a

greedy policy after training with 3000 episodes. (d) The number of episodes to

reach the threshold value (800) during the exploration phase.

sampled trajectories are shown in Figure 3.6.

We test our algorithm on a more difficult problem to verify that our method

can find the global optimum when multiple local optima exist (see Figure 3.4(b)).

We designed a reward function with single global optimum and multiple local op-

42



Chapter 3. Sparse Policy Learning

(a) Sparsemax Policy (Multiple Optimal Goals)

(b) Softmax Policy (Multiple Optimal Goals)

(c) Greedy Policy (Multiple Optimal Goals)

Figure 3.6: (a) Example trajectories sampled from the sparsemax policy distribu-

tion trained by sparsemax exploration. (b) Example trajectories sampled from the

softmax policy distribution trained by softmax exploration. (c) Example trajecto-

ries sampled from the greedy policy distribution trained by ε-greedy exploraiton

(when we sample the trajectory, ε is set to zero).

tima. The local optima are located near the initial state and the global optimum

is farther from the initial state than the local optima are. Hence, in order to

reach the global optimum, an agent should keep exploring with wide directions.

We train a Q network with sparsemax, softmax, and ε-greedy explorations and

evaluate the trained Q network with the greedy policy, i.e., argmaxQ(s, a). If ex-

ploration method can search the golobal optimum within limited episodes and the

Q network converges into the global optimum, then the greedy policy will reach

the global optimal point. For each algorithm, α is selected from the best value

43



Chapter 3. Sparse Policy Learning

(a) Sparsemax Exploration (Multiple Local Goals)

(b) Softmax Exploration (Multiple Local Goals)

(c) ε-Greedy Exploration (Multiple Local Goals)

Figure 3.7: (a) Example trajectories sampled by greedy policy trained by sparse-

max exploration. (b) Example trajectories sampled by greedy policy trained by

softmax exploration. (c) Example trajectories sampled by greedy policy trained

by ε-greedy exploraiton.

among [0.1, 1, 5, 10, 100] and ε decaying rate is also selected from the best value

among [0.99, 0.999, 0.9995, 0.9999] with the minimum ε at 0.001. The experiments

are repeated with five different random seeds and the test average return and re-

quired episodes to reach the threshold average return are shown in Figure 3.5. To

compute the number of episodes to reach the threshold average return, we mea-

sure the average return over the consecutive 100 episodes during the exploration

phase and find the first point to cross the specific threshold average return which

is set to 800. In the given problem, the expected value of local optima and global

44



Chapter 3. Sparse Policy Learning

optimum are 600 and 1800, respectively. Therefore, the threshold average return,

800, indicates that some of 100 episodes reach the global optimum. In terms of

the number of episodes, sparsemax exploration shows the fastest convergence to

the global optima than the other methods as shown in Figure 3.5(d). As a result,

it can be shown that sparsemax exploration escapes the local optima faster than

the other explorations. When it comes to peformance evaluation, the Q network

trained by sparsemax exploration outperforms softmax and ε-greedy exploration

as shown in Figure 3.5(c), since sparsemax eploration reaches the global optima

faster than the others.

3.1.6 Summary

In this section, we have proposed a new MDP with novel causal sparse Tsallis

entropy regularization which induces a sparse and multi-modal optimal policy

distribution. In addition, we have provided the full mathematical analysis of the

proposed sparse MDPs, including the sparse Bellman equation, the convergence

and optimality of sparse value iteration, and the performance bound between a

sparse MDP and the original MDP. We have also shown that the performance

gap of a sparse MDP is strictly smaller than that of a soft MDP. In experiments,

we have verified that the theoretical performance gaps of a sparse MDP and soft

MDP from the original MDP are correct. We have applied the sparsemax policy

and sparse Bellman equation to deep Q-learning as an exploration strategy and

update rule, respectively, and shown that the proposed exploration method shows

significantly better performance compared to ε-greedy, softmax exploration, and

DDPG, when the number of actions is large. From the analysis and experiments,

we have demonstrated that the proposed sparse MDP can be an efficient alterna-

tive to problems with a large number of possible actions and even a continuous

45



Chapter 3. Sparse Policy Learning

action space.

3.2 Sparse Policy Learning for Imitation Learning

In this section, we focus on the problem of imitating demonstrations of an ex-

pert who behaves non-deterministically depending on the situation. In imitation

learning, it is often assumed that the expert’s policy is deterministic. However,

there are instances, especially for complex tasks, where multiple action sequences

perform the same task equally well. We can model such non-deterministic behav-

ior of an expert using a stochastic policy. For example, expert drivers normally

show consistent behaviors such as keeping lane or keeping the distance from a

frontal car, but sometimes they show different actions for the same situation,

such as overtaking a car and turning left or right at an intersection, as suggested

in [152]. Furthermore, learning multiple optimal action sequences to perform a

task is desirable in terms of robustness since an agent can easily recover from fail-

ure due to unexpected events [50, 74]. In addition, a stochastic policy promotes

exploration and stability during learning [53, 50, 138]. Hence, modeling experts’

stochasticity can be a key factor in imitation learning.

To this end, we propose a novel maximum causal Tsallis entropy (MCTE)

framework for imitation learning, which can learn from a uni-modal to multi-

modal policy distribution by adjusting its supporting set. We first show that the

optimal policy under the MCTE framework follows a sparsemax distribution [85],

which has an adaptable supporting set in a discrete action space. Traditionally,

the maximum causal entropy (MCE) framework [152, 19] has been proposed to

model stochastic behavior in demonstrations, where the optimal policy follows a

softmax distribution. However, it often assigns non-negligible probability mass to

non-expert actions when the number of actions increases [74, 34]. On the contrary,

46



Chapter 3. Sparse Policy Learning

as the optimal policy of the proposed method can adjust its supporting set, it can

model various expert’s behavior from a uni-modal distribution to a multi-modal

distribution.

To apply the MCTE framework to a complex and model-free problem, we pro-

pose a maximum causal Tsallis entropy imitation learning (MCTEIL) with a

sparse mixture density network (sparse MDN) whose mixture weights are mod-

eled as a sparsemax distribution. By modeling expert’s behavior using a sparse

MDN, MCTEIL can learn varying stochasticity depending on the state in a con-

tinuous action space. Furthermore, we show that the MCTEIL algorithm can be

obtained by extending the MCTE framework to the generative adversarial setting,

similarly to generative adversarial imitation learning (GAIL) by Ho and Ermon

[55], which is based on the MCE framework. The main benefit of the generative

adversarial setting is that the resulting policy distribution is more robust than

that of a supervised learning method since it can learn recovery behaviors from

less demonstrated regions to demonstrated regions by exploring the state-action

space during training. Interestingly, we also show that the Tsallis entropy of a

sparse MDN has an analytic form and is proportional to the distance between

mixture means. Hence, maximizing the Tsallis entropy of a sparse MDN encour-

ages exploration by providing bonus rewards to wide-spread mixture means and

penalizing collapsed mixture means, while the causal entropy [152] of an MDN

is less effective in terms of preventing the collapse of mixture means since there

is no analytical form and its approximation is used in practice instead. Conse-

quently, maximizing the Tsallis entropy of a sparse MDN has a clear benefit over

the causal entropy in terms of exploration and mixture utilization.

To validate the effectiveness of the proposed method, we conduct two simula-

tion studies. In the first simulation study, we verify that MCTEIL with a sparse

47



Chapter 3. Sparse Policy Learning

MDN can successfully learn multi-modal behaviors from expert’s demonstrations.

A sparse MDN efficiently learns a multi-modal policy without performance loss,

while a single Gaussian and a softmax-based MDN suffer from performance loss.

The second simulation study is conducted using four continuous control problems

in MuJoCo [133]. MCTEIL outperforms existing methods in terms of the average

cumulative return. In particular, MCTEIL shows the best performance for the

reacher problem with a smaller number of demonstrations while GAIL often fails

to learn the task.

3.2.1 Related Work

The early researches on IRL [152, 1, 105, 103, 76, 150, 31, 30, 144] can be catego-

rized into two groups: a margin based and entropy based method. A margin based

method maximizes the margin between the value of the expert’s policy and all

other policies [1, 105]. In [1], Abbeel and Ng proposed an apprenticeship learning

where the rewards function is estimated to maximize the margin between the

expert’s policy and randomly sampled policies. In [105], Ratliff et al. proposed

the maximum margin planning (MMP) where Bellman-flow constraints are intro-

duced to consider the margin between the experts’ policy and all other possible

policies. On the contrary, an entropy based method is first proposed in [152] to

handle the stochastic behavior of the expert. Ziebart et al. [152] proposed a max-

imum entropy inverse reinforcement learning (MaxEnt IRL) using the principle

of maximum (Shannon) entropy to handle ambiguity issues of IRL. Ramachan-

dran et al. [103] proposed Bayesian inverse reinforcement learning (BIRL) where

the Bayesian probabilistic model over demonstrations is proposed and the expert

policy and rewards are inferred by using a Metropolis-Hastings (MH) method.

In[152, 103], the expert behavior is modeled as a softmax distribution of an action

48



Chapter 3. Sparse Policy Learning

value which is the optimal solution of the maximum entropy problem. We also

note that [76, 150, 31, 30, 144] are variants based on [152, 103].

In [55], Ho and Ermon have extended [152] to a unified framework for two

groups by adding a reward regularization. Most existing IRL methods can be

interpreted as the unified framework with different reward regularization. Those

methods including the aforementioned algorithms [152, 1, 105, 103, 76, 150, 31, 30,

144] require to solve an MDP problem every iterations to update a reward func-

tion. In model-free case, reinforcement learning (RL) method should be applied

to solve the MDP, which leads to high computational costs and huge amounts

of samples. To address this issue, Ho and Ermon proposed the generative adver-

sarial imitation learning (GAIL) method where the policy function is updated

to maximize the reward function and the reward function is updated to assign

high values to expert’s demonstrations and low values to trained policy’s demon-

strations. GAIL achieves sample efficiency by avoiding the need to solve RL as a

subroutine and alternatively updating policy and reward functions.

Recently, several variants of GAIL [52, 141, 77] have been developed based on

the maximum entropy framework. These methods [52, 141, 77] focus on handling

the multi-modality in demonstrations by learning the latent structure. In [52],

Hausman et al. proposed an imitation learning method to learn policies using

unlabeled demonstrations collected from multiple different tasks where the latent

intention is introduced in order to separate mixed demonstrations. Similarly, in

[141], a robust imitation learning method is proposed, which separates unlabeled

demonstrations by assigning the latent code using a variational autoencoder. The

encoding network assigns the latent code to the input demonstration. Then, the

policy network is trained to mimic the input demonstration given the latent code

and the encoding network is trained to recover the given latent code from the

49



Chapter 3. Sparse Policy Learning

generated trajectory. In [77], the latent code is also proposed to handle multi-

modal demonstrations. The latent structure in [77] is learned by maximizing the

lower bound of mutual information between the latent code and the correspond-

ing demonstrations. Consequently, existing imitation learning methods which can

handle the multi-modal behavior have common features in that they are devel-

oped based on the maximum entropy framework and capture the multi-modality

of demonstrations by learning the mapping from demonstrations to the latent

space.

Unlikely to recent methods for multi-modal demonstrations, the proposed method

is established on the maximum causal Tsallis entropy framework which induces a

sparse distribution whose supporting set can be adjusted, instead of the original

maximum entropy. Furthermore, a policy is modeled as a sparse mixture density

network (sparse MDN) which can learn multi-modal behavior directly instead of

learning the latent structure.

3.2.2 Principle of Maximum Causal Tsallis Entropy

In this section, we formulate a maximum causal Tsallis entropy imitation learning

(MCTEIL) and show that MCTE induces a sparse and multi-modal distribution

which has an adaptable supporting set. The problem of maximizing the causal

Tsallis entropy W (π) can be formulated as follows:

maximize
π∈Π

αW (π)

subject to Eπ [φ(s, a)] = EπE
[φ(s, a)] .

(3.10)

In order to derive optimality conditions, we will first change the optimization

variable from a policy distribution to a state-action visitation measure. Then, we

prove that the MCTE problem is concave with respect to the visitation measure.

The necessary and sufficient conditions for an optimal solution are derived from

50



Chapter 3. Sparse Policy Learning

the Karush-Kuhn-Tucker (KKT) conditions using the strong duality and the

optimal policy is shown to be a sparsemax distribution. Furthermore, we also

provide an interesting interpretation of the MCTE framework as robust Bayes

estimation in terms of the Brier score. Hence, the proposed method can be viewed

as maximization of the worst case performance in the sense of the Brier score [24].

We can change the optimization variable from a policy distribution to a state-

action visitation measure based on the following theorem.

Theorem 6 (Theorem 2 of Syed et al. [125]). Let M be a set of state-action

visitation measures, i.e., M � {ρ|∀s, a, ρ(s, a) ≥ 0,
∑

a ρ(s, a) = d(s) +

γ
∑

s′,a′ T (s|s′, a′)ρ(s′, a′)}. If ρ ∈M, then it is a state-action visitation measure

for πρ(a|s) � ρ(s,a)∑
a ρ(s,a)

, and πρ is the unique policy whose state-action visitation

measure is ρ.

The proof of Theorem 6 can be found in [125] or in Puterman [98]. Theorem

6 guarantees the one-to-one correspondence between a policy distribution and

state-action visitation measure. Then, the objective function W (π) is converted

into the function of ρ as follows.

Theorem 7. Let W̄ (ρ) = 1
2

∑
s,a ρ(s, a)

(
1− ρ(s,a)∑

a′ ρ(s,a′)

)
. Then, for any station-

ary policy π ∈ Π and any state-action visitation measure ρ ∈M, W (π) = W̄ (ρπ)

and W̄ (ρ) =W (πρ) hold.

The proof is provided in the supplementary material. Theorem 7 tells us that

if W̄ (ρ) has the maximum at ρ∗, then W (π) also has the maximum at πρ∗ . Based

on Theorem 6 and 7, we can freely convert the problem (3.10) into

maximize
ρ∈M

αW̄ (ρ)

subject to
∑
s,a

ρ(s, a)φ(s, a) =
∑
s,a

ρE(s, a)φ(s, a),
(3.11)

where ρE is the state-action visitation measure corresponding to πE .

51



Chapter 3. Sparse Policy Learning

Optimality Condition of Maximum Causal Tsallis Entropy

We show that the optimal policy of the problem (3.11) is a sparsemax distribution

using the KKT conditions. In order to use the KKT conditions, we first show that

the MCTE problem is concave.

Theorem 8. W̄ (ρ) is strictly concave with respect to ρ ∈M.

The proof of Theorem 8 is provided in the supplementary material. Since all

constraints are linear and the objective function is concave, (3.11) is a concave

problem and, hence, strong duality holds. The dual problem is defined as follows:

max
θ,c,λ

min
ρ

LW (θ, c, λ, ρ)

subject to ∀ s, a λsa ≥ 0,

(3.12)

where LW (θ, c, λ, ρ) = −αW̄ (ρ)−∑s,a ρ(s, a)θ
ᵀφ(s, a) +

∑
s,a ρE(s, a)θ

ᵀφ(s, a)−∑
s,a λsaρ(s, a) +

∑
s cs

(∑
a ρ(s, a)− d(s)− γ

∑
s′,a′ T (s|s′, a′)ρ(s′, a′)

)
and θ, c,

and λ are Lagrangian multipliers and the constraints come from M. Then, the

optimal solution of primal and dual variables necessarily and sufficiently satisfy

the KKT conditions.

Theorem 9. The optimal solution of (3.11) sufficiently and necessarily satisfies

the following conditions:

qsa :=
∑
s′

(θᵀφ(s, a) + γcs′)T (s
′|s, a),

cs =α

⎡
⎣1
2

∑
a∈S(s)

((qsa
α

)2
− τ
(qs
α

)2)
+

1

2

⎤
⎦ ,

πρ(a|s) =max
(qsa
α
− τ
(qs
α

)
, 0
)
,

where πρ(a|s) = ρ(s,a)∑
a ρ(s,a)

, qsa is an auxiliary variable, and qs = [qsa1 · · · qsa|A| ]
ᵀ.

The optimality conditions of the problem (3.11) tell us that the optimal policy

is a sparsemax distribution which assigns zero probability to an action whose

52



Chapter 3. Sparse Policy Learning

auxiliary variable qsa is below the threshold τ , which determines a supporting

set. If expert’s policy is multi-modal at state s, the resulting πρ(·|s) becomes

multi-modal and induces a multi-modal distribution with a large supporting set.

Otherwise, the resulting policy has a sparse and smaller supporting set. Therefore,

a sparsemax policy has advantages over a softmax policy for modeling sparse and

multi-modal behaviors of an expert whose supporting set varies according to the

state.

Furthermore, we also discover an interesting connection between the optimality

condition of an MCTE problem and the sparse Bellman optimality condition in

Theorem 1. Since the optimality condition is equivalent to the sparse Bellman

optimality equation [74], we can compute the optimal policy and Lagrangian mul-

tiplier cs by solving a sparse MDP under the reward function r(s, a) = θ∗ᵀφ(s, a),

where θ∗ is the optimal dual variable. In addition, cs and qsa can be viewed as a

state value and state-action value for the reward θ∗ᵀφ(s, a), respectively.

Interpretation as Robust Bayes

In this section, we provide an interesting interpretation about the MCTE frame-

work. In general, maximum entropy estimation can be viewed as a minimax game

between two players. One player is called a decision maker and the other player

is called the nature, where the nature assigns a distribution to maximize the de-

cision maker’s misprediction while the decision maker tries to minimize it [45].

The same interpretation can be applied to the MCTE framework. We show that

the proposed MCTE problem is equivalent to a minimax game with the Brier

score [24].

Theorem 10. The maximum causal Tsallis entropy distribution minimizes the

53



Chapter 3. Sparse Policy Learning

worst case prediction Brier score,

min
π∈Π

max
π̃∈Π

Eπ̃

[∑
a′

1

2

(
I{a′=a} − π(a|s)

)2]

subject to Eπ [φ(s, a)] = EπE
[φ(s, a)]

(3.13)

where
∑

a′
1
2

(
I{a′=a} − π(a|s)

)2
is the Brier score.

Note that minimizing the Brier score minimizes the misprediction ratio while

we call it a score here. Theorem 10 is a straightforward extension of the robust

Bayes results in [45] to sequential decision problems. This theorem tells us that

the MCTE problem can be viewed as a minimax game between a sequential

decision maker π and the nature π̃ based on the Brier score. In this regards,

the resulting estimator can be interpreted as the best decision maker against the

worst that the nature can offer.

3.2.3 Maximum Causal Tsallis Entropy Imitation Learning

In this section, we propose a maximum causal Tsallis entropy imitation learning

(MCTEIL) algorithm to solve a model-free IL problem in a continuous action

space. In many real-world problems, state and action spaces are often continuous

and transition probability of a world cannot be accessed. To apply the MCTE

framework for a continuous space and model-free case, we follow the extension of

GAIL [55], which trains a policy and reward alternatively, instead of solving RL

at every iteration. We extend the MCTE framework to a more general case with

reward regularization and it is formulated by replacing the causal entropy H(π)

in the problem (2.12) with the causal Tsallis entropy W (π) as follows:

max
θ

min
π∈Π

− αW (π)− Eπ [θ
ᵀφ(s, a)] + EπE

[θᵀφ(s, a)]− ψ(θ). (3.14)

Similarly to [55], we convert the problem (3.14) into the generative adversarial

setting as follows.

54



Chapter 3. Sparse Policy Learning

Theorem 11. The maximum causal sparse Tsallis entropy problem (3.14) is

equivalent to the problem:

min
π∈Π

ψ∗ (Eπ [φ(s, a)]− EπE
[φ(s, a)])− αW (π),

where ψ∗(x) = supy{yᵀx− ψ(y)}.

The proof is detailed in the supplementary material. The proof of Theorem 11

depends on the fact that the objective function of (3.14) is concave with respect

to ρ and is convex with respect to θ. Hence, we first switch the optimization

variables from π to ρ and, using the minimax theorem [86], the maximization

and minimization are interchangeable and the generative adversarial setting is

derived. Similarly to [55], Theorem 11 says that a MCTE problem can be in-

terpreted as minimization of the distance between expert’s feature expectation

and training policy’s feature expectation, where ψ∗(x1− x2) is a proper distance

function since ψ(x) is a convex function. Let esa ∈ R
|S||A| be a feature indica-

tor vector, such that the sath element is one and zero elsewhere. If we set ψ to

ψGA(θ) � EπE [g(θ
ᵀesa)], where g(x) = −x− log(1− ex) for x < 0 and g(x) =∞

for x ≥ 0, we can convert the MCTE problem into the following generative ad-

versarial setting:

min
π∈Π

max
D

Eπ [log(D(s, a))] + EπE
[log(1−D(s, a))]− αW (π), (3.15)

where D is a discriminator. The problem (3.15) can be solved by MCTEIL which

consists of three steps. First, trajectories are sampled from the training policy

πν and discriminator Dω is updated to distinguish whether the trajectories are

generated by πν or πE . Finally, the training policy πν is updated with a policy

optimization method under the sum of rewards Eπ [− log(Dω(s, a))] with a causal

Tsallis entropy bonus αW (πν). The algorithm is summarized in Algorithm 2.

55



Chapter 3. Sparse Policy Learning

Algorithm 2 Maximum Causal Tsallis Entropy Imitation Learning
1: Expert’s demonstrations D are given

2: Initialize policy and discriminator parameters ν, ω

3: while until convergence do

4: Sample trajectories {ζ} from πν

5: Update ω with the gradient of
∑

{ζ} log(Dω(s, a)) +
∑

D log(1−Dω(s, a)).

6: Update ν using a policy optimization method with reward function

−Eπν
[log(Dω(s, a))] + αW (πν)

7: end while

Sparse Mixture Density Network We further employ a novel mixture den-

sity network (MDN) with sparsemax weight selection, which can model sparse

and multi-modal behavior of an expert, which is called a sparse MDN. In many

imitation learning algorithms, a Gaussian network is often employed to model

expert’s policy in a continuous action space. However, a Gaussian distribution is

inappropriate to model the multi-modality of an expert since it has a single mode.

An MDN is more suitable for modeling a multi-modal distribution. In particular,

a sparse MDN is a proper extension of a sparsemax distribution for a continuous

action space. The input of a sparse MDN is state s and the output of a sparse

MDN is components of K mixtures of Gaussians: mixture weights {wi}, means

{μi}, and covariance matrices {Σi}. A sparse MDN policy is defined as

π(a|s) =
K∑
i

wi(s)N (a;μi(s),Σi(s)),

where N (a;μ,Σ) indicates a multivariate Gaussian density at point a with mean

μ and covariance Σ. In our implementation, w(s) is computed as a sparsemax

distribution, while most existing MDN implementations utilize a softmax distri-

bution. Modeling the expert’s policy using an MDN with K mixtures can be

interpreted as separating continuous action space into K representative actions.

56



Chapter 3. Sparse Policy Learning

Since we model mixture weights using a sparsemax distribution, the number of

mixtures used to model the expert’s policy can vary depending on the state.

In this regards, the sparsemax weight selection has an advantage over the soft

weight selection since the former utilizes mixture components more efficiently as

unnecessary components will be assigned with zero weights.

Tsallis Entropy of Mixture Density Network An interesting fact is that

the causal Tsallis entropy of an MDN has an analytic form while the Gibbs-

Shannon entropy of an MDN is intractable.

Theorem 12. Let π(a|s) =∑K
i wi(s)N (a;μi(s),Σi(s)) and ρπ(s) =

∑
a ρπ(s, a).

Then,

W (π) =
1

2

∑
s

ρπ(s)

⎛
⎝1−

K∑
i

K∑
j

wi(s)wj(s)N (μi(s);μj(s),Σi(s) + Σj(s))

⎞
⎠ . (3.16)

The proof is included in the supplementary material. The analytic form of the

Tsallis entropy shows that the Tsallis entropy is proportional to the distance be-

tween mixture means. Hence, maximizing the Tsallis entropy of a sparse MDN

encourages exploration of diverse directions during the policy optimization step

of MCTEIL. In imitation learning, the main benefit of the generative adversar-

ial setting is that the resulting policy is more robust than that of supervised

learning since it can learn how to recover from a less demonstrated region to a

demonstrated region by exploring the state-action space during training. Maxi-

mum Tsallis entropy of a sparse MDN encourages efficient exploration by giving

bonus rewards when mixture means are spread out. (3.16) also has an effect of

utilizing mixtures more efficiently by penalizing for modeling a single mode using

several mixtures. Consequently, the Tsallis entropy W (π) has clear benefits in

terms of both exploration and mixture utilization.

57



Chapter 3. Sparse Policy Learning

3.2.4 Experiments

To verify the effectiveness of the proposed method, we compare MCTEIL with

several other imitation learning methods. First, we use behavior cloning (BC)

as a baseline. Second, generative adversarial imitation learning (GAIL) with a

single Gaussian distribution is compared. We also compare a straightforward

extension of GAIL for a multi-modal policy by using a softmax weighted mix-

ture density network (soft MDN) in order to validate the efficiency of the pro-

posed sparsemax weighted MDN. In soft GAIL, due to the intractability of the

causal entropy of a mixture of Gaussians, we approximate the entropy term by

adding −α log(π(at|st)) to − log(D(st, at)) since Eπ [− log(D(s, a))] + αH(π) =

Eπ [− log(D(s, a))− α log(π(a|s))]. We also compare info GAIL [77] which learns

simultaneously both policy and the latent structure of experts’ demonstrations.

In info GAIL, a posterior distribution of a latent code is learned to cluster multi-

modal demonstrations. The posterior distribution is trained to consistently assign

the latent code to similar demonstrations and Once the latent codes are assigned

to the demonstrations, the policy function conditioned on a latent code is trained

to generate the corresponding demonstrations. Different modes in demonstrations

are captured by assigning different latent codes.

Multi-Goal Environment

To validate that the proposed method can learn multi-modal behavior of an ex-

pert, we design a simple multi-goal environment with four attractors and four

repulsors, where an agent tries to reach one of attractors while avoiding all re-

pulsors as shown in Figure 3.8(a). The agent follows the point-mass dynamics

and get a positive reward (resp., a negative reward) when getting closer to an

attractor (resp., repulsor). Intuitively, this problem has multi-modal optimal ac-

58



Chapter 3. Sparse Policy Learning

(a) Multi-Goal Environment (b) Average Return (c) Reachability

Figure 3.8: (a) The environment and multi-modal demonstrations are shown.

The contour shows the underlying reward map. (b) The average return during

training. (c) The reachability during training, where k is the number of mixtures,

c is a dimension of the latent code, and α is a regularization coefficient.

tions at the center. We first train the optimal policy using [74] and generate 300

demonstrations from the expert’s policy. For tested methods, 500 episodes are

sampled at each iteration. In every iteration, we measure the average return us-

ing the underlying rewards and the reachability which is measured by counting

how many goals are reached. If the algorithm captures the multi-modality of ex-

pert’s demonstrations, then, the resulting policy will show high reachability. All

algorithms run repeatedly with seven different random seeds.

The results are shown in Figure 3.8(b) and 3.8(c). Since the rewards are multi-

modal, it is easy to get a high return if the algorithm learns only uni-modal

behavior. Hence, the average returns of soft GAIL, info GAIL and MCTEIL

increases similarly. However, when it comes to the reachability, MCTEIL outper-

forms other methods when they use the same number of mixtures. In particular,

MCTEIL can learn all modes in demonstrations at the end of learning while soft

GAIL and info GAIL suffer from collapsing modes. This advantage clearly comes

from the maximum Tsallis entropy of a sparse MDN since the analytic form of

the Tsallis entropy directly penalizes collapsed mixture means while − log(π(a|s))

59



Chapter 3. Sparse Policy Learning

(a) Average Return (b) Reachability

(c) Average Return (d) Reachability

(e) Average Return (f) Reachability

Figure 3.9: Average return and reachability of MCTEIL, soft GAIL, and info

GAIL, respectively. k indicates the number of mixtures, α indicates an entropy

regularization coefficient, and c indicates a dimension of the latent code of Info

GAIL.

indirectly prevents modes collapsing in soft GAIL. Furthermore, info-GAIL also

shows mode collapsing while the proposed method can learn every modes. Since

60



Chapter 3. Sparse Policy Learning

info-GAIL has to train a posterior distribution over the latent code to sepa-

rate demonstrations, it requires more iterations for reaching all modes as well

as prone to the mode collapsing problems. Consequently, we can conclude that

the MCTEIL efficiently utilizes each mixture for wide-spread exploration. The

experimental results with other hyperparameters are shown in Figure 3.9.

Continuous Control Environment

We test MCTEIL with a sparse MDN on MuJoCo [133], which is a physics-based

simulator, using Halfcheetah, Walker2d, Reacher, and Ant. We train the expert

policy distribution using trust region policy optimization (TRPO) [113] under

the true reward function and generate 50 demonstrations from the expert policy.

We run algorithms with varying numbers of demonstrations, 4, 11, 18, and 25,

and all experiments have been repeated three times with different random seeds.

To evaluate the performance of each algorithm, we sample 50 episodes from the

trained policy and measure the average return value using the underlying rewards.

For methods using an MDN, we use the best number of mixtures using a brute

force search.

The results are shown in Figure 3.10. For three problems, except Walker2d,

MCTEIL outperforms the other methods with respect to the average return as the

number of demonstrations increases. For Walker2d, MCTEIL and soft GAIL show

similar performance. Especially, in the reacher problem, we obtain the similar

results reported in [55], where BC works better than GAIL. However, our method

shows the best performance for all demonstration counts. It is observed that the

MDN policy tends to show high performance consistently since MCTEIL and soft

GAIL are consistently ranked within the top two high performing algorithms.

From these results, we can conclude that an MDN policy explores better than

61



Chapter 3. Sparse Policy Learning

Figure 3.10: Average returns of trained policies. For soft GAIL and MCTEIL, k

indicates the number of mixture and α is an entropy regularization coefficient. A

dashed line indicates the performance of an expert.

a single Gaussian policy since an MDN can keep searching multiple directions

during training. In particular, since the maximum Tsallis entropy makes each

mixture mean explore in different directions and a sparsemax distribution assigns

zero weight to unnecessary mixture components, MCTEIL efficiently explores and

shows better performance compared to soft GAIL with a soft MDN. Consequently,

we can conclude that MCTEIL outperforms other imitation learning methods and

the causal Tsallis entropy has benefits over the causal Gibbs-Shannon entropy as

it encourages exploration more efficiently.

3.2.5 Summary

In this section, we have proposed a novel maximum causal Tsallis entropy (MCTE)

framework, which induces a sparsemax distribution as the optimal solution. We

have also provided the full mathematical analysis of the proposed framework,

including the concavity of the problem, the optimality condition, and the inter-

pretation as robust Bayes. We have also developed the maximum causal Tsallis

entropy imitation learning (MCTEIL) algorithm, which can efficiently solve a

MCTE problem in a continuous action space since the Tsallis entropy of a mixture

of Gaussians encourages exploration and efficient mixture utilization. In experi-

ments, we have verified that the proposed method has advantages over existing

62



Chapter 3. Sparse Policy Learning

methods for learning the multi-modal behavior of an expert since a sparse MDN

can search in diverse directions efficiently. Furthermore, the proposed method

has outperformed BC, GAIL, and GAIL with a soft MDN on the standard IL

problems in the MuJoCo environment. From the analysis and experiments, we

have shown that the proposed MCTEIL method is an efficient and principled way

to learn the multi-modal behavior of an expert.

63



Chapter 3. Sparse Policy Learning

64



Chapter 4

Entropy-based Exploration

4.1 Generalized Tsallis Entropy Reinforcement Learn-

ing

Reinforcement learning (RL) combined with a powerful function approximation

technique like a neural network has shown noticeable successes on challenging

sequential decision making problems, such as playing a video game [87], learning

complex control [37, 46], and realistic motion generation [96]. A model-free RL

algorithm aims to learn a policy to effectively perform a given task through the

trial and error without the prior knowledge about the environment, where the

performance of policy is often measured by the sum of rewards. The absence of

the environmental information gives a rise to innate trade-off between exploration

and exploitation during a learning process. If the algorithm decides to explore

the environment, then, it will lose the chance to exploit the best decision based

on collected experiences and vice versa. Such trade-off should be appropriately

scheduled to learn an optimal policy through a small number of interactions with

an environment.

65



Chapter 4. Entropy-based Exploration

For the sake of efficient exploration, many RL algorithms employ maximization

of the Shannon-Gibbs (SG) entropy of a policy distribution [88, 39, 50, 115, 90,

51, 94, 35]. Maximizing the SG entropy penalizes a greedy policy and encourages

the exploration, thus, it helps to find a global optimal policy and to learn diverse

or multi-modal behaviors where the resulting policy is robust against unexpected

changes in the environment. However, it is also known that the maximum SG

entropy causes a performance loss since it hinders exploiting the best action

to maximize the reward [74]. To handle this issue, an alternative way has been

proposed using a sparse Tsallis (ST) entropy [74, 34], which is a special case of the

Tsallis entropy [135]. The ST entropy encourages exploration while penalizing less

on a greedy policy, compared to the SG entropy. However, unlike the SG entropy,

the ST entropy may discover a sub-optimal policy since it enforces the algorithm

to explore the environment less [74, 34].

In this section, we present a unified framework for maximum entropy RL prob-

lems with various types of entropy. The proposed framework is formulated as a

new class of Markov decision processes with Tsallis entropy maximization, which

is called Tsallis MDPs. The Tsallis entropy generalizes the standard SG entropy

and can represent various types of entropy, including the SG and ST entropies

by controlling a parameter, called an entropic index. A Tsallis MDP presents a

unifying view on the use of various entropies in RL. We provide a comprehensive

analysis of how a different value of the entropic index can provide a different type

of optimal policies and different Bellman optimality equations. Our theoretical

result allows us to interpret the effects of various entropies for an RL problem.

The proposed Tsallis RL framework contains both SG and ST entropy maxi-

mization as special cases and allows more diverse range of exploration-exploitation

trade-off behaviors for a learning agent, which is a highly desirable feature since

66



Chapter 4. Entropy-based Exploration

the problem complexity is different for each task at hand. We empirically show

that there exists an appropriate entropic index for each task and using a proper

entropic index outperforms existing actor-critic methods. Furthermore, we also

propose a scheduling method for an entropic index to alleviate the demand on

finding a suitable entropic index, and demonstrate that the proposed method

with the scheduled entropic index achieves the performance of TAC with the

best entropic index.

Furthermore, we apply Tsallis entropy reinforcement learning for learning a

controller of a soft mobile robot. soft mobile robots have the potential to overcome

challenging navigation tasks that conventional rigid robots are hard to achieve,

such as exploring complex and unstructured environments, by using their high

adaptability and robustness against changes around them [67]. Especially, a soft

mobile robot using pneumatic actuators, which provide relatively high force-to-

weight ratios, have been widely developed [97, 66].

Despite the fact that the pneumatic actuators combined with soft materials are

beneficial to the adaptability and robustness of soft mobile robots, their behaviors

are often hard to be modeled or controlled using a traditional method such as

a feedback control [131], due to their inherent stochasticity. Furthermore, the

efficiency of exploration becomes more important when training a soft mobile

robot, as the properties of soft material can be changed or degraded if a robot

exceeds its durability. In this application, we empirically prove that TAC with

linear curriculum outperforms existing methods and can learn the controller of

the soft mobile robot within moderate time.

67



Chapter 4. Entropy-based Exploration

Related Work

Recently, regularization on a policy function has been widely investigated in RL

[14, 88, 115, 90, 50, 91, 51, 39, 35, 74, 34, 41, 16]. The main purpose of regular-

izing a policy is to encourage exploration by inducing a stochastic policy from

regularization. If a policy converges to a greedy policy before collecting enough

information about an environment, its behavior can be sub-optimal. This issue

can be efficiently handled by a stochastic policy induced from a regularization.

The SG entropy has been widely used as a policy regularization. It has been

empirically shown that maximizing the SG entropy of a policy along with reward

maximization encourages exploration since the entropy maximization penalizes a

greedy behavior [88]. In [39], it was also demonstrated that maximizing the SG

entropy helps to learn diverse and useful behaviors. This penalty from the SG

entropy also helps to capture the multi-modal behavior where the resulting policy

is robust against unexpected changes in the environment [50]. Theoretically, [115,

90, 50, 51] have shown that the optimal solution of maximum entropy RL has a

softmax distribution of state-action values, not a greedy policy. [51] showed that

the SG entropy has the benefits over exploring a continuous action space, however,

the performance of SAC is sensitive to a regularization coefficient. Furthermore,

the maximum SG entropy in RL provides the connection between policy gradient

and value-based learning [115, 94]. [35] have also shown that maximum entropy

induces a smoothed Bellman operator and it helps stable convergence of value

function estimation.

While the SG entropy in RL provides better exploration, numerical stability,

and capturing multiple optimal actions, it is known that the maximum SG en-

tropy causes a performance loss since it hinders exploiting the best action to

maximize the reward [74, 34]. Such drawback is often handled by scheduling a

68



Chapter 4. Entropy-based Exploration

coefficient of the SG entropy to progressively vanish [29]. However, designing a

proper decaying schedule is still a demanding task in that it often requires an ad-

ditional validation step in practice. [44] handled the same issue by automatically

manipulating the importance of actions using mutual information. On the other

hand, [74] and [34] have proposed an alternative way to handle the exploitation

issue of the SG entropy using a sparse Tsallis (ST) entropy, which is a special

case of the Tsallis entropy [135]. The ST entropy encourages exploration while

penalizing less on a greedy policy, compared to the SG entropy. However, un-

like the SG entropy, the ST entropy may discover a sub-optimal policy since it

enforces the algorithm to explore the environment less [74, 34].

Recently, an analysis of general concave regularization of a policy function has

been investigated [14, 91, 41]. [14] proposes dynamics programming for regularized

MDPs and provides theoretical guarantees for finite state-action spaces. While

the theory was derived for general concave regularizer, only SG entropy-based

algorithm is demonstrated on a simple grid world example [14]. [91] also applied

an SG entropy-based algorithm to a simple discrete action space. In contrast to

prior work [14, 91, 41], we focus on analyzing the Tsallis entropy in MDPs and

RL1. We derive unique properties of the Tsallis entropy such as performance

bounds. We also propose two dynamic programming algorithms and extend it to

a continuous actor-critic method and empirically show that the proposed method

outperforms the SG entropy-based method.

q-Exponential, q-Logarithm, and Tsallis Entropy

Before defining the Tsallis entropy, let us first introduce variants of exponential

and logarithm functions, which are called q-exponential and q-logarithm, respec-

1Note that the Tsallis entropy also provides concave regularization.

69



Chapter 4. Entropy-based Exploration

tively. They are used to define the Tsallis entropy and defined as follows2:

expq(x) := [1 + (q − 1)x]
1

q−1

+ ,

lnq(x) := (xq−1 − 1)/(q − 1),

(4.1)

where [x]+ = max(x, 0) and q is a real number. Note that, for q = 1, q-logarithm

and q-exponential are defined as their limitations, i.e., ln1(x) � limq→1 lnq(x) =

ln(x) and exp1(x) � limq→1 expq(x) = exp(x). Furthermore, when q = 2, exp2(x)

and ln2(x) become a linear function. This property gives some clues that the

entropy defined using lnq(x) will generalize the SG (or ST) entropy and, fur-

thermore, the proposed method can generalize an actor critic method using SG

entropy [51] and ST entropy [74, 34].

Now, we define the Tsallis entropy using lnq(x).

Definition 1 (Tsallis Entropy [9]). The Tsallis entropy of a random variable X

with the distribution P is defined as

Sq(P ) � E
X∼P

[− lnq(P (X))] .

q is called an entropic-index.

The Tsallis entropy can represent various types of entropy by varying the

entropic index. For example, when q → 1, S1(P ) becomes the Shannon-Gibbs

entropy and when q = 2, S2(P ) becomes the sparse Tsallis entropy [74]. Further-

more, when q → ∞, Sq(P ) converges to zero. We would like to emphasize that,

for q > 0, the Tsallis entropy is a concave function with respect to the density

function, but, for q ≤ 0, the Tsallis entropy is a convex function. Detail proofs

are included in the supplementary material. In this section, we only consider the

2Note that the definition of expq, lnq, and the Tsallis entropy are different from the original

one [9] but those settings can be recovered by setting q = 2− q′, where q′ is the entropic index

used in [9].

70



Chapter 4. Entropy-based Exploration

case when q > 0 since our purpose of using the Tsallis entropy is to give a bonus

reward to a stochastic policy.

4.1.1 Maximum Generalized Tsallis Entropy in MDPs

In this section, we formulate MDPs with Tsallis entropy maximization, which

will be named Tsallis MDPs. We mainly focus on deriving the optimality con-

ditions and algorithms generalized for the entropic index so that a wide range

of q values can be used for a learning agent. First, we extend the definition

of the Tsallis entropy so that it can be applicable for a policy distribution in

MDPs. The Tsallis entropy of a policy distribution π is defined by S∞
q (π) �

Eτ∼P,π
[∑∞

t=0 γ
tSq(π(·|st))

]
. Using S∞

q , the original MDPs can be converted into

Tsallis MDPs by adding S∞
q (π) to the objective function as follows:

max
π∈Π E

τ∼P,π

[ ∞∑
t

γtRt

]
+ αS∞

q (π), (4.2)

where α > 0 is a coefficient. A state value and state-action value are redefined

for Tsallis MDPs as follows:

V π
q (s) := E

τ∼P,π

[ ∞∑
t=0

γt (Rt + αSq(π(·|st))
∣∣∣∣∣s0 = s

]

and

Qπq (s, a) := E
τ∼P,π

[
R0 +

∞∑
t=1

γt (Rt + αSq(π(·|st))
∣∣∣∣∣s0 = s, a0 = a

]
,

where q is the entropic index. The goal of a Tsallis MDP is to find an optimal

policy distribution that maximizes both the sum of rewards and the Tsallis en-

tropy whose importance is determined by α. The solution of the problem (4.2) is

denoted as π�q and its value functions are denoted as V �
q = V

π�
q

q and Q�q = Q
π�
q
q ,

respectively. In our analysis, α is set to one, however one can easiliy generalize

the case of α �= 1 by replacing r, V , and Q with r/α, V/α, and Q/α, respectively.

71



Chapter 4. Entropy-based Exploration

In the following sections, we first derive the optimality condition of (4.2), which

will be called the Tsallis-Bellman optimality (TBO) equation. Second, dynamic

programming to solve Tsallis MDPs is proposed with convergence and optimal-

ity guarantees. Finally, we provide the performance error bound of the optimal

policy of the Tsallis MDP, where the error is caused by the additional entropy

regularization term. The theoretical results derived in this section are extended

to a practical actor-critic algorithm in Section 4.1.3.

q-Maximum Operator

Before analyzing an MDP with the Tsallis entropy, we define an operator, which

is called q-maximum. A q-maximum operator is a bounded approximation of the

maximum operator. For a function f(x), q-maximum is defined as follows:

q-max
x

(f(x)) := max
P∈Δ

[
E

X∼P
[f(X)] + Sq(P )

]
, (4.3)

where Δ is a probability simplex whose element is a probability. The following

theorem shows the relationship between q-maximum and maximum operators.

Theorem 13. For any function f(x) defined on a finite input space X , the q-

maximum satisfies the following inequalities.

q-max
x

(f(x)) + lnq (1/|X |) ≤ max
x

(f(x)) ≤ q-max
x

(f(x)) , (4.4)

where |X | is the cardinality of X .

The proof can be found in the supplementary material. The proof of Theorem

13 utilizes the definition of q-maximum. This boundedness property will be used

to analyze the performance bound of an MDP with the maximum Tsallis entropy.

The solution of q-maximum is obtained as P (x) = expq (f(x)/q − ψq (f/q)) ,

72



Chapter 4. Entropy-based Exploration

where ψq(·) is called a q-potential function [9], which is uniquely determined by

the normalization condition:

∑
x∈X

P (x) =
∑
x∈X

expq (f(x)/q − ψq (f/q)) = 1. (4.5)

A detail derivation can be found in the supplementary material. The property

of q-maximum and the solution of q-maximum plays an important role in the

optimality condition of Tsallis MDPs.

Tsallis Bellman Optimality Equation

Using the q-maximum operator, the optimality condition of a Tsallis MDP can

be obtained as follows.

Theorem 14. For q > 0, an optimal policy π�q and optimal value V �
q sufficiently

and necessarily satisfy the following Tsallis-Bellman optimality (TBO) equations:

Q�q(s, a) = E
s′∼P

[r(s, a, s′) + γV �
q (s

′)|s, a],

V �
q (s) = q-max

a
(Q�q(s, a)),

π�q (a|s) = expq
(
Q�q(s, a)/q − ψq

(
Q�q(s, ·)/q

))
,

(4.6)

where ψq is a q-potential function.

The proof can be found in the supplementary material. The TBO equation

differs from the original Bellman equation in that the maximum operator is re-

placed by the q-maximum operator. The optimal state value V �
q is the q-maximum

of the optimal state-action value Q�q and the optimal policy π�q is the solution

of q-maximum (4.3). Thus, as q changes, π�q can represent various types of q-

exponential distributions. We would like to emphasize that the TBO equation

becomes the original Bellman equation as q diverges into infinity. This is a rea-

sonable tendency since, as q →∞, S∞ tends zero and the Tsallis MDP becomes

73



Chapter 4. Entropy-based Exploration

the original MDP. Furthermore, when q → 1, q-maximum becomes the log-sum-

exponential operator and the Bellman equation of maximum SG entropy RL,

(a.k.a. soft Bellman equation) [50] is recovered. When q = 2, the Bellman equa-

tion of maximum ST entropy RL, (a.k.a. sparse Bellman equation) [74] is also

recovered. Moreover, our result guarantees that the TBO equation holds for all

q > 0.

4.1.2 Dynamic Programming for Tsallis MDPs

In this section, we develop dynamic programming algorithms for a Tsallis MDP:

Tsallis policy iteration (TPI) and Tsallis value iteration (TVI). These algorithms

can compute an optimal value and policy. TPI is a policy iteration method which

consists of policy evaluation and policy improvement. TVI is a value iteration

method that computes the optimal value directly. In the dynamic programming

of the original MDPs, the convergence is derived from the maximum operator.

Similarly, in the MDP with the SG entropy, log-sum-exponential plays a crucial

role for the convergence. In TPI and TVI, we generalize such maximum or log-

sum-exponential operators by the q-max operator, which is a more abstract notion

and available for all q > 0. Note that proofs of all theorems in this section are

provided in the supplementary material.

Tsallis Policy Iteration

We first discuss the policy evaluation method in a Tsallis MDP, which computes

V π
q and Qπq for fixed policy π. Similar to the original MDP, a value function of a

Tsallis MDP can be computed using the expectation equation defined by

Qπq (s, a) = E
s′∼P

[r(s, a, s′) + γV π
q (s

′)|s, a],

V π
q (s) = E

a∼π
[Qπq (s, a)− lnq(π(a|s))],

(4.7)

74



Chapter 4. Entropy-based Exploration

where s′ ∼ P indicates s′ ∼ P (·|s, a) and a ∼ π indicates a ∼ π(·|s). Equation

(4.7) will be called the Tsallis Bellman expectation (TBE) equation and it is

derived from the definition of V π
q and Qπq . Based on the TBE equation, we can

define the operator for an arbitrary function F (s, a) over S × A, which is called

the TBE operator,

[
T πq F

]
(s, a) � E

s′∼P
[r(s, a, s′) + γVF (s

′)|s, a],

VF (s) � E
a∼π

[F (s, a)− lnq(π(a|s))].
(4.8)

Then, the policy evaluation method for a Tsallis MDP can be simply defined as

repeatedly applying the TBE operator to an initial function F0,i.e., Fk+1 = T πq Fk.

Theorem 15 (Tsallis Policy Evaluation). For fixed π and q > 0, consider the

TBE operator T πq , and define Tsallis policy evaluation as Fk+1 = T πq Fk for an

arbitrary initial function F0 over S ×A. Then, Fk converges to Qπq and satisfies

the TBE equation (4.7).

The proof of Theorem 15 relies on the contraction property of T πq . The con-

traction property guarantees the sequence of Fk converges to a fixed point F∗ of

T πq , i.e., F∗ = T πq F∗ and the fixed point F∗ is the same as Qπq . The value function

evaluated from Tsallis policy evaluation can be employed to update the policy

distribution. In the policy improvement step, the policy is updated to maximize

∀s, πk+1(·|s) = argmax
π(·|s) E

a∼π
[Qπkq (s, a)− lnq(π(a|s))|s]. (4.9)

Theorem 16 (Tsallis Policy Improvement). For q > 0, let πk+1 be the updated

policy from (4.9) using Qπkq . For all (s, a) ∈ S ×A, Qπk+1
q (s, a) is greater than or

equal to Qπkq (s, a).

Theorem 16 tells us that the policy obtained by the maximization (4.9) has

performance no worse than the previous policy. From Theorem 15 and 16, it is

75



Chapter 4. Entropy-based Exploration

guaranteed that the Tsallis policy iteration gradually improves its policy as the

number of iterations increases and it converges to the optimal solution.

Theorem 17 (Optimality of TPI). When q > 0, define the Tsallis policy iteration

as alternatively applying (4.8) and (4.9), then πk converges to the optimal policy.

The proof is done by checking if the converged policy satisfies the TBO equa-

tion. In the next section, Tsallis policy iteration is extended to a Tsallis actor-

critic method which is a practical algorithm to handle continuous state and action

spaces in complex environments.

Tsallis Value Iteration

Tsallis value iteration is derived from the optimality condition. From (4.6), the

TBO operator is defined by

[TqF ] (s, a) � E
s′∼P

[
r(s, a, s′) + γVF (s)

∣∣s, a] ,
VF (s) � q-max

a′

(
F (s, a′)

)
.

(4.10)

Then, Tsallis value iteration (TVI) is defined by repeatedly applying the TBO

operator,i.e., Fk+1 = TqFk.

Theorem 18. For q > 0, consider the TBO operator Tq, and define Tsallis value

iteration as Fk+1 = TqFk for an arbitrary initial function F0 over S × A. Then,

Fk converges to Q�q.

Similar to Tsallis policy evaluation, the convergence of Tsallis value iteration

depends on the contraction property of Tq, which makes Fk converges to a fixed

point of Tq. Then, the fixed point can be shown to satisfy the TBO equation.

76



Chapter 4. Entropy-based Exploration

Performance Error Bounds and q-Scheduling

We provide the performance error bounds of the optimal policy of a Tsallis MDP

which can be obtained by TPI or TVI. The error is caused by the regulariza-

tion term used in Tsallis entropy maximization. We compare the performance

between the optimal policy of a Tsallis MDP and that of the original MDP. The

performance error bounds are derived as follows.

Theorem 19. Let J(π) be the expected sum of rewards of a given policy π,

π� be the optimal policy of an original MDP, and π�q be the optimal policy of

a Tsallis MDP with an entropic index q. Then, the following inequality holds:

J(π�) + (1− γ)−1 lnq (1/|A|) ≤ J(π�q ) ≤ J(π�), where |A| is the cardinality of A

and q > 0.

The proof of Theorem 19 is included in the supplementary material. Here,

we can observe that the performance gap shows a similar property of the TBO

equation. We further verify Theorem 19 on a simple grid world problem. We

compute the expected sum of rewards of π�q obtained from TVI by varying q

values and compare them to the bounds in Theorem 19. Notice that lnq (1/|A|) ∝

1/|A|q−1 converges to zero as q →∞. This fact supports that π�q converges to the

greedy optimal policy in the original Bellman equation when q → ∞. Inspired

by Theorem 19, we develop a scheduled TPI by linearly increasing qk from zero

to infinity during Tsallis policy iteration. From the following theorem, we can

guarantee that it converges to the optimal policy of the original MDP.

Theorem 20 (Scheduled TPI). Let T PIq be the Tsallis policy iteration operator

with an entropic index q. Assume that a diverging sequence qk is given, such

that limk→∞ qk = ∞. For given qk, scheduled TPI is defined as T PIqk , i.e.,

πk+1 = T PIqk(πk). Then, πk → π� as k →∞.

77



Chapter 4. Entropy-based Exploration

4.1.3 Tsallis Actor Critic for Model-Free RL

We extend Tsallis policy iteration to a Tsallis actor-critic (TAC) method, which

can be applied to a continuous action space. From our theoretical results, existing

SG entropy-based methods can be freely extended to utilize a Tsallis entropy by

replacing the SG entropy term. In order to verify the pure effect of the Tsallis

entropy, we modified the soft actor critic (SAC) method by employing lnq(π(a|s))

instead of ln(π(a|s)) and compare to the SAC method.

Similarly to SAC, our algorithm maintains five networks to model a policy πφ,

state value Vψ, target state value Vψ− , two state action values Qθ1 and Qθ2 . We

also utilize a replay buffer D which stores every interaction data (st, at, rt+1, st+1).

To update state value network Vψ, we minimize the following loss,

Jψ = E
st,at∼B

[
(yt − Vψ(st))2/2

]
(4.11)

where B ⊂ D is a mini-batch and yt is a target value defined as yt = Qmin(st, at)−

α lnq(πφ(at|st), and, Qmin(st, at) = min[Qθ1(st, at), Qθ2(st, at)]. The technique us-

ing the minimum state action value between two approximations of Qπ is known

to prevent overestimation problem [40] and makes the learning process numeri-

cally stable. After updating ψ, ψ− is updated by an exponential moving average

with a ratio τ . For both θ1 and θ2, we minimize the following loss function,

Jθ = E
bt∼B

[
(Qθ(st, at)− rt+1 − γVψ−(st+1))

2/2
]
, (4.12)

where bt is (st, at, st+1, rt+1). This loss function is induced by the Tsallis policy

evaluation step.

When updating an actor network, we minimize a policy improvement objective

defined as

Jφ = E
st∼B

[
E

a∼πφ
[α lnq(πφ(a|st))−Qθ(st, a)]

]
. (4.13)

78



Chapter 4. Entropy-based Exploration

Note that a is sampled from πφ not a replay buffer. Since updating Jφ requires to

compute a stochastic gradient, we use a reparameterization trick similar to [51]

instead of a score function estimation. In our implementation, a policy function

is defined as a Gaussian distribution defined by a mean μφ and variance σ2φ.

Consequently, we can rewrite Jφ with a reparameterized action and a stochastic

gradient is computed as

∇φJφ = E
st∼B

[
E

ε∼Pε

[α∇φ lnq(πφ(a|st))−∇φQθ(st, a)]

]
,

where a = μφ + σφε and ε is a unit normal noise. Furthermore, we present TAC

with Curricular (TAC2) that gradually increase the entropic index q based on

Theorem 20. While it is optimal to search the proper entropic index given an RL

problem, the exhaustive search is often impractical due to prohibitive high sample

complexity. The entire TAC and TAC2 algorithms are summarized in Algorithm

3.

4.1.4 Experiments Setup

Simulation Setup

To verify the characteristics and efficiency of our algorithm, we prepare four

simulation tests on continuous control problems using the MuJoCo simulator:

HalfCheetah-v2, Ant-v2, Pusher-v2, and Humanoid-v2. For each task, a robot

with multiple actuated joints is given where the number of joints is different

from each task. Then, a state is defined as sensor measurements of actuators

and an action is defined as torques. The goal of each task is to control a robot

with multiple actuated joints to move forward as fast as possible. More detailed

definition can be found in [37].

In the first simulation, to verify the effect of the entropic index q, we conduct

79



Chapter 4. Entropy-based Exploration

Algorithm 3 Tsallis Actor Critic (TAC)

1: Input: Total time steps tmax, Max episode length lmax, Memory size N ,

Entropy coefficient α, Entropic index q (or schedule), Moving average ratio

τ , Environment env

2: Initialize: ψ,ψ−, θ1, θ2, φ, D : Queue with size N , t = 0, te = 0

3: while t ≤ tmax do

4: at ∼ πφ and rt+1, st+1, dt+1 ∼ env where dt+1 is a terminal signal.

5: D ← D ∪ {(st, at, rt+1, st+1, dt+1)}

6: te = te + 1, t = t+ 1

7: if dt+1 = True or te = lmax then

8: for i = 1 to te do

9: Randomly sample a mini-batch B from D

10: Minimize Jψ, Jθ1 , Jθ2 , and Jφ using a stochastic gradient descent

11: ψ− ← (1− τ)ψ− + τψ

12: end for

13: Reset env, te = 0

14: if Schedule of q exists then

15: Update qt

16: end if

17: end if

18: end while

experiments with a wide range of q values from 0.5 to 5.0 and measure the total

average returns during the training phase. We only change the entropic index and

fix an entropy coefficient α to 0.05 for Humanoid-v2 and 0.2 for other problems.

We run entire algorithms with ten different random seeds. Second, to verify the

effect of α, we run TAC with different q values (including SAC) for three α values:

80



Chapter 4. Entropy-based Exploration

0.2, 0.02, and 0.002 on the Ant-v2 problem. Third, we test the variant of TAC by

linearly scheduling the entropic index. From the results of the first simulations,

we observe that there exists a numerically stable region of 1 < q < 2, which will

be explained in Section 4.1.5. We schedule q to linearly increase from 1 to 2 for

every 5000 steps and we run TAC with q schedule for three α values: 0.2, 0.02,

and 0.002 on the Ant-v2 problem. Finally, we conduct a compare our algorithm

to the existing state-of-the-art on-policy and off-policy actor-critic methods. For

on-policy methods, trust region policy optimization (TRPO) [113] and proximal

policy optimization (PPO) [116] are compared where a value network is employed

for generalized advantage estimation [114]. For off-policy methods, deep determin-

istic policy gradient (DDPG) [80] and twin delayed DDPG which is called TD3

[40] are compared. We also compare with the soft actor-critic (SAC) method [51]

which employs the SG entropy for exploration. Since TAC can be reduced to

SAC with q = 1 and algorithmic details are the same, we denote TAC with q = 1

as SAC. We utilize OpenAI’s implementations and extend the SAC algorithm

to TAC. To obtain consistent results, we run all algorithms with ten different

random seeds. While we compare various existing methods, results of TRPO,

PPO, and DDPG are omitted here due to their poor performance and the entire

results can be found in the supplementary material. The source code is publicly

available3.

Hardware Platform Setup

To test our algorithm on a soft mobile robot, we use a tripod mobile robot

that consisted of three pneumatic soft vibration actuators, a direct current (DC)

motor, and an equilateral triangle body plate as shown in Figure 4.1(a). Each ac-

3https://github.com/rllab-snu/tsallis_actor_critic_mujoco

81



Chapter 4. Entropy-based Exploration

(a) Tripod Mobile Robot (b) Training System

Figure 4.1: (a) A soft mobile robot used in experiment. (b) A diagram for training

system. The position of robot is measured by using blob detection from a RGB

image ofr RealSense d435.

tuator can independently vibrate continuously and robustly regardless of contact

with external objects by using the nonlinear stiffness characteristic of hyperelas-

tic material (Eco-flex 30). In addition, the vibration frequency of the actuator

can be controlled by the input pressure. In order to control the direction of rota-

tion of the robot, a direct current (DC) motor was installed at the center of the

robot combined with a rotating plate. As a result, the mobile robot is capable of

making various motions, such as translation and rotation, with a combination of

the three vibration modes of the actuator and the rotation of the rotating plate.

Real Robot Experiment Setup

We apply the proposed algorithm to a soft mobile robot and compare the proposed

method to SAC with α = 0.01 and SAC with automatic entropy adjustment

(SAC-AEA) [49] which automatically adjusts α to maintain the entropy to be

greater than a predefined threshold δ. In experiment, we heuristically set δ to

− ln(d) as proposed in [49] where d is a dimension of the action space. In [49], since

SAC-AEA shows efficient performances for learning quadrupedal locomotion, we

try to check whether SAC-AEA can be applied to a soft mobile robot while

82



Chapter 4. Entropy-based Exploration

comparing their performance to the proposed method. We would like to note

that TAC2 only schedule q with fixed α and SAC-AEA only changes α with

fixed q = 1.0. From this comparison, we can demonstrate which factor is more

important to achieve efficient exploration.

In this task, our goal is to train a feedback controller of a soft mobile robot

where a controller makes a robot move in a straight line towards a goal position

(xg, yg) with a heading θg := arctan(yg − yt, xg − xt) where xt, yt is a current

position of the robot. Note that if a robot’s heading is aligned to its moving

direction, then, θg = θt.

The robot has three soft membrane vibration actuators and one motor for

controlling the angular momentum of the robot. Hence, an action is defined as

a four dimensional vector as at = ( p1, p2, p3, δΩ)t, where pi is an input pressure

of each vibration actuator and δΩ is the change in the motor speed. Note that,

if we directly change the motor signal, it may generate unstable motion and

inconsistent movements due to the delay of the motor. Hence, by controlling a

difference of the motor signal, we can generate a smooth change of motor speed.

Then, a state of a robot is defined as st := (Δθt, dt,Ωt), where Δθt := θg−θt is

a difference between heading and goal direction, dt :=
√

(xt − xg)2 + (yt − yg)2,

is the Euclidean distance to the desired position, and Ωt is the current motor

speed.

A reward function r(st) assigns a higher score as a control minimizes the gap

between robot’s current state and desired state: r(st) := −dt − |Δθt| + 2, which

is a decreasing function of dt and Δθt where 2 is added to give a positive reward

near the goal position. γ is set to 0.99. The entire training system is illustrated

in Figure 4.1(b).

For a fair comparison, we evaluate each algorithm every 500 steps. In evalua-

83



Chapter 4. Entropy-based Exploration

tion, we control a robot using only the mean value of the trained policy without

sampling. We run all algorithms with 2500 steps for five trials.

4.1.5 Experimental Results

Effect of α in Multi Armed Bandit Problem

We compare the effect of α and effect of q values as shown in Figure 4.2. We

compute the π�q on a simple MAB problem with the reward function shown in

Figure 4.2, while changing α and q values. We can see that all policy with dif-

ferent q values converge to greedy policy when α → 0. However, the tendency

of convergence is different depending on q values. First, the supporting set of π�q

with entropy coefficient α is defined by

1 + (q − 1)

(
r(a)

αq
− ψq

(
r

αq

))
> 0.

Since we only consider q ≥ 1 and (q − 1) is positive, the supporting set becomes

bigger as α goes to infinity. Thus, for fixed q, large α makes π�q more uniform

but, from the supporting set condition, the probability mass are distributed over

restrict elements. For example, when q = 2.0, the probability mass are only

distributed on four elements while α vareis from 0.1 to 2.0. On the contrary,

when q = 1.0 the probability mass are distributed over the entire action space

while α vareis from 0.1 to 2.0. We would like to note that q value controls the

supporting set and α controls the distribution over the supporting set.

Example of Bounds for q-Maximum

From theorem 13, we have the bounds for q-maximum as follows,

max
x

(f(x)) ≤ q-max
x

(f(x)) ≤ max
x

(f(x))− lnq (1/|X |)

84



Chapter 4. Entropy-based Exploration

Figure 4.2: Example of π�q (a) with various coefficients of entropy α varying from

2.0 to 0.1 and entropic indices varying from 1.0 to 10.0, respectively.

In example, we set X = {0, 1} and f(x) is deinfed as f(0) = 0, f(1) = c. We

see the tendecy of q-maximum when c varies from −2 to 2. Then, maxx(f(x))

becomes max([c, 0]) and we compute the q-max([c, 0]) using numerical solver.

Since X has two elements, the upper bound is max([c, 0])− lnq(1/2).

Examples of q-maximum with different q values are shown in Figure 4.3. It can

be observed that, as q increases, the bounds become tighter. Note that the gap

becomes largest when q = 1. This gap sometimes leads to overestimation error

when we use q-maximum to compute the target value of value networks.

85



Chapter 4. Entropy-based Exploration

Figure 4.3: Example of q-maximum operator with different q values. The figures

show q-max([c, 0]) over c ∈ [−2, 2]. The bounds are computed by Theorem 13

Effect of Entropic Index q

The results are shown in Figure 4.4. We realize that the proposed method per-

forms better when 1 ≤ q < 2 than when 0 < q < 1 and q ≥ 2, in terms of stable

convergence and final total average returns. Using 0 < q < 1 generally shows

poor performance since it hinders exploitation more strongly than the SG en-

tropy. For 1 ≤ q < 2, the Tsallis entropy penalizes less the greediness of a policy

compared to the SG entropy (or q = 1). From a reparameterization trick, the

gradient of the Tsallis entropy becomes Ea∼πφ [πφ(a|s)q−2∇φπφ(a|s)]. For q ≥ 2,

the gradient is proportional to πφ(a|s), thus, if πφ(a|s) is small, then, the gradient

becomes smaller and it leads to early convergence to a locally optimal policy. For

0 < q < 2, the gradient is proportional to 1/πφ(a|s), thus, if πφ(a|s) is small,

the gradient becomes larger, which encourages exploration of the action with a

small probability. For 0 < q < 1, since πφ(a|s)q−2 is more amplified than when

1 ≤ q < 2, the penalty of greediness is stronger than when 1 ≤ q < 2. Thus, when

0 < q < 1, it penalizes the exploitation of TAC more and hinders the convergence

to an optimal policy. In this regard, we can see TAC with 1 ≤ q < 2 outperforms

TAC with q ≥ 2. Furthermore, in HalfCheetah-v2 and Ant-v2, TAC with q = 1.5

shows the best performance and, in Humanoid-v2, TAC with q = 1.2 shows the

best performance. Furthermore, in Pusher-v2, the final total average returns of

86



Chapter 4. Entropy-based Exploration

(a) HalfCheetah-v2 (b) Ant-v2

(c) Pusher-v2 (d) Humanoid-v2

Figure 4.4: Average training returns of TAC with different q values on four Mu-

JoCo tasks. A solid line is the average return over ten trials and the shade area

shows one variance.

all settings are similar, but TAC with q = 1.2 shows slightly faster convergence.

We believe that these results empirically show that there exists an appropriate

q value between one and two depending on the environment while q ≥ 2 has a

negative effect on exploration.

Effect of Coefficient α

As shown in Figure 4.4(b),4.5(a) and 4.5(b). For all α values, q = 1.5 (purple circle

line) always shows the fastest convergence and achieves the best performance

87



Chapter 4. Entropy-based Exploration

(a) Ant-v2, α = 0.02 (b) Ant-v2, α = 0.002

(c) Ant-v2, Scheduled qk (d) Ant-v2, Comparison

Figure 4.5: (a), (b) Average returns of different α = {0.02, 0.002} and different q.

(a) and (b) share the legend with Figure 4.4(d). (c) Average returns of scheduling

qk with different α. Linear indicates linear curriculum of qk. (d) Comparison of

all variants of TAC.

among tested q values This result tells us that TAC with the best q value is robust

to change α. For q = 1.2 (or q = 1.7), the average return of TAC with q = 1.2 (or

q = 1.7) is sensitive to α, respectively, where q = 1.7 has the best average return

at α = 0.002, and q = 1.2 has the best value at α = 0.02. However, TAC with

q = 1.5 consistently outperforms other entropic indices while α is changed.

88



Chapter 4. Entropy-based Exploration

Curriculum on Entropic Index q

Figure 4.5(c) shows the performance of TAC2 with different α and Figure 4.5(d)

illustrates the comparison to TAC with fixed q. From this observation, it is shown

that TAC2 achieves a similar performance of the best q value without using a

brute force search.

Comparative Evaluation

Figure 4.6 shows the total average returns of TAC and other compared methods.

We use the best combination of q and α from the previous experiments for TAC

with q �= 1 and SAC (TAC with q = 1). SAC and TAC use the same architectures

for actor and critic networks. TAC and TAC2 indicates TAC with the fixed best

q and linearly scheduled q, respectively. First, TAC with a proper q outperforms

all existing methods in all environments. Furthermore, TAC achieves better per-

formance with a smaller number of samples than SAC and TD3 in all problems.

Especially, in Ant-v2, TAC improves the performance from SAC by changing

q = 1.5. Furthermore, in Humanoid-v2 which has the largest action space (17D),

TAC with q = 1.2 outperforms all the other methods. Finally, TAC2 consistently

shows similar performances to TAC, except Humanoid-v2.

Real Robot Experiment

Figure 4.7 shows the results of compared algorithms including the proposed

method. TAC2 shows the best performance in terms of the convergence speed

and the sum of rewards compared to other algorithms. In particular, the policy

trained by TAC2 could reach any goal point with only about 1500 steps (≈30

minutes) of training. Furthermore, TAC with q = 1.5 shows the second-best per-

formance.

89



Chapter 4. Entropy-based Exploration

(a) HalfCheetah-v2 (b) Ant-v2

(c) Pusher-v2 (d) Humanoid-v2

Figure 4.6: Comparison to existing actor-critic methods on four MuJoCo tasks.

SAC (red square line) is the same as TAC with q = 1, TAC and TAC2 indicates

TAC with fixed q �= 1 and scheduled q, respectively.

For SAC and SAC-AEA, while SAC-AEA shows slower convergence than SAC

due to the constraint to keep the entropy of the policy above the threshold, it

achieves higher performance than SAC at the end of the training. This result

demonstrates that maintaining the entropy of the policy helps exploration and

leads to better final performance, however, it hampers the exploitation.

While both TAC2 and SAC-AEA control the exploration-exploitation trade-off

by scheduling the level of regularization, the empirical result shows that schedul-

ing q instead of adjusting α shows better performance in terms of both con-

90



Chapter 4. Entropy-based Exploration

(a) Evaluation (b) Final Performance

Figure 4.7: Comparison to existing actor-critic methods on training a Tripod

mobile robot. (a) Average returns over five trials. (b) Final average performance.

The number in parentheses is a standard deviation.

vergence speed and final average return. While adjusting α in SAC-AEA only

rescales the magnitude of the gradient of the entropy, scheduling q can change

both the scale and direction of the gradient of the entropy, similarly to the re-

sults in Section 4.1.5. Specifically, in TAC2, the regularization effect is gradually

reduced as the entropic index q increases while SAC-AEA keeps the level of the

Shannon entropy. Hence, scheduling q helps exploitation at the end of the train-

ing. Thus, TAC2 shows not only the highest final average performance but also a

much smaller variance than other algorithms, which is a highly preferred feature

for training a soft mobile robot. Especially, a low variance of the final perfor-

mance supports that TAC2 successfully overcome the unknown stochasticity in

the dynamic model of the soft mobile robot. Consequently, we can conclude that

TAC2 efficiently learns a feedback controller of a soft mobile robot and achieves

the best performance with the minimum interactions.

91



Chapter 4. Entropy-based Exploration

4.1.6 Summary

We have proposed a unified framework which allows using a class of different

Tsalli entropies in RL problems, which we call Tsallis MDPs, and its applica-

tion to soft robotics. We first provide the full theoretical analysis about Tsallis

MDPs including guarantees of convergence, optimality, and performance error

bounds. and have extended it to the Tsallis actor-critic (TAC) method to handle

a continuous state-action space. It has been observed that there exists a suit-

able entropic index for each different RL problem and TAC with the optimal

entropic index outperforms existing actor-critic methods. However, since find-

ing an entropic index with the brute force search is a demanding task, we have

also present TAC2 that gradually increases the entropic index and empirically

show that it achieves comparable performances with TAC with the optimal en-

tropic index found from an exhaustive search in simulation environments. We

have applied TAC2 on real-world problems of learning a feedback controller for

soft mobile robots and demonstrated that TAC2 shows more efficient exploration

tendency than adjusting the regularization coefficient.

4.2 Efficient Exploration for Robotic Grasping

In this section, we apply Shannon-Gibbs entropy-based exploration method to

learn to grasp an unseen object. Recent advances of deep learning have enabled

to efficiently employ high dimensional observations such as depth image [84], or

point clouds [89] in many robotics applications. In particular, a convolutional

neural network (CNN) has shown powerful performances in many image-based

data-driven methods [99, 72, 100, 42, 48, 148, 149, 62, 110, 27, 18, 145, 89].

For a robotic grasping problem, predicting a grasp pose of a given object from

92



Chapter 4. Entropy-based Exploration

RGB or depth images using CNNs has been widely investigated and shown high

grasp performance where a neural network is utilized to predict a grasp success

probability of given depth images of an object and corresponding grasp poses [84]

or to generate high quality grasp poses from an image of an object [89].

While a CNN has a large capacity to learn high dimensional data, it often suffers

from the over-fitting problem when the number of training data is small which

leads to poor prediction results for unseen data. Hence, most existing methods

employing CNNs have focused on handling the lack of training data [83, 84, 82]. In

[83], training data for the neural network are generated by mesh data and dynamic

simulators where a depth image of objects are synthesized and corresponding

grasp poses are generated geometrically from the mesh data. Using these data

set, [84] successfully trained a neural network to predict a grasp pose given a

depth image and empirically shows that the trained network can be applied to

real-world grasping. [82] extends [84] to a real-world bin picking problem, which

is a sequential grasping problem, by augmenting real-world grasping data.

Using simulated data to train the neural network, however, has the limitation

in that there exists the discrepancy between simulations and real-world environ-

ment as mentioned in [58, 132, 148, 22, 59, 145]. In particular, a synthesized depth

image has a different visual properties from that of real-world. Furthermore, when

it comes to dynamics, contact simulations may be inaccurate and not similar to

real-world phenomena. To handle this discrepancy, [58, 132, 148, 22, 59, 145] have

incorporated domain adaptation and domain randomization techniques which di-

versify the parameters of simulations to cover various types of dynamic environ-

ments when training data are collected. While diversifying dynamic property of

simulation can alleviate the lack of data, there still exist significant differences

between real-world and simulation. In particular, the network trained in simu-

93



Chapter 4. Entropy-based Exploration

lations may not be applied to unseen objects whose geometric property such as

curvatures is significantly different from the simulated data. To reduce the gap, in

general, online learning methods have been widely used for a robot to adapt unex-

pected situations by autonomously exploring an environment. In robotic grasping

problems, to learn to grasp unseen objects, the ability to discover possible grasps

is required. To this end, we utilize an online learning framework to the robotic

grasping problem.

In this section, we propose a no regret Shannon entropy regularized neural con-

textual bandit algorithm for learning to grasp unknown objects where the Shan-

non entropy is employed to encourage explorations. Our strategy is to sample a

grasp pose from a stochastic policy which is a conditional distribution of a depth

image from a given object. The probability selecting a grasp pose is exponen-

tially weighted by the estimated success probability, or also called grasp quality

where exponential weighting is called a softmax distribution which is induced

by the Shannon entropy regularization. Since the stochastic policy is employed,

the proposed method randomly explores various grasp poses, but the grasp poses

which have high estimated qualities are explored more. We also prove that the

proposed method converges into optimal policy efficiently fast, which is called no

regret property.

In experiments, we verify the efficiency of the proposed method compared to

other exploration methods.

4.2.1 Related Work

Owed by recent advances of deep learning, many existing robotic grasp methods

have been developed based on data-driven approaches [99, 72, 100, 42, 48, 148,

149, 62, 110, 27, 18, 145, 89]. In general, these methods train two types of network:

94



Chapter 4. Entropy-based Exploration

grasp quality network and grasp proposal network. The grasp quality network

predicts the success probability of given grasp pose and information about an

object to be grasped where object information is generally given by a depth

image, RGB image, or both. The grasp proposal network generates a grasp pose of

end-effector based on given inputs such as RGBD image. Most existing methods

focused on how to generate training data for a deep neural network and how

to generate simulated data for robust transfer and generalization in real-world.

While [83, 82, 84, 99, 72, 100, 42, 48, 148, 149, 62, 110, 27, 18, 145, 89] have been

shown powerful results, however, learning based methods have the limitation

in that a grasp performance can degenerate for unseen objects which are not

included in simulations and training data. To handle this issue, online learning

approaches, including ours, for robotic grasping have been investigated where a

robot is trained with sequentially generated data during the test phase to adapt

unseen objects.

Robotic Grasping with Deep Learning

Conventional methods for robotic grasping are often solved analytically. For ex-

ample, 3D mesh data of objects is often used to compute grasp pose. [147] di-

rectly computes a grasp pose from point cloud data. However, such geometry

based methods are not applicable for unknown objects which have no 3D mesh

data and are hard to generalize various types of objects.

Due to this drawback, learning based approaches have been developed [83,

82, 84, 89, 78] where grasp poses are often predicted by a deep neural network

instead of computing grasp poses from geometric information. These methods

often utilize a convolutional neural network (CNN) which shows high performance

for image data [83, 82, 84]. The CNN is generally used to model a grasping

95



Chapter 4. Entropy-based Exploration

quality network whose inputs are RGB or depth image and an arbitrary grasp

pose and outputs are the success probability of a given grasp. However, to train

the CNN for predicting the success probability of a grasp pose, lots of training

data are required. In [84], training data are collected in simulation using given

3D mesh data. Thus, the trained grasp model can be generalized into unseen

objects while there still exists the gap between simulation and real-world data. In

[82], pretrained model of [84] is used to gather real-world training data. Unlikely

to [83, 82, 84], [89, 78] predict grasp poses from point cloud data. In [89], point

cloud data and corresponding grasp poses are learned with conditional variational

auto-encoder where, in testing time, grasp candidates are generated using the

decoder. [78] trained the grasp quality network whose inputs are local point clouds

where candidates of grasp poses are generated using [129, 47] and their qualities

measured by the quality network.

While [83, 82, 84, 89, 78] have demonstrated that the deep neural network

trained with large grasping data can generalize predicting grasp poses to unseen

objects, using deep learning for the real-world grasping task has the limitation

in that training the deep neural network accurately requires a large amount of

training data and collecting a large number of grasping data in real-world is a

demanding task.

Sim to Real Transfer

To alleviate the lack of real-world grasping data, [58, 132, 148, 22, 59, 145] often

utilizes a domain randomization technique generating simulated grasping data

while changing various environmental parameters such as light condition, mass,

inertia, friction coefficient, or background images. [148, 59] proposed a domain

adaptation method which makes a grasp network overcome the discrepancy be-

96



Chapter 4. Entropy-based Exploration

tween real-world data and simulated data. [58, 132] also collected simulated data

by randomizing visual effects and dynamic properties and combine them to train

the grasp proposal network. In [132], the method randomizing objects has been

proposed where simulated objects are randomly generated by combining arbitrary

selected meshes. [132] showed that the grasp proposal network trained with only

simulated data can effectively grasp real-world objects. In [58], randomization is

applied to background images of a simulator where the trained grasp proposal

network showed robust performance in real-world grasping test.

Online Learning in Robotics

While existing learning based grasping methods including sim-to-real methods

handle the discrepancy. the lack of training data for unseen objects which have

never been simulated is still an issue. In particular, since the dynamic contact

simulation has an error compared to real-world contacts, the training data col-

lected by simulations may be imperfect in that they do not reflect real-world

contacts.

To handle this issue, real-world data augmentation is essential to reduce the gap

between simulation and real-world dynamics. Online learning method has been

widely used in robot learning problems from learning a dynamic model [70, 17]

to finetuning gains of a PID controller [153]. However, it is hardly found to apply

an online learning approach to grasping problems.

In this section, we propose an online learning algorithm using a neural network

to estimate rewards function and apply the proposed method to a robotic grasping

problem. The core idea of the proposed method is to utilize Shannon entropy to

generate a stochastic grasp proposal policy. The stochastic policy induced by

Shannon entropy regularization encourages diverse grasp poses, but, the grasp

97



Chapter 4. Entropy-based Exploration

pose whose quality is expected to be high will be tried more often. By using

this property, we can balance the trade-off between exploration and exploitation.

More detail formulation will be explained in the following section.

Bandit Algorithm with Shannon Entropy Regularization

In [13], Shannon entropy regularization is applied to contextual bandit problems.

[13] proposed EXP4 which stands for exponential weighting for exploration and

exploitation with experts. For each round, given a context st, the experts estimate

rewards using a linear model and compute the policy as a softmax distribution of

the estimated reward of each action. While [13] does not mention that a softmax

distribution is induced by Shannon entropy regularization, using the softmax

distribution of the estimated rewards can be interpreted as using Shannon entropy

regularization. In particular, a softmax distribution in [13] is computed as

πt(st) := argmax
π∈Π

Ea∼π [r̂a(st; θt−1)] + αS(π) (4.14)

where r̂a(st; θt−1) is the reward estimation of action a predicted by a linear esti-

mation [13] and α is a regularization coefficient. In [13], it was proven that EXP4

is no regret which means the cumulative regret of EXP4 grows sub-linearly, thus,

it will converge to an optimal policy. While EXP4 shows efficient performances in

several problems [13], the linear model assumption of EXP4 makes it difficult to

be applied to high dimensional contextual bandit problems such as the problem

whose context is given as an image. However, we utilize a convolutional neural

network (CNN) to predict rewards given context image in grasping problem. Fur-

thermore, we also prove that, when the CNN is used as a predictor, no regret

property of the proposed method also holds.

98



Chapter 4. Entropy-based Exploration

4.2.2 Shannon Entropy Regularized Neural Contextual Bandit

Algorithm

In this section, we propose a Shannon etnropy regularized neural contextual ban-

dit algorithm (SERN) by utilizing an artificial neural network as a reward esti-

mator and exploring various actions using Shannon entropy. The main difference

of the proposed method from existing regularized bandit algorithms is that we

does not assume unbiased estimation such as a linear model or Gaussian process

regression. Furthermore, we analyze the upper bound of the cumulative regret of

SERN and show that it is no regret. Thus, the proposed method enables to use a

neural network which has the large capacity and shows a powerful performance

for high dimensional data while maintaining the no regret property.

For each round, SERN estimates rewards r̂a(st; θ) for given context st where

θ is a parameter of a neural network, and computes a policy πt and samples an

action at ∼ πt where the policy is computed as Equation (4.14). After choosing

at, random reward Rt is obtained, then, we collect context, action and reward

pair (st, at,Rt) and update the parameter θt−1 to θt based on collected data

using a stochastic gradient descent to minimize the estimation error. Then, the

environment gives the next context st+1.

4.2.3 Theoretical Analysis

In this section, we provide theoretical analysis of our algorithm whose regret grows

sub linearly and, thus, it has no regret property. To the best of our knowledge,

this is the first analysis for the bandit algorithm to utilize a deep neural network

as a reward estimation. Before starting analysis, we introduce some assumptions

for the reward function, the neural network and its error bounds.

99



Chapter 4. Entropy-based Exploration

Algorithm 4 Shannon Entropy Regularized Neural Contextual Bandit Algo-

rithm (SERN)

Initialize θ0 and D = ∅

for t = 1, · · · , T do

A context st is given and agent chooses at ∼ πt

where πt := argmaxπ {Ea∼π [r̂a(st; θt−1)] + αS(π)}

Agent gets a reward Rt and stores (st, at,Rt) into D

θt−1 is updated using a stochastic gradient descent method.

end for

Assumptions

We first propose some assumptions required to analyze the cumulative regret of

SERN.

Assumption 1 (Separable Reward Structure). Define the reward gap as Δa(s) =

maxa′ ra′(s) − ra(s) for given s. Note that minaΔa(s) = 0 at the best arm a� =

argmaxa′ ra′(s). Let the second minimum reward gap be Δ2(s) = mina �=a� Δa(s).

Then, we assume that Δ2(s) > 0 for all s and define Δ2 := minsΔ2(s)

Assumption 2 (Rewards Estimation). For each arm a, we have the reward

estimator r̂a(s; θna) where na is the number of training data for r̂a collected by

pulling a and θ is the parameter of r̂a. We assume that the parameter has the

least error, i.e., θna = argmaxθ Es1:na
[
∑na

i=1 |ra(si)− r̂a(si; θ)|].

Assumption 3 (Error Bound or Sample Complexity). We assume the upper

bound of the error of a reward estimation as follows:

∀s ∈ S |ra(s)− r̂a(s; θna)| <
β√

na + 1

where β is a positive constant depending on a estimation model and a learning

100



Chapter 4. Entropy-based Exploration

algorithm. When na data is given, the expected error decreases proportionally to

the square root of the number of data.

Assumption 2 and 3 generally hold for a deep neural network. For Assumption

2, we believe that the best parameter for given training data can be achieved

by using general optimization techniques for the deep neural network, such as

. For Assumption 3, in [15], Barron showed that the error bound of the neural

network follows O(1/
√
n) and in [123], Suzuki showed that it is bounded by

O(log+(
√
n)/n) ≤ O(1/

√
n). Thus, our assumptions generally hold.

The proof strategy of no regret property consists of two parts. We first show

that our algorithm explores every arms infinitely many. Then, we prove that

infinite explorations eventually reduce the estimation error small enough and,

then, the best arm can be verified. While the proposed method explore every

arms infinitely, the ratio of choosing each arm is proportional to its estimated

rewards. Hence, we can achieve the sub-linearly growth of RT , which is no regret.

Note that the detail proofs are omitted here and can be found in Appendix.

Infinite Exploration

Let Na(t) is a random variable indicating how many times an arm a is selected

during t rounds. In this section, we prove that the expectation of Na(t) diverges as

t goes to infinity. Furthermore, since the expectation of Na(t) diverges, the event

that Na(t) is bounded, or, a is finitely many explored occurs with low probability

and, in addition, such event never happens when t goes to infinity.

Theorem 21. Then, for any arm a, the expected count has the following lower

bound, E [Na(t)] ≥ ct where c = 1
K exp(− 1

α).

Theorem 21 tells us that the lower bounds of Na(i) linearly grows. Since

limt→∞ ct = ∞, the expectation of Na(i) goes to infinity. Thus, the proposed

101



Chapter 4. Entropy-based Exploration

method explores every arms infinitely many. To prove Theorem 21, the lower

bound of the probability choosing a for every iteration is required.

Lemma 6. The policy of SERN has a constant lower bound greater than zero,

i.e., [πt]a ≥ c > 0, where c = 1
K exp(− 1

α).

The proofs can be found in Appendix. By using this lemma, we have the lower

bound as follows: E [Na(t)] = E

[∑T
t=1 I(at = a)

]
=
∑T

t=1 πt > ct. From this fact,

it can be observed that, for any arm, the expectation of its counts diverges. In

other words, every arms are explored infintiely many times. Using Lemma 6 and

Theorem 21, we can derive the upper bound of the tail probability of Na(t).

Theorem 22. For any arm a, let N ′
t = Na(t)− ct. Then, N ′

t is sub-Martingale

and, from this fact, the following inequality holds, for any δ > 0,

P(Na(t) < ct− δ) ≤ exp

(
−δ

2

8t

)
.

The proof can be found in Appendix. This theorem tells us that the probability

that random variable Na(t) is below the expected lower bound has an exponential

upper bound with respect to its deviation δ. Using this upper bound, we can

control the error term β
√
1/(n+ 1) of the neural network.

Upper Bounds for Expected Cumulative Regret

Now, we prove the no regret property of SERN. We first derive general upper

bound of the cumulative regret and derive more specific bounds by controlling α.

Then, finally we show that the proposed method is no regret.

Theorem 23. For α > 0 and 1 > q > 0, the expected cumulative regret of SERN

102



Chapter 4. Entropy-based Exploration

is bounded as

RT ≤β
T∑
t=1

E
s1:t,a1:t

[
1√

(Na�(t− 1) + 1)

]

+ β
T∑
t=1

E
s1:t,a1:t

[
1√

(Nat(t− 1) + 1)

]

+
T∑
t=1

P(a� �= â�t−1) + α ln(K)T,

where K = |A|, a� = argmaxa Es [ra(s)], and â
�
t = argmaxa Es [r̂a(s; θt)].

The first term comes from the estimation error of the neural network, the second

term comes from the failure probability of the neural network for discriminating

the best arm, and the last term indicates the regret induced by Tsallis entropy

regularization. Before deriving detail upper bounds, we would like to give some

intuition of proof strategies for each term. The first term will be bounded by using

Theorem 21 and 22. Furthermore, we prove that the second term has a constant

bound using Assumption 1. Note that we assume that there always exist a positive

gap Δ between the optimal and sub-optimal arms. Thus, if our estimation error

becomes below Δ, then, after that point, we can discriminate the best arm from

other sub-optimal arms. Finally, the third term will be bounded by controlling

α. The entire bound can be derived as follows.

Theorem 24. Let α = 1
ln(T p) . Then, the expected cumulative regret of SERN is

bounded as

RT ≤C0T
3p+1

2 + C1

(
1− exp

(
−d1T−2p

))−1

+ C2

(
1− exp

(
−d2T−2p

))−1
+ ln(K)T (ln(T p))−1 ,

where C0 = 2
7
2K

3
2β, C1 = 2βK, C2 = 2(K − 1) exp((β/Δ2)

2 − 1/4), d1 =

1/(32K2), and d2 = 1/(8K2).

103



Chapter 4. Entropy-based Exploration

By using Theorem 24, we can show no regret property as follows.

Theorem 25. For 1/3 > p > 0, if the number of rounds, T , goes to infinity,

then, time-averaged regret converges to zero: limT→∞ RT
T = 0.

Theorem 25 tells us the proposed method eventually find the best arm for given

context. Entire proof can be found in Appendix. Here, we provide a proof sketch.

From Theorem 24, we have the upper bound of RT which consists of four parts.

First, since the first term and forth term follow O
(
T

3p+1
2

)
and O

(
T (ln(T p))−1

)
,

respectively, they increase sub-linearly and, hence,
O

(
T

3p+1
2

)

T and
O(T (ln(T p))−1)

T

converge to zero. Finally, nontrivial parts are the second and third term. Note

that the limit of these terms follows limx→∞(x(1 − exp(−ax−b)))−1 with a > 0

and b < 1. Thus, the proof can be finished by showing that

lim
x→∞

1/x

(1− exp(−ax−b))) = lim
x→∞

1/x2

− exp(−ax−b) · abx−b−1

= lim
x→∞

xb−1

−ab exp(−ax−b) = 0

(4.15)

and it implies that the time average of third term converges to zero. The entire

proof can be found in Appendix.

4.2.4 Experimental Results

To verify our theorems and effectiveness of the proposed exploration method, we

conduct both dynamic simulation and the real-world experiments.

Setup

In the dynamic simulation, we compare three exploration methods including ours.

First, a greedy method is compared as a baseline model which simply tries the

best grasp whose estimated grasp quality is the maximum. Second, we compare

104



Chapter 4. Entropy-based Exploration

(a) KIT [63] (b) T-Less [56] (c) Real Objects

Figure 4.8: Objects

a ε-greedy method which selects the best grasp pose with probability 1 − ε and

chooses a uniformly random grasp with probability ε. The ε-greedy method has

been widely used in many existing methods [refs]. For ε-greedy method, we set ε

to be 0.1. Finally, we compare the SERN with α = 0.05. ε and α are selected by

the brute force search.

Furthermore, we employ the grasp quality network and training dataset of

Mahler et al.[84] as a pretrained model θ0 and pretrained data D0, respectively.

We samples k = 172 grasping examples from data in D0. For each round, we

generate 64 grasp candidates and corresponding qualities from a given depth

image using the pretrained model. We sample one grasp among 64 grasps by

applying three sampling methods: greedy, ε-greedy, and SERN. By doing so, we

can fairly verify effects of the sampling methods since all methods share the

pretrained network and only differences are the exploration method. Each round

105



Chapter 4. Entropy-based Exploration

consists of a exploration and evaluation phase. In exploration phase, we collect

20 grasp, image, and result pairs and update the grasp quality network with

gathered data. In evaluation, we run the updated network 5 times by selecting

the best grasp to verify the actual performance without an effect of exploration.

For the dynamic simulation, a GAZEBO simulator [69] is used with an open

dynamics engine [121]. We utilize 3D mesh dataset from KIT [63] and T-Less

[56]. As shown in Fig. 4.8(a) and 4.8(b), we select four mesh models from [63]

and two mesh models from [56], respectively, which are hardly grasped by the

pretrained model [84] in simulations. All algorithms run with five random seeds.

In the the real-world experiment, we compare two methods: ε-greedy and the

proposed method. We also conduct both exploration and evaluation steps sepa-

rately. In exploration, we gather 5 grasp examples and, in evaluation, we measure

5 grasp tests. We select three objects: triangle, round stapler, and vertical mouse,

which are hardly grasped by a parallel jaw gripper due to its rounded surface and

nonparallel shape as shown in Fig. 4.8(c). We use a Baxter robot which has a 7

DoF manipulator to grasp the objects and a RealSense D435 depth camera.

Simulation Results

We measure the improvement of grasp success rate between the first and last

performance, and the maximum grasp success rate among success rates of five

rounds. The results are shown in Table 4.1.

First, the greedy policy without exploration shows the worst performance in

terms of the maximum performance and final performance. From this observa-

tion, it is shown that exploration is essential for learning to grasp. Since the

greedy policy tries similar grasps when gathering 20 exploratory grasp examples,

it cannot gather diverse training data, which causes the over-fitting issue.

106



Chapter 4. Entropy-based Exploration

On the contrary, the SERN and ε-greedy method show better performance than

the greedy method. In particular, the proposed method, SERN, outperforms other

methods in terms of both maximum grasp success rate and final grasp success

rate. In all cases, after training for five rounds, the grasp success rates of SERN

are improved compared to initial performances. In particular, the success rate for

the CokePlastic increase by 212%.

While ε-greedy method outperforms the greedy method in three objects as

shown in Table 4.1, it shows poorer performance than the SERN. Since the SERN

samples a grasp based on a softmax distribution of estimated grasp qualities, po-

tentially feasible grasp poses are first searched. The ε-greedy method, however,

explores all grasp poses randomly and it causes inefficiency of exploration in prac-

tice. Since we employ the pretrained network, sampling a grasp pose based on the

grasp quality estimation from the pretrained network shows better performance

while ε-greedy method . Thus, the SERN shows the best performance compared

to greedy and ε-greedy method.

Real-World Results

The results are shown in Table 4.2. In the real-world experiments, the SERN

outperforms the ε-greedy method. In particular, for the Mouse object, the SERN

finds success grasps much faster than ε-greedy so that it achieves 60% success rate

at the first round and outperforms 80%. These results support the fact that us-

ing softmax distribution has benefits over the ε-greedy method since it frequently

explores the grasp poses that has the high chance of success. Furthermore, the

softmax distribution is more suitable than the ε-greedy method to employ the

pretrained model. From this reason, the SERN generally shows the better per-

formance than the ε-greedy method.

107



Chapter 4. Entropy-based Exploration

Obj. Alg. Round 1. Round 2. Round 3. Round 4. Round 5. Max. Imprv.

Marjoram
SERN 52% (±4.90) 72% (±10.20) 88% (±6.32) 75% (±11.66) 75% (±6.32) 88% 44%

ε-Greedy 72% (±4.90) 55% (±4.90) 61% (±9.80) 76% (±10.20) 70% (±6.32) 76% −3%

Greedy 48% (±12.00) 60% (±6.32) 64% (±7.48) 68% (±10.20) 68% (±8.00) 68% 42%

SaltCylinderSmall
SERN 68% (±10.20) 60% (±10.95) 56% (±9.80) 56% (±11.66) 76% (±11.66) 76% 12%

ε-Greedy 64% (±11.66) 52% (±12.00) 60% (±8.94) 60% (±8.94) 56% (±4.00) 64% −13%

Greedy 64% (±11.66) 52% (±10.20) 48% (±4.90) 40% (±6.32) 48% (±10.20) 64% −25%

BathDetergent
SERN 36% (±13.27) 48% (±13.56) 48% (±8.00) 60% (±6.32) 64% (±7.48) 64% 78%

ε-Greedy 60% (±16.73) 52% (±13.56) 48% (±12.00) 60% (±18.97) 52% (±16.25) 60% −13%

Greedy 36% (±11.66) 40% (±6.32) 36% (±9.80) 60% (±6.32) 20% (±6.32) 60% −44%

CokePlasticLarge
SERN 16% (±4.00) 23% (±8.94) 29% (±11.66) 40% (±8.00) 50% (±14.14) 50% 212%

ε-Greedy 32% (±8.00) 46% (±7.48) 21% (±4.00) 28% (±6.32) 46% (±7.48) 46% 44%

Greedy 12% (±4.90) 15% (±4.90) 33% (±4.90) 28% (±8.94) 26% (±7.48) 33% 117%

T-Less 10
SERN 56% (±7.48) 74% (±10.20) 52% (±14.14) 71% (±12.00) 81% (±7.48) 81% 45%

ε-Greedy 52% (±4.90) 50% (±9.80) 61% (±12.00) 71% (±8.00) 73% (±13.56) 73% 40%

Greedy 36% (±7.48) 50% (±7.48) 49% (±7.48) 55% (±9.80) 69% (±16.00) 69% 92%

T-Less 20
SERN 72% (±8.00) 60% (±10.95) 60% (±6.32) 72% (±10.20) 84% (±4.00) 84% 17%

ε-Greedy 72% (±8.00) 60% (±6.32) 44% (±4.00) 68% (±4.90) 68% (±4.90) 72% −6%

Greedy 68% (±10.20) 76% (±4.00) 60% (±6.32) 64% (±9.80) 68% (±13.56) 76% 0%

Table 4.1: Grasp success rate in simulation. The number in the parenthesis indi-

cates a standard deviation. Obj. indicates a name of 3D mesh in KIT and T-Less

dataset. Max. is the maximum success rate achieved during five trials. Imprv.

is a performance improvement after training compared to the first performance,

which is computed as (r5 − r1)/r1 where ri is the ith success rate. The best

performances are marked in bold.

The main benefit of SERN compared to ε-greedy is the exploration tendency.

In ε-greedy, the exploration is conducted by an uniform distribution. Thus, ε-

greedy tries random grasps with ε ratio. On the contrast, SERN combine both

exploitation and exploration since the greedy action has the largest probability

mass and the other actions have the probability mass proportional to its grasp

quality.

The examples of grasp candidate are shown in Fig. 4.9. Fig. 4.9(a) and (b) are

108



Chapter 4. Entropy-based Exploration

Obj. Alg. Rnd 1. Rnd 2. Rnd 3. Rnd 4. Rnd 5.

Triangle
SERN 0% 20% 20% 60% 80%

ε-Greedy 0% 20% 0% 40% 40%

Stapler
SERN 0% 0% 40% 80% 80%

ε-Greedy 0% 0% 40% 0% 40%

Mouse
SERN 60% 60% 80% 80% 80%

ε-Greedy 0% 20% 20% 20% 20%

Table 4.2: Grasp success rate in the real-world experiments. Rnd i indicates the

ith round. The best performances are marked in bold.

examples of SERN and Fig. 4.9(c) and (d) are examples of ε-greedy, respectively.

Since ε-greedy fully random exploration, unrealistic grasp is selected as shown in

Fig. 4.9 (c).

However, SERN tries more promising grasps which have the potential to suc-

cessfully grasp the object. Specifically, since we employ a pretrained model, the

grasp candidate with high estimated quality have the high potential to success

to grasp the object as shown in Fig. 4.9(a) and (b). In SERN, P(at = a) is pro-

portional to exp
(
Q̂a

)
where Q̂a is a grasp quality of the grasp a. Thus, we can

conclude that exploration with soft max distribution has the benefit in practice.

4.2.5 Summary

In this section, we have proposed a novel Shannon entropy regularized neural

contextual bandit online learning (SERN) and have applied SERN to learning to

grasp unknown objects. We also proved that SERN has no regret properties and

its error converges to zero. We would like to emphasize that we analyzes the effect

109



Chapter 4. Entropy-based Exploration

(a) Sample of SERN (b) Sample of SERN

(c) Sample of ε-Greedy (d) Sample of ε-Greedy

Figure 4.9: Grasp candidates sampled from SERN and ε-Greedy

110



Chapter 4. Entropy-based Exploration

of using a neural network in the contextual bandit framework. In both simulation

and the real-world experiments, we empirically show that SERN outperforms a

ε-greedy method and improves the grasp performance efficiently.

111



Chapter 4. Entropy-based Exploration

112



Chapter 5

Perturbation-Based

Exploration

Designing an efficient exploration strategy is important in online learning prob-

lems such as designing medical experiment [43] and exploration strategy in re-

inforcement learning [122, 127, 119]. These problems ask a learning agent the

ability to learn an optimal action from trial and error without using prior knowl-

edge of rewards. For each trial, the agent takes an action based on prediction,

and obtains a feedback, often called a reward, as a result. If the rewards of all

actions are given, the problem is called a full information problem. Otherwise, if

single reward of a chosen action is given, it is called a bandit or partial informa-

tion problem. In both full and partial information settings, the efficiency of an

exploration strategy is measured by a regret which is the difference between the

sum of rewards of optimal decisions and that of the decisions of the exploration

strategy.

Under the full information setting, an algorithm called a Follow-the-Perturbed-

Leader (FTPL) has been widely and intensively investigated [4, 61, 71]. FTPL

113



Chapter 5. Perturbation-Based Exploration

stochastically smooths a greedy decision using various types of random pertur-

bation. While FTPL has a benefit of simplicity, it is well known that its regret

analysis is complicated since it highly depends on the chosen distribution of the

perturbation. Thus, a different analysis technique has been developed for each

type of perturbation [61, 71, 36]. Notably, Abernethy et. al. [4] has proposed a

general analysis scheme by revealing the relation between the regret bound and

the distribution of perturbation. This framework is also applied to the bandit

setting in [5]. Correctly, it has been shown that various choices of distributions,

including heavy-tailed densities such as Gumbel, Fréchet, and Pareto, can achieve

an optimal regret bound in an adversarial bandit setting whose sequence of re-

wards is determined by an adversary. These results have shown that FTPL has

achieved the nearly optimal regret bound over different settings. Here, the cru-

cial and natural question arises: can general analysis scheme be also available

in a stochastic bandit setting whose rewards are identically independently dis-

tributed for each trial? One seminal work [64] provides a pioneering answer to

the question; it proposes an analysis method of the regret bound for a family of

sub-Weibull perturbations and that of all perturbations with bounded support

under stochastic bandit problems whose rewards have sub-Gaussian noises. In

the following sections, we extend Kim et. al. [64] into two directions. First, we

propose more general analysis scheme of regret bounds of perturbation methods

including heavy-tailed perturbations such as Fréchet, Pareto, Gamma, General-

ized Extreme Value (GEV) distributions. Second, we also develop a general regret

analysis scheme to apply perturbation methods to heavy-tailed rewards.

114



Chapter 5. Perturbation-Based Exploration

5.1 Perturbed Exploration for sub-Gaussian Rewards

In this section, we investigate a unified framework to obtain the regret bound of

the perturbation method with various types of distributions under sub-Gaussian

rewards in the stochastic multi-armed bandit. By using this framework, we are

able to deal with Pareto, Fréchet, and generalized extreme value distributions

which are not covered by the results of [64]. In this framework, we modified the

algorithm of FTPL proposed in [64] by controlling the magnitude of perturbation

based on the number of times each action has been selected. We call this method

as Adaptively Perturbed Exploration (APE).

Our analysis scheme reveals the connection between the regret bound and the

density of random perturbation provided rewards are sub-Gaussian. It requires

general conditions to achieve a sub-linear regret bound of various perturbations:

Gaussian, Weibull, Generalized extreme value (GEV) [143], Fréchet, and Pareto

distributions. Each regret bound shows its relationship with the parameter of the

distribution of each perturbation. Furthermore, these bounds allow us to choose

the optimal parameter which can achieve the nearly optimal regret bound. Es-

pecially, GEV is a generalized version of Gumbel distribution including Fréchet.

While the results for Gaussian and Weibull distribution are already analyzed in

[64], these results tell us that our framework includes the results of [64]. We em-

phasize that our scheme provides a standard guide when designing a perturbation

method for a stochastic bandit with sub-Gaussian rewards.

5.1.1 Related Work

In a stochastic multi-armed bandit problem under sub-Gaussian rewards, Kim

et. al. [64] have proposed the general analysis for two types of the random per-

turbation method. The first one is the sub-Weibull perturbation under the anti-

115



Chapter 5. Perturbation-Based Exploration

concentration assumption and the second one is the bounded perturbation most

of whose probability mass is placed at the extreme of the support. Kim et. al.

[64] have shown that the sub-Weibull perturbation with anti-concentration condi-

tion achieves the problem-independent regret bound of O(
√
KT ln(K)) with its

parameter q = 2, which matches the regret bound of Thompson sampling [130]

under the Gaussian prior assumption on the reward [7]. Furthermore, Kim et. al.

[64] have provided a regret bound of O(
√
KT ln(T )) for the bounded perturba-

tion method, which is analogous to the upper confidence bound (UCB) under the

sub-Gaussian reward assumption [12]. In this section, we focus on extending the

range of unbounded perturbations from the sub-Weibull to the heavy-tailed dis-

tribution with a polynomial tail. While the general analysis scheme of [64] allow

us to analyze the sub-Weibull perturbation for the sub-Gaussian reward, it has

the limitation in that the sub-Weibull assumption cannot include the heavy-tailed

distributions whose tail probability decays polynomially fast.

Bandit with sub-Gaussian Rewards We consider a stochastic multi-armed

bandit problem which is explained in Chapter 2.1.1. A usual condition for noise

εt is sub-Gaussian: for λ ∈ R+

E [exp (λεt)] ≤ exp
(
−λ2σ2

)
, (5.1)

where σ is the parameter of εt. Suppose the agent employs an average estimation

for rewards as follows

r̂t,a :=
1

nt−1,a

t−1∑
k=1

Rk,aI [ak = a] , (5.2)

where nt−1,a is the number of times action a has been selected for t− 1 rounds.

Combining (5.1) and reward estimator (5.2), we can derive a Chernoff-type bound:

P [r̂t,a − ra > δ] ≤ exp

(
−δ

2nt−1,a

2σ2

)
. (5.3)

116



Chapter 5. Perturbation-Based Exploration

The bound (5.3) shows the ratios of the error reduction of the reward estimator

under sub-Gaussian property.

5.1.2 Heavy-Tailed Perturbations

In our algorithm, G denotes the perturbation for exploration. Let the support

of G be [g−, g+], where −∞ ≤ g− < g+ ≤ ∞. We handle the unbounded case

|g−| + |g+| = ∞ that the support is R, or the case that the support is [g−,∞).

We refer to Kim and Tewari [64] for the bounded support case.

The cumulative density function F for G is given as follows,

F (x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 x < g−

P [G < x] g− ≤ x ≤ g+

1 g+ ≤ x

F (x) plays an important role for both implementation and analysis. In imple-

mentation perspective, we can sample perturbation G from an inverse function

F−1 by G = F−1(U) where U is sampled from the uniform distribution on [0, 1].

We establish the regret analysis of the proposed perturbation method based on

the following assumption:

Assumption 4. Let h(x) := d
dx log(1−F (x))−1 be a hazard rate. Suppose F (0) ≤

1/2, F is log-concave and reward has sub-Gaussian noise (5.1), there exists a

constant CF,c,σ such that∫ ∞

0

h(x) exp
(
− c2x2

2σ2

)
1− F (x) dx ≤ CF,c,σ <∞. (5.4)

If h is bounded i.e. ‖h‖∞ <∞, then, the condition (5.4) is reduced to the existence

of a constant MF,c,σ such that∫ ∞

0

exp
(
− c2x2

2σ2

)
1− F (x) dx ≤MF,c,σ <∞, (5.5)

117



Chapter 5. Perturbation-Based Exploration

where CF,c,σ ≤ ‖h‖∞MF,c,σ.

Assumption 4 is an advanced version of the conditions introduced in [64], which

provides the regret analysis with the following two-sided tail behavior bounds:

exp

(
− xq

2σq

)
≤ P (|G| ≥ x) ≤ exp

(
− xp

2σp

)
. (5.6)

Here the lower bound is called anti-concentration condition with parameter q

and the upper bound is called sub-Weibull condition with parameter p provided

p < q ≤ 2. The anti-concentration property tells us the lower bound of tail

probability decays at most exponentially fast with respect to the order q ≤ 2.

Thus, under (5.6), G automatically satisfies (5.4) provided sub-Gaussian rewards

are given.

Therefore, we propose a unified framework. For sub-Gaussian rewards, our

assumption (5.4) contains non-sub-Weibull perturbations which include Pareto,

Fréchet, and generalized extreme value (GEV) distributions. Since these den-

sities have polynomial tail behavior, they only satisfy the lower bound (anti-

concentration), but the upper bound (sub-Weibull) in (5.6). Consequently, the

proposed framework covers both more general perturbations.

Let us explain the probabilistic intuition in Assumption 4. Observe that, due

to the Chernoff-type bounds of (5.3), the integral in (5.4) has the lower bound:

∫ ∞

0
h(x)

P [ε > x]

P [G > x]
dx ≤

∫ ∞

0

h(x) exp
(
− c2x2

2σ2

)
1− F (x) dx.

Thus, the integral of Assumption 4 is bounded below by the integral of the

ratio between P [ε > x] and P [G > x]. One can easily observe that the ratio

P [ε > x] /P [G > x] necessarily converges to zero at the tail to validate the inte-

gral condition (5.4). Otherwise, the lower bound diverges unless the hazard rate

h vanishes at infinity, which does not hold even for simple exponential distribu-

tion. Hence, Assumption 4 requires the perturbation to have the tail probability

118



Chapter 5. Perturbation-Based Exploration

decays slower than that of reward. This requirement can be interpreted as the

condition to be essential to overcome noisy reward using the perturbation. If the

algorithm misclassifies an optimal action due to the noise ε, to surmount the

misclassification by exploring other actions, the sampled perturbations should

be greater than the sampled noises and it is determined by the ratio between

P [ε > x] and P [G > x]. This interpretation matches the intuition of (5.6) which

is already introduced in [64].

5.1.3 Adaptively Perturbed Exploration

In this section, we provides the main theorem of the regret bounds for Adaptively

Perturbed Exploration (APE) in the stochastic multi-armed bandit setting. The

complete proofs of theorems, lemmas, corollaries in this section can be found in

the supplementary material.

In APE, similar to the FTPL method, we sample a random noise Gt,a at round

t from perturbation distribution F (x). Then, the action is taken by the following

rule,

at = argmax
a∈A

{r̂t−1,a + βt−1,aGt,a} (5.7)

where βt−1,a is defined as

βt−1,a :=
c√

max (nt−1,a, 1)
.

Here c is a parameter controlling the magnitude of perturbation. Intuitively

speaking, as nt−1,a increases, βt−1,a gradually decreases and it reduces explo-

ration of action a. Thus, the level of exploration is adaptive depending on nt−1,a

for each action. The entire algorithm is summarized in Algorithm 5.

119



Chapter 5. Perturbation-Based Exploration

Algorithm 5 Adaptively Perturbed Exploration (APE)

Require: c, T , and F−1(y)

1: Initialize {r̂0,a = 0}

2: for t = 1, · · · , T do

3: for ∀a ∈ A do

4: u ∼ Uniform(0, 1)

5: βt−1,a ← c√
max(nt−1,a,1)

and Gt,a ← F−1(u)

6: end for

7: at = argmaxa r̂t−1,a + βt−1,aGt,a

8: Receive Rt,at

9: r̂t,at ←
nt−1,at r̂t−1,at+Rt,at

nt−1,at+1

10: nt,at ← nt−1,at + 1

11: end for

5.1.4 General Regret Bound for Sub-Gaussian Rewards

First, we provide the lower bound of the regret of APE.

Theorem 26. Under Assumption 4, for c ∈ (0, 1) and T ≥ 4
c(1−c)(K−1) , the regret

of APE satisfies

E [RT ] ≥ Ω
(√

KTF−1
(
1−K−1

))
. (5.8)

Theorem 26 gives the lower regret bound of the log-concave F . We emphasize

that this theorem holds for sub-Gaussian rewards setting and will be extended

to heavy-tailed rewards setting.

Now, we present the relation between the upper bound of regret and the density

of perturbation among different noises. For some distributions, the upper bound

matches the lower bound up to the constant, which is called a tight bound.

The upper bound of the regret of APE is derived under the sub-Gaussian

120



Chapter 5. Perturbation-Based Exploration

reward (5.1). Since the exploration is influenced by the random perturbation G,

the regret bound of APE is highly related to F .

Theorem 27. Suppose Assumption 4. For arbitrary c > 0,

E [RT ] ≤
∑
a �=a�

[
CF,c,σ +

F (0)

1− F (0)

]
18σ2

Δa
+ 2

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
(5.9)

+
9c2

Δa

[
F−1

(
1− c2

TΔ2
a

)]2
+
c2 + 162σ2

Δa
+Δa (5.10)

If ‖h‖∞ and MF,c,σ are finite, we can use ‖h‖∞MF,c,σ instead of CF,c,σ.

Sketch of Proof. The main difference of this proof from that of [64] is the Lemma

8. We first separate a set Et,a := {at = a} into three subsets based on the following

thresholds: xa := ra + Δa
3 and ya := ra� − Δa

3 . Let Êt,a := {r̂t,a ≤ xa}, and

Ẽt,a := {r̂t,a + βt,aGt+1,a ≤ ya}. Both Êt,a and Ẽt,a indicate the estimator r̂a and

the perturbed estimation do not deviate from true reward ra.

Next, we decompose Et,a into three groups,(
Et,a ∩ Êc

t,a

)
∪
(
Et,a ∩ Êt,a ∩ Ẽt,a

)
(5.11)

∪
(
Et,a ∩ Êt,a ∩ Ẽc

t,a

)
. (5.12)

The first term indicates the set of events that the estimation is inaccurate enough.

The second term indicates the set of events that sub-optimal action a is selected

even though the estimation is accurate enough and the perturbation for the action

is not large. These events occur when the estimation for a� is incorrect or the

perturbation for a� is relatively smaller than that of a. The third term indicates

the events that the perturbation is too large even though the estimation is correct

enough. Following lemmas shows the bounds of each set of events.

Lemma 7. For any a ∈ A,
T∑
t=1

P

[
Et,a ∩ Êc

t,a

]
≤ 1 +

18σ2

Δ2
a

. (5.13)

121



Chapter 5. Perturbation-Based Exploration

The first bound indicates how fast the estimation is concentrated on the true

reward where the concentration speed depends on σ of the sub-Gaussian property.

Thus, Lemma 7 tells us that the regret caused by the inaccurate estimations is

bounded since the bound is exponentially decayed.

Lemma 8. For any a ∈ A,

T∑
t=1

P

[
Et,a ∩ Êt,a ∩ Ẽt,a

]
≤ 2

T∑
k=1

F

(
−Δa

√
k

6c

)
(5.14)

+

[
CF,c,σ +

F (0)

1− F (0)

]
18σ2

Δ2
a

+
144σ2

Δ2
a

. (5.15)

If ‖h‖∞ and MF,c,σ are finite, we can use ‖h‖∞MF,c,σ instead of CF,c,σ.

Since this bound depends on the set of events that estimation for a� is not

correct or the perturbation for a� is relatively smaller than that of a, we derive

the following bound,

T∑
t=1

P

[
Et,a ∩ Êt,a ∩ Ẽt,a

]
≤

T∑
k=1

E

[
pτa�,k,a�

1− pτa�,k,a�

]
(5.16)

where τa�,k is the round that a� is selected for the kth times and pτa�,k,a� =

F
(
(ra� − r̂τa�,k,a� −Δa/3)

√
k/c
)
. Then, similarly to [64], we decompose the events

into three cases. The first case is when r̂a� is under estimated. The second case

is when the perturbation is too small while the estimation error is small enough.

The last case is when r̂a� is over estimated. Then, the bounds are separately

computed.

For the first case, the first term is derived,[
CF,c,σ +

F (0)

1− F (0)

]
18σ2

Δ2
a

.

The ratio F (x)
1−F (x) is bounded by the constant in Assumption 4. Furthermore, if

the hazard rate is bounded, we can use ‖h‖∞MF,c,σ instead of CF,c,σ. For the

122



Chapter 5. Perturbation-Based Exploration

second case, the second term is derived,

144σ2/Δ2
a,

where this bound indicates the regret caused by the estimation error of r̂t,a.

Finally, the third term is derived by,

2
T∑
k=1

F
(
−Δa

√
k/6c

)
.

This part indicates the regret comes from the negative perturbations which makes

a� not to be selected. Furthermore, we would like to note that if the support of the

perturbation does not contain a negative real line, then, the last term becomes

zero.

Lemma 9. For any a ∈ A,

T∑
t=1

P

[
Et,a ∩ Êt,a ∩ Ẽc

t,a

]
≤ 9c2

Δ2
a

[
F−1

(
1− c2

TΔ2
a

)]2
+

c2

Δ2
a

(5.17)

This term relies on how fast the level of perturbation decreases. Specifically,

this term is bounded by the time threshold until the probability becomes smaller

than T−1. Thus,
[
F−1

(
1− c2

TΔ2
a

)]2
is the number of rounds that is required to

make P

[
Et,a ∩ Êt,a ∩ Ẽc

t,a

]
below T−1.

By combining Lemma 7, 8, and 9, the proof is completed.

5.1.5 Regret Bounds for Specific Perturbations with sub-Gaussian

Rewards

Now, from Theorem 27, we derive the regret bounds for specific distributions

including Weibull, Gaussian, Pareto, Fréchet, GEV, and logistic distribution. For

Pareto distribution, we apply simple modification made in Abernethy et al. [5],

which is called modified Pareto distribution.

123



Chapter 5. Perturbation-Based Exploration

We first introduce the regret bound of APE with Weibull and Gaussian distri-

butions which disobey ‖h‖∞ <∞.

Corollary 1. Suppose G follows Weibull distribution with a shape parameter

k < 2 with c > 0 or k = 2 with c >
√

2σ2

λ2
and a scale parameter λ > 0. Then,

the problem-dependent regret bound is

E [RT ] ≤ C

⎛
⎝∑

a �=a�

Δa +
9c2

Δa

[
ln

(
TΔ2

a

c2

)] 2
k

⎞
⎠ . (5.18)

The problem-independent regret bound is

E [RT ] =Θ
(√

KT ln(K)1/k
)
. (5.19)

The optimal rate is achieved at k = 2,

E [RT ] = Θ
(√

KT ln(K)
)
. (5.20)

Corollary 2. Suppose G follows zero-mean Gaussian distribution with a standard

deviation parameter σg > 0 with c >
√

σ2

σ2
g
. Then, the problem-dependent regret

bound is

E [RT ] ≤ C

⎛
⎝∑

a �=a�

Δa +
18c2

Δa

[
ln

(
TΔ2

a

c2

)]⎞⎠ . (5.21)

The problem-independent regret bound is

E [RT ] = Θ
(√

KT ln(K)
)
, (5.22)

where it is the optimal rate.

Corollary 1 and 2 show that our analysis scheme recovers the previous results

thoroughly for both Weibull and Gaussian perturbations in Kim and Tewari [64].

More specifically, Corollary 1 and 2 match Theorem 3 and Corollary 4 in Kim

and Tewari [64], respectively. Additionally, we introduce novel results for Pareto

and Fréchet distributions which violate the sub-Weibull property. Since hazard

rates of these distribution are bounded, ‖h‖∞ is finite. The remainder is to check

whether MF,c,σ <∞ according to Assumption 6.

124



Chapter 5. Perturbation-Based Exploration

Corollary 3. Suppose G follows a modified Pareto distribution with a shape

parameter α > 1 and a scale parameter λ ≥ α. Then, the problem-dependent

regret bound is

E [RT ] ≤ C

( ∑
a �=a�

Δa +
9c2λ2

Δa

[(
TΔ2

a

c2

) 1
α

− 1

]2)
. (5.23)

For λ2 = α, the problem-independent regret bound is

E [RT ] ≤O
(√

α1+ 4
αK1+2/αT

)
. (5.24)

The lower bound is

E [RT ] ≥Ω
(√

K1+2/αT
)
. (5.25)

The optimal rate is obtained by setting α = ln(K),

E [RT ] ≤O
(√

KT ln(K)
)
. (5.26)

Corollary 4. Suppose G follows Fréchet distribution with a shape parameter

1 < α and scale parameter λ with σ2α
2c2

≤ λ2. Then, the problem-dependent regret

bound is

E [RT ] ≤ C

⎛
⎝∑

a �=a�

Δa +
9c2λ2

Δa

[
TΔ2

a

c2

]2/α⎞⎠ . (5.27)

The problem-independent regret bound is

E [RT ] ≤ O
(√

α1+ 4
αK1+ 6

αT
)
, (5.28)

where λ2 = σ2α
2c2

. The lower bound is

E [RT ] ≥ Ω
(√

K1+ 2
αT
)
. (5.29)

The optimal rate is achieved at α = ln(K),

E [RT ] ≤ O
(√

KT ln(K)
)
. (5.30)

Interestingly, Corollary 3 tells us that using Pareto distribution also can achieve

the same nearly optimal bound. We would like to emphasize that, to the best of

125



Chapter 5. Perturbation-Based Exploration

our knowledge, this result is the first analysis of both upper and lower regret

bound of using Pareto distribution in the stochastic bandit setting. Furthermore,

we provide the problem-independent regret bound with respect to arbitrary α >

1. However, unfortunately, the lower bound does not match to the upper bound

of the Pareto distribution.

In Corollary 4, the bound tells us that APE with Fréchet distribution achieves

the near-optimal bound. Since the integral in Assumption 6 is influenced by the

parameter α and λ, the range of λ is essential to make MF,c,σ independent to α

and λ. Note that the Fréchet distribution with the optimal parameter achieves

the same optimal regret bound compared to the Gaussian perturbation in [64].

Corollary 3 and 4 also give a meaningful observation that the optimal rate is

achieved by setting α = ln(K) which is the same condition for adversarial bandit

setting in [5] and demonstrates the analogous between stochastic and adversarial

bandits. However, differently from the adversarial case [3], we should modify the

scale parameter λ. This modification is required to make MF,c,σ bounded.

Now we show the regret bound for GEV distribution which is scarcely investi-

gated under stochastic bandit setting.

Corollary 5. Suppose G follows a GEV distribution with a shape parameter of

0 ≤ ζ < 1. Then, the problem-dependent regret bound is

E [RT ] ≤ C

⎛
⎝∑

a �=a�

Δa +
9c2

ζ2Δa

[(
TΔ2

a

c2

)ζ

− 1

]2⎞⎠ . (5.31)

The problem-independent regret bound is

E [RT ] ≤ O
(√

KT lnζ
(
K2
)2
/ lnζ(K)

)
, (5.32)

where lnζ(x) :=
xζ−1
ζ . The lower bound is

E [RT ] ≥ Ω
(√

KT lnζ (K)
)
. (5.33)

126



Chapter 5. Perturbation-Based Exploration

The optimal rate is achieved at ζ = 0,

E [RT ] = Θ
(√

KT ln(K)
)
. (5.34)

The Corollary 5 can be interpreted as the generalization of a Boltzmann-

Gumbel exploration (BGE) in [29]. Furthermore, it is interesting that, for all

parameter 0 ≤ ζ ≤ 1, using GEV shows near-optimal performance O(
√
KT )

up to
lnζ(K2)

2

lnζ(K) factor and also guarantees that Gumbel distribution has the best

bound among all parameter 0 ≤ ζ ≤ 1.

All parameter settings such as F and ‖h‖∞ are summarized in the supplemen-

tary where we provide the hyperparameters which can achieve the near-optimal

bound.

5.1.6 Summary

In this chapter, we have analyzed the random perturbation method for a stochas-

tic bandit setting under sub-Gaussian rewards. We have provided the general

analysis scheme for the both upper and lower bound of the regret of heavy-tailed

perturbations under sub-Gaussian rewards. We believe that the proposed analysis

scheme is useful when designing the perturbation distribution for an online learn-

ing algorithm. Especially, our analysis scheme have made it available to analyze

the heavy-tailed perturbations, such as Pareto, Fréchet, and GEV distribution

which was not covered by the previous work [64]. The results of the Pareto and

Fréchet perturbations have provided an interesting observation in that they can

achieve the same near-optimal regret bound as the sub-Weibull perturbation un-

der sub-Gaussian reward assumption.

127



Chapter 5. Perturbation-Based Exploration

5.2 Perturbed Exploration for Heavy-Tailed Rewards

Early researches for stochastic MABs have been investigated under the sub-

Gaussian assumption on a reward distribution, which has the exponential-decaying

behavior. However, there remains a large class of distributions which are not

covered by the sub-Gaussianity and are called heavy-tailed distributions. While

there exist several methods for handling such heavy-tailed rewards [26, 136],

these methods have two main drawbacks. First, both methods utilize a class of

robust reward estimators which require the prior knowledge about the bound on

the moments of the rewards distributions, which is hardly available for practical

problems. Furthermore, the algorithm proposed in [136] requires the gap informa-

tion, which is the difference between the maximum and second-largest reward, to

balance the exploration and exploitation. These features make the previous algo-

rithms impractical since information about the bound or the gap is not accessible

in general. Second, both methods have the sub-optimal gap-independent regret

bound. Bubeck et al. [26] derive the lower bound of the regret for an arbitrary

algorithm. However, the upper regret bound of the algorithms in [26, 136] does

not match the lower regret bound. Thus, there exists a significant gap between

the upper and lower bound, which can be reduced potentially. These drawbacks

motivate us to design an algorithm which requires less prior knowledge about

rewards yet achieves an optimal efficiency.

In this section, we propose a novel p-robust estimator which does not depend

on prior information about the bound on the p-th moment p ∈ (1, 2]. Combined

with this estimator, we develop a perturbed exploration method for heavy-tailed

rewards. A perturbation-based exploration stochastically smooths a greedy policy

by adding a random perturbation to the estimated rewards and selecting a greedy

action based on the perturbed estimations; hence the distribution of the pertur-

128



Chapter 5. Perturbation-Based Exploration

bation determines the trade-off between exploration and exploitation [61, 64].

We first analyze the regret bound of general perturbation method. Notably, we

show that, if the tail probability of perturbations decays slower than the error

probability of the estimator, then the proposed analysis scheme provides both

upper and lower regret bounds. By using this general analysis scheme, we show

that the optimal regret bound can be achieved for a broad class of perturba-

tions, including Weibull, generalized extreme value, Gamma, Pareto, and Fréchet

distributions. Empirically, the p-robust estimator shows favorable performance

compared to the truncated mean and median of mean, which belong to the class

of robust estimators [26]. For MAB problems, we also show that the proposed

perturbation methods generally outperform robust UCB [26] and DSEE [136],

which is consistent with our theoretical results.

The remaining parts of this section will be explained as follows. First, we de-

rive the lower regret bound of robust UCB [26], which has the sub-optimal gap-

independent regret bound. Second, we propose novel p-robust estimator which

does not rely on prior information about the bound on the p-th moment of rewards

and prove that its tail probability decays exponentially. Third, by combining the

proposed estimator with the perturbation method, we develop a general regret

analysis scheme by revealing the relationship between regret and cumulative den-

sity function of the perturbation. Finally, we show that the proposed strategy can

achieve the optimal regret bound in terms of the number of rounds T , which is the

first algorithm achieving the minimax optimal rate under heavy-tailed rewards.

Stochastic Multi-Armed Bandits with Heavy Tailed Rewards We con-

sider a stochastic multi-armed bandit problem defined as a tuple (A, {ra}) where

A is a set of K actions, and ra ∈ [0, 1] is a mean reward for action a. For each

129



Chapter 5. Perturbation-Based Exploration

round t, the agent chooses an action at based on its exploration strategy and,

then, get a stochastic reward: Rt,a := ra + εt,a where εt,a is an independent and

identically distributed noise with E [εt,a] = 0 for all t and a. Note that ra and

εt,a are called the mean of reward and the noise of reward, respectively. ra is

generally assumed to be unknown. Then, the goal of the agent is to minimize the

cumulative regret over total rounds T , defined as

RT :=
T∑
t=1

ra� − Ea1:t [rat ] ,

where a� := argmaxa∈A ra. The cumulative regret over T represents the perfor-

mance of an exploration strategy. The smaller RT , the better exploration perfor-

mance. To analyze RT , we consider the heavy-tailed assumption on noises whose

p-th moment is bounded by a constant νp where p ∈ (1, 2], i.e., E|Rt,a|p ≤ νp for

all a ∈ A. Without loss of generality, we regard p as the maximal order of the

bounded moment, because, if the p-th moment is finite, then the moment with

lower order is also finite automatically.

In this section, we analyze both gap-dependent and gap-independent regret

bounds. The gap-dependent bound is the upper regret bound depending on the

gap information Δa := ra� − ra for a �= a� and, on the contrary, the gap-

independent bound is the upper regret bound independent of the gap.

5.2.1 Related Work

While various researches [117, 81, 93] have investigated heavy-tailed reward set-

ting, they focused on variants of the MAB such as stochastic linear contex-

tual bandit [117], Lipschitz bandit [81], or ε contaminated bandit [93]. In this

paper, we focus on a conventional MAB problem and provide an optimal al-

gorithm with respect to T . In a conventional MAB setting, few methods have

130



Chapter 5. Perturbation-Based Exploration

handled heavy-tailed distributions [26, 136, 29, 60]. Bubeck et al. [26] have pro-

posed robust UCB by employing a confidence bound of a class of robust esti-

mators. Note that this class contains the truncated mean and the median of

mean for p ∈ (1, 2] and Catoni’s M estimator for p = 2. Under these assump-

tions on rewards and estimators, robust UCB achieves the gap-dependent bound

O
(∑

a ln(T )/Δ
1/(p−1)
a +Δa

)
and gap-independent boundO

(
(K ln(T ))1−1/pT 1/p

)
.

However, to achieve this regret bound and to define a confidence bound of the

robust estimator, prior knowledge of the bound of moments νp is required. This

condition restricts the practical usefulness of robust UCB since νp is not accessible

for many MAB problems. Furthermore, while it is proved that the lower regret

bound of the MAB with heavy-tailed rewards is Ω(K1−1/pT 1/p), the upper regret

bound of robust UCB has an additional factor of ln(T )1−1/p. A similar restriction

also appears in [136]. Vakili et al. [136] have proposed a deterministic sequencing

of exploration and exploitation (DSEE) by exploring every action uniformly with

a deterministic sequence. It is shown that DSEE has the gap-dependent bound

O(ln(T )), but, its result holds when νp and the minimum gap mina∈AΔa are

known as prior information.

The dependence on νp was first removed in [29] for p = 2. Cesa-Bianchi et al.

[29] have proposed a robust estimator by modifying the Catoni’sM estimator and

employed the Boltzmann-Gumbel exploration (BGE) with the robust estimator.

In BGE, a Gumbel perturbation is used to encourage exploration instead of using

a confidence bound of the robust estimator. One interesting observation is that the

robust estimator proposed in [29] has a weak tail bound, whose error probability

decays slower than that of Catoni’s M estimator [28]. However, BGE achieved

gap-dependent bound O
(∑

a ln(TΔ
2
a)

2/Δa +Δa

)
and gap-independent bound

O(
√
KT ln(K)) for p = 2. While ln(K) factor remains, BGE has a better bound

131



Chapter 5. Perturbation-Based Exploration

than robust UCB in terms of T when p = 2. Kagrecha et al. [60] also tried to

remove the dependency on νp for p ∈ (1, 2] by proposing a generalized successive

rejects (GSR) method. While GSR does not depend on any prior knowledge of

the reward distribution, however, GSR only focuses on identifying the optimal

arm, also known as pure exploration [25], rather than minimizing the cumulative

regret. Hence, GSR lose much reward during the learning process.

5.2.2 Sub-Optimality of Robust Upper Confidence Bounds

In this section, we discuss the sub-optimality of robust UCB [26] by showing the

lower bound of robust UCB. The robust UCB employs a class of robust estimators

which satisfies the following assumption.

Assumption 5. Let {Yk}∞k=1 be i.i.d. random variables with the finite p-th mo-

ment for p ∈ (1, 2]. Let νp be a bound of the p-th moment and y be the mean of

Yk. Assume that, for all δ ∈ (0, 1) and n number of observations, there exists an

estimator Ŷn(η, νp, δ) with a parameter η such that

P

(
Ŷn > y + ν1/pp

(
η ln(1/δ)

n

)1−1/p
)
≤ δ,

P

(
y > Ŷn + ν1/pp

(
η ln(1/δ)

n

)1−1/p
)
≤ δ.

This assumption naturally provides the confidence bound of the estimator Ŷn.

Bubeck et al. [26] provided several examples satisfying this assumption, such as

truncated mean, median of mean, and Catoni’s M estimator. These estimators

essentially require νp to define Ŷn. Furthermore, δ should be predefined to bound

the tail probability of Ŷn by δ. By using this confidence bound, at round t, robust

UCB selects an action based on the following strategy,

at := argmax
a∈A

{
r̂t−1,a + ν1/pp

(
η ln(t2)/nt−1,a

)1−1/p
}

(5.35)

132



Chapter 5. Perturbation-Based Exploration

where r̂t−1,a is an estimator which satisfies Assumption 7 with δ = t−2 and nt−1,a

denotes the number of times a ∈ A have been selected. We first show that there

exists a multi-armed bandit problem for which strategy (F.1) has the following

lower bound of the expected cumulative regret.

Theorem 28. There exists a K-armed stochastic bandit problem for which the re-

gret of robust UCB has the following lower bound, for T > max

(
10,

[
ν

1
(p−1)

η(K−1)

]2)
,

E[RT ] ≥ Ω
(
(K ln(T ))1−1/p T 1/p

)
. (5.36)

The proof is done by constructing a counterexample which makes robust UCB

have the lower bound (5.36) and the entire proof can be found in the supple-

mentary material. Unfortunately, Theorem 28 tells us that the sub-optimal fac-

tor ln(T )1−1/p cannot be removed and robust UCB has the tight regret bound

Θ
(
(K ln(T ))1−1/p T 1/p

)
since the lower bound of (5.36) and upper bound in [26]

are matched up to a constant. This sub-optimality is our motivation to design a

perturbation-based exploration with a new robust estimator. Now, we discuss how

to achieve the optimal regret bound O
(
T 1/p

)
by removing the factor ln(T )1−1/p.

5.2.3 Adaptively Perturbed Exploration with A p-Robust Esti-

mator

In this section, we propose a novel robust estimator whose error probability decays

exponentially fast when the p-th moment of noises is bounded for p ∈ (1, 2].

Furthermore, we also propose an adaptively perturbed exploration with a p-robust

estimator (APE2). We first define a new influence function ψp(x) as:

ψp(x) := ln (bp|x|p + x+ 1) I[x ≥ 0]− ln (bp|x|p − x+ 1) I[x < 0] (5.37)

where bp :=
[
2 ((2− p)/(p− 1))1−2/p + ((2− p)/(p− 1))2−2/p

]−p/2
and I is an

indicator function. Note that ψp(x) generalizes the original influence function

133



Chapter 5. Perturbation-Based Exploration

proposed in [28]. In particular, when p = 2, the influence function in [28] is

recovered. Using ψp(x), a novel robust estimator can be defined as the following

theorem.

Theorem 29. Let {Yk}∞k=1 be i.i.d. random variables sampled from a heavy-tailed

distribution with a finite p-th moment, νp := E |Yk|p, for p ∈ (1, 2]. Let y := E [Yk]

and define an estimator as

Ŷn :=
c

n1−1/p
·
n∑
k=1

ψp

(
Yk
cn1/p

)
(5.38)

where c > 0 is a constant. Then, for all ε > 0,

P

(
Ŷn > y + ε

)
≤ exp

(
−n

p−1
p ε

c
+
bpνp
cp

)
, (5.39)

P

(
y > Ŷn + ε

)
≤ exp

(
−n

p−1
p ε

c
+
bpνp
cp

)
. (5.40)

The entire proof can be found in the supplementary material. The proof is

done by employing the Chernoff-bound and the fact that − ln (bp|x|p − x+ 1) ≤

ψp(x) ≤ ln (bp|x|p + x+ 1) where the definition of bp makes the inequalities hold.

Intuitively speaking, since the upper (or lower, resp.) bound of ψp increases (or

decreases, resp.) sub-linearly, the effect of large noise is regularized in (5.38). We

would like to note that the p-robust estimator is defined without using νp and its

error probability decays exponentially fast for a fixed ε. Compared to Assumption

7, the confidence bound of (5.38) is looser than Assumption 7 for a fixed δ. The

inequalities in Theorem 29 can be restated as

P

⎛
⎝Ŷn > y + c

ln
(
exp(bpνp/cp)

δ

)
n1−1/p

⎞
⎠ ≤ δ

and

P

⎛
⎝y > Ŷn + c

ln
(
exp(bpνp/cp)

δ

)
n1−1/p

⎞
⎠ ≤ δ

134



Chapter 5. Perturbation-Based Exploration

for all δ ∈ (0, 1). Hence, the confidence bound of (5.38) is wider (and looser) than

Assumption 7 since ln(1/δ) > ln(1/δ)1−1/p. In addition, the proposed estimator

does not depends on ε (or δ) while Assumption 7 requires that δ is determined

before defining Ŷn(η, νp, δ).

Interestingly, we can observe that the p-robust estimator of Theorem 29 can

recover Cesa’s estimator [29] when p = 2. Thus, the proposed estimator extends

the estimator of [29] to the case of 1 < p ≤ 2. We clarify that the estimator (5.38)

extends Cesa’s estimator but not Catoni’s M estimator. While both estimators

employ the influence function ψ2(x) when p = 2, Catoni’s M estimator follows

the Assumption 7 but not Theorem 29 since it requires prior information about δ

and νp. Hence, the propose estimator dose not generalizes Catoni’s M estimator.

Now, we propose an Adaptively Perturbed Exploration method with a p-

robust Estimator (APE2), which combines the estimator (5.38) with a pertur-

bation method. We also derive a regret analysis scheme for general perturbation

methods. In particular, we find an interesting relationship between the cumula-

tive density function (CDF) of the perturbation and its regret bound. Let F be

a CDF of perturbation G defined as F (g) := P(G < g). We consider a random

perturbation with unbounded support, such as (0,∞) or R. Using F and the

proposed robust estimator, APE2 chooses an action for each round t based on

the following rule,

at := argmax
a∈A

r̂t−1,a + βt−1,aGt,a, βt−1,a :=
c

(nt−1,a)1−1/p
, (5.41)

where nt,a is the number of times a has been selected and Gt,a is sampled from

F . The entire algorithm is summarized in Algorithm 6.

135



Chapter 5. Perturbation-Based Exploration

Algorithm 6 Adaptively Perturbed Exploration with a p-robust estimator

(APE2)

Require: c, T , and F−1(y)

1: Initialize {r̂0,a = 0, n0,a = 0}, select a1, · · · , aK and receive R1,a1
, · · · ,RK,aK

once

2: for t = K + 1, · · · , T do

3: for ∀a ∈ A do

4: βt−1,a ← c/ (nt,a)
1−1/p

and Gt,a ← F−1(u) with u ∼ Uniform(0, 1)

5: r̂t−1,a ← c/ (nt,a)
1−1/p ·∑t−1

k=1 I [ak = a]ψp

(
Rk,a/(c · (nt,a)1/p)

)
6: end for

7: Choose at = argmaxa∈A{r̂t−1,a + βt−1,aGt,a} and receive Rt,at

8: end for

5.2.4 General Regret Bound for Heavy-Tailed Rewards

We propose a general regret analysis scheme which provides the upper bound

and lower bound of the regret for APE2 with a general F (x). We introduce some

assumptions on F (x), which are sufficient conditions to bound the cumulative

regret.

Assumption 6. Let h(x) := d
dx log(1 − F (x))−1 be a hazard rate. Assume that

the CDF F (x) satisfies the following conditions,

• F is log-concave, F (0) ≤ 1/2, and there exists a constant CF s.t.∫ ∞

0

h(x) exp (−x)
1− F (x) dx ≤ CF <∞.

• If h is bounded, i.e., supx∈dom(h) h(x) < ∞, then, the condition on CF is

reduced to the existence of a constant MF such that
∫∞
0

exp(−x)
1−F (x) dx ≤MF <

∞ where CF ≤ suph ·MF .

The condition F (0) ≤ 1/2 indicates that the half of probability mass must be

assigned at positive perturbation G > 0 to make the perturbation explore under-

136



Chapter 5. Perturbation-Based Exploration

estimated actions due to the noises. Similarly, the bounded integral condition is

required for overcoming heavy-tailed noises of reward. Note that the error bound

of our estimator follows P(Ŷn − y > x) ≤ C exp
(
−n1−1/px/c

)
≤ C exp (−x) for

n > cp/(p−1) where C > 0 is a some constant in Theorem 29. From this observa-

tion, the bounded integral condition can be interpreted as∫ ∞

0

h(x)P(Ŷn − Y > x)

P(G > x)
dx < C

∫ ∞

0

h(x) exp (−x)
1− F (x) dx <∞ (5.42)

Hence, if the bounded integral condition holds, then, the integral of the ratio

between the error probability and tail probability of the perturbation is also

bounded. This condition tells us that the tail probability of perturbation must

decrease slower than the estimator’s tail probability to overcome the error of

the estimator. For example, if the estimator misclassifies an optimal action due

to the heavy-tailed noise, to overcome this situation by exploring other actions,

the sampled perturbation Gt,a must be greater than the sampled noise εt,a. Oth-

erwise, the perturbation method keeps selecting the overestimated sub-optimal

action. Finally, the log-concavity is required to derive the lower bound. Based on

Assumption 6, we can derive the following regret bounds of the APE2.

Theorem 30. Assume that the p-th moment of rewards is bounded by a constant

νp < ∞, r̂t,a is a p-robust estimator of (5.38) and F (x) satisfies Assumption 6.

Then, E [RT ] of APE
2 is bounded as

E [RT ] ≤ O

( ∑
a �=a�

Cp,νp,F

Δ
1

p−1
a

+
(6c)

p
p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

+
(3c)

p
p−1

Δ
1

p−1
a

[
F−1

(
1− c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

+Δa

)

where [x]+ := max(x, 0), Cp,νp,F > 0 is a constant independent of T .

The proof consists of three parts. Similarly to [7, 29], we separate the regret

into three partial sums and derive each bound. The first term is caused by an

137



Chapter 5. Perturbation-Based Exploration

overestimation error of the estimator. The second term is caused due to an un-

derestimation error of the perturbation. When the perturbation has a negative

value, the perturbation makes the reward under-estimated and, hence, this event

causes a sub-optimal decision. The third term is caused by an overestimation

error due to the perturbation. One interesting result is that the regret caused

by the estimation error is bounded by Cc,p,νp,F /Δ
1/(p−1)
a . The error probability

of the proposed estimator decreases exponentially fast and this fact makes the

regret caused by the estimation error is bounded by a constant, which does not

depend on T . The constant Cc,p,νp,F is determined by the bounded integral con-

dition. The lower bound of APE2 is derived by constructing a counterexample as

follows.

Theorem 31. For 0 < c < K−1
K−1+2p/(p−1) and T ≥ c1/(p−1)(K−1)

2p/(p−1)

∣∣F−1
(
1− 1

K

)∣∣p/(p−1)
,

there exists a K-armed stochastic bandit problem where the regret of APE2 is lower

bounded by

E[RT ] ≥ Ω
(
K1−1/pT 1/pF−1 (1− 1/K)

)
.

The proof is done by constructing the worst case bandit problem whose rewards

are deterministic. When the rewards are deterministic, no exploration is required,

but, APE2 unnecessarily explores sub-optimal actions due to the perturbation.

In other words, the lower bound captures the regret of APE2 caused by useless

exploration. Note that both of the upper and lower bounds are highly related to

the inverse CDF F−1. In particular, its tail behavior is a crucial factor of the

regret bound when T goes to infinity.

The perturbation-based exploration is first analyzed in [64] under sub-Gaussian

reward assumption. Kim and Tewari [64] have provided the regret bound of a

family of sub-Weibull perturbations and that of all perturbations with bounded

support for sub-Gaussian rewards. Our analysis scheme extends the framework

138



Chapter 5. Perturbation-Based Exploration

of [64] into two directions. First, we weaken the sub-Gaussian assumption to the

heavy-tailed rewards assumption. Second, our analysis scheme includes a wider

range of perturbations such as weibull, GEV, Gamma, Pareto, and Fréchet.

5.2.5 Regret Bounds for Specific Perturbations with Heavy-Tailed

Rewards

The upper and lower regret bounds of various perturbations such as weibull,

GEV, Gamma, Pareto, and Fréchet are introduced in the following corollaries.

Corollary 6. Suppose G follows a Weibull distribution with a parameter k ≤ 1

with λ > 1 with c > 0. Then, the problem dependent regret bound is

E [RT ] ≤ O

⎛
⎜⎝∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+

(
(3cλ)p

Δa

) 1
p−1

⎡
⎣ln
⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠
⎤
⎦

p
k(p−1)

+Δa

⎞
⎟⎠ .

The problem independent regret bound is, E [RT ] = Θ
(
λ

p
p−1K

1− 1
pT

1
p ln (K)

1
k

)
.

The minimum rate is achieved at k = 1, E [RT ] = Θ
(
K

1− 1
pT

1
p ln (K)

)
.

Corollary 7. Suppose G follows a generalized extreme value distribution with a

parameter with 0 ≤ ζ < 1 and λ > 1. Then, the problem dependent regret bound

is

E [RT ] ≤ O

⎛
⎜⎝∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+ 2

(
(6cλ)p

Δa

) 1
p−1

lnζ

⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

+Δa

⎞
⎟⎠ .

Let lnζ(x) :=
xζ−1
ζ , then, the problem independent regret bound is

Ω
(
K

1− 1
pT

1
p lnζ (K)

)
≤ E [RT ] ≤ O

⎛
⎜⎝K1− 1

pT
1
p

lnζ

(
K

2p−1
p−1

) p
p−1

lnζ(K)
1

p−1

⎞
⎟⎠ .

The minimum rate is achieved at ζ = 0, E [RT ] = Θ
(
K

1− 1
pT

1
p ln (K)

)
.

139



Chapter 5. Perturbation-Based Exploration

Corollary 8. Suppose G follows a Gamma distribution with a parameter α ≥ 1

and λ ≥ 1. Then, the problem dependent regret bound is

E [RT ] ≤ O

⎛
⎜⎝∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+

(
(3λαc)p

Δa

) 1
p−1

ln

⎛
⎝αTΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

+Δa

⎞
⎟⎠ .

(5.43)

The problem independent regret bound is

Ω
(
λK

1− 1
pT

1
p ln(K)

)
≤ E [RT ] ≤O

⎛
⎜⎝(λα)

1
p−1 cK

1− 1
pT

1
p

ln
(
αK

1+ p
p−1

) p
p−1

ln(K)
1

p−1

⎞
⎟⎠ .

(5.44)

The minimum rate is achieved at α = 1, E [RT ] = Θ
(
K

1− 1
pT

1
p ln(K)

)
.

Corollary 9. Suppose G follows a Pareto distribution with a parameter α > p2

p−1

and λ ≥ α. Then, the problem dependent regret bound is

E [RT ] ≤ O

⎛
⎜⎝∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+

(
(3λc)p

Δa

) 1
p−1

⎡
⎣TΔ p

p−1
a

c
p

p−1

⎤
⎦

p
α(p−1)

+Δa

⎞
⎟⎠ . (5.45)

For λ = α, the problem independent regret bound is

Ω
(
αK

1− 1
p
+ 1

αT
1
p

)
≤ E [RT ] ≤O

(
α
1+ p2

α(p−1)2K
1− 1

p
+ 1

α(p−1)T
1
p

)
. (5.46)

For K > exp
(
p2

p−1

)
, the minimum rate is achieved at α = ln(K), E [RT ] =

Θ
(
K

1− 1
pT

1
p ln(K)

)
.

Corollary 10. Suppose G follows a Fréchet distribution with a parameter with

α > p2

p−1 and λ ≥ α. Then, the problem dependent regret bound is

E [RT ] ≤ O

⎛
⎜⎝∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+

(
(3cλ)p

Δa

) 1
p−1

⎡
⎣TΔ p

p−1
a

c
p

p−1

⎤
⎦

p
α(p−1)

+Δa

⎞
⎟⎠ . (5.47)

140



Chapter 5. Perturbation-Based Exploration

For λ = α, the problem independent regret bound is

Ω
(
αK

1− 1
p
+ 1

αT
1
p

)
≤ E [RT ] ≤ O

(
α
1+ p2

α(p−1)2K
1− 1

p
+ p2

α(p−1)2 T
1
p

)
. (5.48)

For K > exp
(
p2

p−1

)
, the minimum rate is achieved at α = ln(K), E [RT ] =

Θ
(
K

1− 1
pT

1
p ln(K)

)
.

We analyze the regret bounds of various perturbations includingWeibull, Gamma,

Generalized Extreme Value (GEV), Pareto, and Fréchet distributions. We first

compute the gap-dependent regret bound using Theorem 30 and compute the

gap-independent bound based on the gap-independent regret bound. We intro-

duce corollaries of upper and lower regret bounds for each perturbation and also

provide specific parameter settings to achieve the minimum gap-independent re-

gret bound. From Table 5.1, we can observe that all perturbations we consider

have the same gap-independent bound Θ
(
K1−1/pT 1/p ln(K)

)
while their gap-

dependent bounds are different. Hence, the proposed method can achieve the

O(T 1/p) with respect to T under heavy-tailed reward assumption, while the up-

per bound has the sub-optimal factor of ln(K) which caused by F−1(1 − 1/K)

of the general lower bound. However, we emphasize that K is finite and T is

much bigger than K in many cases, thus, ln(K) can be ignorable as T increases.

For all perturbations, the gap-dependent bounds in Table 5.1 are proportional to

two common factors Ac,λ,a := ((3cλ)p/Δa)
1

p−1 and Bc,a := (Δa/c)
p/(p−1) where

Δa = ra� − ra and c is a constant in βt,a. Note that, if Δa is sufficiently small

or c is sufficiently large, Ac,λ,a is the dominant term over Bc,a. We can see that

the gap-dependent bounds increase as Δa decreases since Ac,λ,a is inversely pro-

portional to Δa. Similarly, as c increases, the bounds also increase. Intuitively

speaking, the less Δa, the more exploration is needed to distinguish an optimal

action from sub-optimal actions and, thus, the upper bound increases. Similarly,

141



Chapter 5. Perturbation-Based Exploration

D
ist.

o
n
G

P
ro
b
.
D
ep

.
B
n
d
.
O
(·)

P
ro
b
.
In
d
ep

.
B
n
d
.
O
(·)

L
ow

.
B
n
d
.
Ω
(·)

O
p
t.

P
a
ra
m
s.

O
p
t.

B
n
d
.
Θ
(·)

W
eib

u
ll

∑
a�=

a
�
A

c
,λ

,a
(ln

(B
c
,a
T
))

p
k
(
p−

1
)

C
K

,T
ln

(K
)

1k
C

K
,T

ln
(K

)
k
=

1
,λ

≥
1

K
1−

1
/
pT

1
/
p
ln

(K
)

G
a
m
m
a

∑
a�=

a
�
A

c
,λ

,a
α
p
/
(p−

1
)
ln

(B
c
,a
T
)
p
/
(p−

1
)

C
K

,T
ln(

α
K

1
+

p
/
(
p−

1
))

p
/
(
p−

1
)

ln
(K

)
1

p−
1

C
K

,T
ln

(K
)

α
=

1
,λ

≥
1

G
E
V

∑
a�=

a
�
A

c
,λ

,a
ln

ζ
(B

c
,a
T
)
p
/
(p−

1
)

C
K

,T

ln
ζ (

K
2
p−

1
p−

1 )
p
/
(
p−

1
)

ln
ζ
(K

)
1

p−
1

C
K

,T
ln

ζ
(K

)
ζ
=

0
,λ

≥
1

P
a
reto

∑
a�=

a
�
A

c
,λ

,a
[B

c
,a
T
]

p
α
(
p−

1
)

C
K

,T
α
1
+

p
2

α
(
p−

1
)
2
K

1
α
(
p−

1
)

C
K

,T
α
K

1α
α
=

λ
=

ln
(K

)

F
réch

et
∑

a�=
a
�
A

c
,λ

,a
[B

c
,a
T
]

p
α
(
p−

1
)

C
K

,T
α
1
+

p
2

α
(
p−

1
)
2
K

1
α
(
p−

1
)

C
K

,T
α
K

1α
α
=

λ
=

ln
(K

)

T
a
b
le

5
.1
:
R
eg
ret

B
o
u
n
d
s
o
f
V
a
rio

u
s
P
ertu

rb
a
tio

n
s.

D
ist.

m
ea
n
s
a
d
istrib

u
tio

n
,
P
ro
b
.
D
ep

.
(o
r
In
d
ep

.)
B
n
d
.
in
d
ica

tes

a
g
a
p
-d
ep

en
d
en
t
(o
r
in
d
ep

en
d
en
t)

b
o
u
n
d
,
L
ow

.
B
n
d
.
m
ea
n
s
a
low

er
b
o
u
n
d
,
O
p
t.
P
ara

m
s.
in
d
ica

tes
op

tim
a
l
p
a
ra
m
eters

to
a
ch
iev

e
a
n
o
p
tim

a
l
b
o
u
n
d
,
a
n
d
O
p
t.

B
n
d
.
in
d
ica

tes
th
e
o
p
tim

a
l
b
o
u
n
d
.
O
(·)

is
an

u
p
p
er

b
ou

n
d
,
Ω
(·)

is
a
low

er

b
o
u
n
d
,
a
n
d
Θ
(·)

is
a
tig

h
t
b
o
u
n
d
,
resp

ectively.
F
or

th
e
sim

p
licity

of
th
e
n
o
ta
tio

n
,
w
e
d
efi

n
e
A
c,λ
,a
:=

((3cλ
)
p/
Δ
a )

1
p−

1,

B
c,a

:=
(Δ

a /
c)
p
/
(p−

1
),
a
n
d
C
K
,T

:=
K

1−
1
/
pT

1
/
p.

142



Chapter 5. Perturbation-Based Exploration

increasing the parameter c leads to more exploration since the magnitude of βt,a

increases. Hence, the upper bound increases.

From Table 5.1, we can categorize the perturbations based on the order of the

gap-dependent bound with respect to T . The gap-dependent bound of Weibull

and Gamma shows the logarithmic dependency on T while that of Pareto and

Fréchet has the polynomial dependency on T . The gap-dependent regret bound of

GEV shows the polynomial dependency since lnζ(T ) is a polynomial of T , but, for

ζ = 0, it has the logarithmic dependency since lnζ(T )|ζ=0 = ln(T ). Furthermore,

both Pareto and Fréchet distributions have the same regret bound since their

F−1(x) has the same upper and lower bounds. For gap-independent bounds, all

perturbations we consider achieve the optimal rate O(T 1/p), but, the extra term

dependent on K appears. Similarly to the case of the gap-dependent bounds, the

sub-optimal factor of Weibull, Gamma, and GEV perturbations is proportional

to the polynomial of ln(K), while that of Pareto and Fréchet is proportional to

the polynomial of K.

Compared to robust UCB, all perturbation methods have better gap-independent

bound, but, the superiority of the gap-dependent bound can vary depending

on Δa. In particular, the gap-dependent bound of Weibull, Gamma, and GEV

(ζ = 0) follows ln(Δ
p/(p−1)
a T )p/(p−1)/Δ

1/(p−1)
a while that of robust UCB follows

ln(T )p/(p−1)/Δ
1/(p−1)
a . Hence, if Δa is large, then, ln(T ) dominates ln(Δ

p/(p−1)
a )

and it leads that robust UCB can have a smaller regret bound since ln(T ) <

ln(T )p/(p−1). On the contrary, if Δa is sufficiently small, Weibull, Gamma, and

GEV (ζ = 0) perturbations can have a smaller regret bound than robust UCB

since ln(Δ
p/(p−1)
a ) is a negative value for Δa � 1 and reduces the regret bound

of the perturbation methods dominantly. This property makes it available that

perturbation methods achieve the optimal minimax regret bound with respect to

143



Chapter 5. Perturbation-Based Exploration

T while robust UCB has the sup-optimal gap-independent bound.

5.2.6 Experiments

Convergence of Estimator We compare the p-robust estimator with other

estimators including truncated mean, median of mean, and sample mean. To make

a heavy-tailed noise, we employ a Pareto random variable zt with parameters αε

and λε. Then, a noise is defined as εt := zt − E[zt] to make the mean of the

noise zero. In simulation, we set a true mean y = 1 and Yt = y + εt is observed.

We measure the error |Ŷt − y|. Note that, for all p < αε, the bound on the p-th

moment is given as νp ≤ |1−E[zt]|p+αελ
p
ε/(αε− p). Hence, we set αε = p+0.05

to bound the p-th moment. We conduct the simulation for p = 1.1, 1.5, 1.9 with

λε = 1.0 and for p = 1.1, we run an additional simulation with λε = 0.1. The

entire results are shown in Fig. 5.1.

From Fig. 5.1(a), 5.1(b), 5.1(c), and 5.1(d), we can observe the effect of p. Since

the smaller p, the heavier the tail of noise, the error of all estimators increases as p

decreases when the same number of data is given. Except for the median of mean,

robust estimators show better performance than a sample mean. In particular, for

p = 1.9, 1.5, 1.1 with λε = 1.0, the proposed method shows the best performance.

For p = 1.1 with λε = 0.1, the proposed method shows a comparable accuracy

to the truncated mean even if our method does not employ the information of

νp. From Fig. 5.1(c) and 5.1(d), we can observe the effect of νp for fixed p = 1.1.

As λε decreases, νp decreases. When λε = 0.1, since the truncated mean employs

νp, the truncated mean shows better performance than the proposed estimator,

but, the proposed estimator shows comparable performance even though it does

not employ νp. We emphasize that these results show the clear benefit of the

proposed estimator since our estimator does not employ νp, but, generally show

144



Chapter 5. Perturbation-Based Exploration

(a) p = 1.9, λε = 1.0 (b) p = 1.5, λε = 1.0

(c) p = 1.1, λε = 1.0 (d) p = 1.1, λε = 0.1

Figure 5.1: Error of Robust Estimators with Pareto Noises. p is the maximum

order of the bounded moment. λε is a scale parameter of the noise. The lower p

or the larger λε, the heavier the tail of noise. The solid line is an averaged error

over 60 runs and a shaded region shows a quarter standard deviation.

faster convergence speed.

Multi-Armed Bandits with Heavy-Tailed Rewards We compare APE2

with robust UCB [26] and DSEE [136]. Note that an empirical comparison with

GSR [60] is omitted here and can be found in the supplementary material since

GSR shows poor performance in terms of the cumulative regret as mentioned

in Section 6.1.3. For APE2, we employ the optimal hyperparameter of perturba-

tions shown in Table 5.1. Note that GEV with ζ = 0 is a Gumbel distribution and

Gamma with α = 1 (or Weibull with k = 1) is an Exponential distribution and

λ of Gumbel and Exponential is set to be one. Thus, we compare four perturba-

145



Chapter 5. Perturbation-Based Exploration

(a) p = 1.5,Δ = 0.8 (b) p = 1.5,Δ = 0.3

(c) p = 1.5,Δ = 0.1 (d) p = 1.1,Δ = 0.1

Figure 5.2: Time-Averaged Cumulative Regret. p is the maximum order of the

bounded moment of noises. Δ is the gap between the maximum and second best

reward. For p = 1.5, λε = 1.0 and for p = 1.1, λε = 0.1. The solid line is

an averaged error over 40 runs and a shaded region shows a quarter standard

deviation.

tions: Gumbel, Exponential, Pareto, and Fréchet. For APE2 and DSEE, the best

hyperparameter is found by using a grid search. For robust UCB, since the orig-

inal robust UCB consistently shows poor performance, we modify the confidence

bound by multiplying a scale parameter c and optimize c using a grid search. Fur-

thermore, robust UCB employ the truncated mean estimator since the median of

mean shows poor performance for the previous simulation. All hyperparameters

can be found in the supplementary material. We synthesize a MAB problem that

146



Chapter 5. Perturbation-Based Exploration

has a unique optimal action and all other actions are sub-optimal. The optimal

mean reward is set to one and 1−Δ is assigned for the sub-optimal actions where

Δ ∈ (0, 1] determines a gap. By controlling Δ, we can measure the effect of the

gap. Similarly to the previous simulation, we add a heavy-tailed noise using the

Pareto distribution. We prepare six simulations by combining Δ = 0.1, 0.3, 0.8

and p = 1.5, p = 1.1. A scale parameter λε of noise is set to be 0.1 for p = 1.1 and

1.0 for p = 1.5, respectively. We measure the time averaged cumulative regret,

i.e., Rt/t, for 40 trials.

The selective results are shown in Fig. 5.2 and all results can be found in

the supplementary material. First, the perturbation methods generally outper-

form robust UCB. For p = 1.5 and Δ = 0.8, from Fig. 5.2(a), we can observe

that all methods converge rapidly at a similar rate. While perturbation meth-

ods show better results, performance difference between robust UCB and per-

turbation methods is marginal. However, when Δ is sufficiently small such as

Δ = 0.3, 0.1, Fig. 5.2(b) and 5.2(c) show that perturbation methods significantly

outperform robust UCB. In particular, Gumbel and Exponential perturbations

generally show better performance than other perturbations. We believe that the

results on Δ support the gap-dependent bound of Table 5.1. As mentioned in

Section 5.2.5, when Δ decreases, Gumbel and Exponential perturbations show a

faster convergence speed than robust UCB. In addition, Fig. 5.2(d) empirically

proves the benefit of the perturbation methods. For p = 1.1 with λε = 0.1, Fig.

5.1(d) shows that the proposed estimator converges slightly slower than the trun-

cated mean, however, in the MAB setting, APE2 convergences significantly faster

than robust UCB as shown in Fig. 5.2(d). From this observation, we can conclude

that perturbation methods more efficiently explore an optimal action than robust

UCB despite of the weakness of the proposed estimator for p = 1.1. Unlikely to

147



Chapter 5. Perturbation-Based Exploration

other methods, DSEE consistently shows poor performance. While APE2 and

robust UCB can stop exploring sub-optimal actions if confidence bound or βt,a

is sufficiently reduced, DSEE suffers from the lack of adaptability since DSEE is

scheduled to choose every action uniformly and infinitely.

5.2.7 Summary

We have proposed novel p-robust estimator which can handle heavy-tailed noise

distributions which does not require prior knowledge about the bound on the p-th

moment of rewards. By using the proposed estimator, we also proposed an adap-

tively perturbed exploration with a p-robust estimator (APE2) and proved that

APE2 has better regret bound than robust UCB. In simulations, we empirically

show that the proposed estimator outperforms the existing robust estimators and

APE2 outperforms robust UCB when the gap is small. We have theoretically and

empirically demonstrated that APE2 can overcome rewards that are corrupted

by heavy-tailed noises, making APE2 an appropriate solution for many practi-

cal problems, such as online classification, online learning of a recommendation

system, and reinforcement learning.

148



Chapter 6

Inverse Reinforcement

Learning with Negative

Demonstrations

Reinforcement learning (RL) has been widely used to learn behaviors to perform

complex tasks in robotics [68]. RL aims to find the optimal behavior which maxi-

mizes the expected sum of rewards during the execution phase. A reward function

indicates the one step performance measure about each control at each situation.

In order to successfully learn a desirable behavior, the reward function must be

elaborately designed to express the given task.

However, in some tasks such as driving a car [1], inverted helicopter flight[2],

and socially adaptive path planning [65], it is difficult to design a proper reward

function that accurately generates the desired behaviors. It is more natural to

learn the desirable behaviors performing such tasks by imitating expert’s demon-

strations. This problem of extracting the underlying reward function from a se-

quence of demonstrations is often called inverse reinforcement learning (IRL)[92]

149



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

or inverse optimal control (IOC) [10]. IRL aims to find the reward function which

best explains demonstrations by experts. A key assumption of IRL is that experts

follow the optimal policy induced by the underlying reward function, hence, the

main idea of solving IRL is to find a reward function that makes experts’ behav-

iors (near) optimal. The reward function learned by IRL is further used to obtain

the desired behaviors by solving a usual reinforcement learning problem.

Since demonstrations of experts are often distributed near high reward regions,

the resulting reward function learned by IRL cannot approximate low reward re-

gions accurately. This phenomenon was intensively investigated in [109, 108]. The

authors argued that the lack of demonstrations of what to do in the critical situ-

ations will lead to unsatisfactory performance or fatal failure. For example, when

learning how to drive, an autonomous vehicle occasionally encounters a risky sit-

uation, e.g. heading towards the side of the road. In order to avoid a catastrophic

situation, the autonomous vehicle should recover back to the center of the road.

However, such recovery behavior rarely appears in demonstrations from a good

driver. In [109], Ross and Bargnell tackled this problem via continuous interaction

with experts. However, it is not practical to rely on experts frequently.

To handle lack of demonstrations near low reward regions, we incorporate

demonstrations about both what to do and what not to do. As demonstrations

about what not to do will be often distributed near low reward regions, we can ob-

tain information to avoid catastrophic failures from such demonstrations. Demon-

strations of failures had been considered before. In [118], a reward function was

modeled as a linear combination of features and a policy was learned by mak-

ing the learned policy maximally different from the failed demonstrations using

maximum entropy IRL [152]. However, since the notion of failure only depends

on the result of a demonstration, a failed demonstration does not exactly provide

150



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

the information about what not to do, which is further discussed in Section 6.1.1.

6.1 Leveraged Gaussian Processes Inverse Reinforce-

ment Learning

In this section, we propose a novel inverse reinforcement learning algorithm with

leveraged Gaussian processes that can incorporate examples of both what to do

(positive demonstrations) and what not to do (negative demonstrations). We

model a reward function using a leveraged Gaussian process (LGP) [32], which

is capable of modeling a complex nonlinear function. It allows us to accurately

estimate the nonlinear structure of a reward function, compared to previous ap-

proaches. To mathematically define positive and negative demonstrations, we

introduce a novel generative model of a demonstrator, which can sample both

positive and negative demonstrations using the same reward function. Our gen-

erative model incorporates an additional parameter, called proficiency, which can

vary continuously from −1 to +1, such that a positive (or, respectively, negative)

proficiency indicates a positive (or, respectively, negative) demonstration. Hence,

in our problem, a demonstration consists of its proficiency value as well as a se-

quence of state-action pairs. The proposed IRL method finds a reward function

such that positive demonstrations have higher values and negative demonstra-

tions have lower values. We extensively validate the performance of the proposed

method in terms of accuracy and sample efficiencies. In simulations, the proposed

method is more efficient and can approximate the underlying reward function

more accurately using a fewer number of demonstrations than existing methods.

Moreover, it shows that the use of negative demonstrations is better than sim-

ply using only positive demonstrations, illustrating the benefits of using negative

151



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

Pos Demo Pos and Neg Demo

Margin based model [1, 105, 92, 106, 107] [137]

Probabilistic model [103, 152, 38, 76, 150, 31, 30, 144, 21, 6] [11, 118], Ours

Table 6.1: Classification of IRL algorithms

examples.

The remainder of this chapter is structured as follows. In Section 6.1.1, related

work is discussed. In Section 6.1.2, the Markov decision process (MDP), Gaus-

sian process IRL, and LGP are introduced. In Section 6.1.6, the new expert’s

model and the proposed learning algorithm are explained. A simulation study is

discussed in Section 6.1.7.

6.1.1 Related Work

Recently, a number of IRL methods have been proposed [1, 105, 92, 106, 107, 137,

103, 152, 38, 76, 150, 31, 30, 144, 21, 6, 11, 118]. They can be separated into four

different categories based on two criteria. The first criterion is the formulation of

problem: margin based or probabilistic model based. The second is the capability

of considering both positive and negative demonstrations or not. Many existing

algorithms consider only positive demonstrations and a handful of approaches

utilize both types of demonstrations. The classification of state-of-the-art IRL

algorithms, including ours, is summarized in Table 6.1.

A margin based method maximizes the margin between the value of the expert’s

policy and all other policies [1, 105, 92, 106, 107]. The margin based algorithms

generally assume that the reward function is a linear combination of features.

Since many formulations for the margin based methods are quadratic in param-

eters, quadratic programming (QP) is widely used to solve the problem. In [1],

152



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

Abbeel and Ng proposed an apprenticeship learning (AL) algorithm, which max-

imizes the margin between the expert’s policy and randomly sampled policies. In

[105], Ratliff et al. proposed the maximum margin planning (MMP) algorithm

where Bellman-flow constraints are utilized to consider the margin between the

experts’ policy and all other policies. MMP was mainly motivated from the struc-

tured support vector machine (SVM) [128]. In [107], Ratliff et al. extended MMP

to allow learning a nonlinear reward function and the method is called learning

to search (LEARCH).

A probabilistic model based method first defines a probability distribution of

expert’s demonstrations and optimize the parameter of the distribution [103, 152,

38, 76, 150, 31, 30, 144]. To define the probability on a trajectory of state-action

pairs, many probabilistic IRL algorithms utilize a stochastic policy. The stochas-

tic policy model was first utilized in [103, 152] in order to handle the inconsistency

of expert’s policy. Ziebart et al. [152] proposed maximum entropy inverse rein-

forcement learning (MEIRL) using the principle of maximum entropy to handle

ambiguity issues of IRL, where the efficient way to compute the gradient of the

likelihood of demonstrations is also proposed. Ramachandran et al. [103] proposed

Bayesian inverse reinforcement learning (BIRL), where the Bayesian probabilis-

tic model over demonstrations is defined and solved using a Metropolis-Hastings

(MH) method. A method for estimating an optimal value function (OptV) is

proposed in [38], where OptV is a linearly solvable approximation of a standard

Markov decision process. We also note that [76, 150, 31, 30, 144] are variants

based on [103, 152]. Gaussian process inverse reinforcement learning (GPIRL)

was proposed in [76], where the reward function is represented as a sparse Gaus-

sian process, which can express a nonlinear reward function in a feature space.

Robust Bayesian inverse reinforcement learning (RBIRL) was proposed in [150],

153



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

which is an extension of BIRL to handle noisy demonstrations. RBIRL can au-

tomatically identify and remove a noise in demonstrations using the expectation

maximization (EM) algorithm. Choi et al. [31] proposed hierarchical Bayesian

inverse reinforcement learning (HBIRL), which builds a hierarchy on the graph-

ical model of BIRL. Choi et al. [30] proposed a nonparametric Bayesian feature

constructing method for IRL (NPBFIRL) to identify useful composite features

for learning a reward function. Wulfmeier et al. [144] proposed maximum en-

tropy deep inverse reinforcement learning (MEDIRL), where the reward function

is modeled by a neural network and is learned by maximizing the log likelihood

of demonstrations using the method from [152].

Despite successful advances in IRL, the demonstration acquisition is still an

open issue. Generating demonstrations by experts can be often an expensive

process. To handle this problem, [137, 118, 11] are proposed to utilize inexpert

demonstrations. In [137, 11], the authors considered unlabeled demonstrations,

for which we do not know whether they are actually generated by an expert or not.

[137] proposed semi-supervised apprenticeship learning (SSAL), which is a natu-

ral extension of [1], to utilize both labeled and unlabeled demonstrations. Since

apprenticeship learning maximizes the margin between the expert’s policy and

others using a maximum margin method, SSAL treats inexpert demonstrations

as negatively labeled data. Also [11] proposed maximum entropy semi-supervised

IRL (MESSIRL), which is an extension of MEIRL [152], where demonstrations of

multiple qualities are used. In [11], unlabeled demonstrations, which are dissimilar

to expert’s demonstrations, are filtered using a penalty function and the remain-

ing demonstrations are used to learn the reward function based on similarities to

expert’s demonstrations.

While SSAL [137] and MESSIRL [11] mainly focused on classifying unlabeled

154



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

demonstrations, [118] focused more on utilizing failed demonstrations. In [118],

Shiarlis et al. proposed inverse reinforcement learning from failure (IRLfF). IRLfF

reformulated MEIRL [152] with new constraints that require the learned policy

to maximally differ from failed demonstrations. However, failed demonstrations

do not exactly provide the information about what not to do, since the failed

demonstration may contain some level of desirable behavior while its outcome

is failure. In this section, we focus on representing negative demonstrations, i.e.,

what not to do, using a novel demonstrator model.

6.1.2 Background

Markov Decision Processes and a Stochastic Policy

A common method to formulate a skill learning problem is a Markov decision

process (MDP). An MDP can be characterized by a tuple M = {S,F,A,T, γ, r},

where S is the state space, F is the corresponding feature space, A is the action

space, T(s′|s, a) is the transition probability from s ∈ S to s′ ∈ S by taking an

action a ∈ A, γ is a discount factor, and r is the reward function. A conventional

skill learning problem such as reinforcement learning can be solved by finding the

optimal policy which maximizes the expected discounted reward sum. For inverse

reinforcement learning (IRL), the problem is expressed as M/r with experts’

demonstrations D = {ζ1, . . . , ζN}, where ζi is a sequence of state-action pairs,

i.e., ζi = {(si,0, ai,0), . . . , (si,T , ai,T )}. Solving IRL can be interpreted as recovering

the underlying reward function r, which best explains the demonstrations of an

expert with the assumption that the expert always obeys the optimal policy. In

practice, however, demonstrations from experts can be occasionally inconsistent

with each other. This motivates the incorporation of uncertainties in the policy

function, i.e., a stochastic policy. A stochastic policy model has been widely used

155



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

in IRL problems [103, 152, 38, 76, 150, 31]. In a stochastic policy model, the

probability of choosing action a at state s is exponentially proportional to the

state-action value function Q(s, a) as we mentioned in Chapter 2.1.4.

Under this policy, the log likelihood of demonstration ζ under r can be written

as

logP (ζ|r) =
T∑
t=0

[Q(st, at)− V (st)] + C, (6.1)

where C is a constant. The reward function r is often represented as a linear

combination of a set of provided features [152].

6.1.3 Gaussian Process Regression

In probability theory, a random process is called a wide-sense stationary process

if its mean function m(x) is constant and a covariance function k(x ,x′) is a

function of a displacement vector k(x ,x′) = kS(x− x′). If a covariance function

is a function of the distance between two inputs, k(x ,x′) = kI(||x − x′||), such

covariance function is called an isotropic kernel function.

Gaussian process regression (GPR) is called stationary GPR if a stationary

kernel function is used. The assumption behind using stationary GPR is that the

function of our interest has the homogeneous smoothness. However, this may not

be always the case, and in [95], the authors proposed non-stationary Gaussian

process regression using the following non-stationary kernel function:

k(xi,xj) =
2

p
2 |Σi|

1
4 |Σj |

1
4

|Σi +Σj |
1
2

exp
(
−(xi− xj)T Σ̄−1(xi− xj)

)
. (6.2)

With this non-stationary kernel function, we can manually control the local

smoothness by additional parameters: Σi and Σj . Since a kernel matrix works

as a covariance matrix in a Gaussian process, it must satisfy the positive semi-

156



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

definite condition:
N∑
i=1

N∑
j=1

aiajC(xi,xj) ≥ 0, (6.3)

for every a = [a1 . . . aN ]
T ∈ R

N and N .

Unfortunately, directly showing (6.3) for a given kernel function is not trivial. In

[95], the authors proved the positive semi-definiteness of (6.2) using the following

theorem by Higdon, Swall, and Kern (HSK) [54].

Theorem 32 (HSK Theorem). A covariance function C(xi, xj) defined by

C(xi,xj) =

∫
Rd

Kxi
(u)Kxj

(u)du, (6.4)

where xi, xj, u ∈ R
d, and Kx(·) is a basis kernel function centered at x, is positive

semi-definite.

Using Theorem 32, one can avoid the difficulties in verifying the positive semi-

definiteness of a kernel function. Deriving the non-stationary kernel function (6.2)

can be easily done by setting Kx(u) = N (u|x,Σ). The integration over R
d can

be handled using the properties of Gaussian distributions, in that the product of

two Gaussian probability density functions is a pseudo-Gaussian.

However, it is still difficult to prove positive semi-definiteness of an arbitrarily

given function as we have to find a basis kernel Kx(u) which forms the given

function of interest as shown in (6.4). Another way of showing positive semi-

definiteness is using the Bochner’s theorem [20].

Theorem 33 (Bochner’s Theorem). Let f be a bounded continuous function on

R
d. Then, f is positive semi-definite if and only if it is the (inverse) Fourier

transform of a nonnegative and finite Borel measure μ, i.e.,

f(x) =

∫
Rd

eiw
Txμ(dw). (6.5)

157



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

In particular, Theorem 33 states that if a Fourier transform of a function f is

non-negative, then f is positive semi-definite.

Theorem 34. If a bounded continuous function f : R
d → R is a (inverse)

Fourier transform of a non-negative density function of a Borel measure μ, then

f is positive semi-definite.

Proof. Let g(w) ≥ 0 be a density of a Borel measure μ, i.e.,

μ(E) =

∫
E
g(w)dw.

If we assume g is a Fourier transform of a bounded and continuous function f , f

can be written as follows:

f(x) =

∫
Rd

ejw
Txg(w)dw. (6.6)

From (6.6), one can directly prove positive semi-definiteness of f as follows:

N∑
n=1

N∑
m=1

ana
∗
mf(xn − xm) =

N∑
n=1

N∑
m=1

ana
∗
m

∫
Rd

ejw
T (xn−xm)g(w)dw

=

∫
Rd

N∑
n=1

N∑
m=1

ana
∗
me

jwT (xn−xm)g(w)dw

=

∫
Rd

(
N∑
n=1

ane
jwTxn

)(
N∑
m=1

a∗me
−jwTxm

)
g(w)dw

=

∫
Rd

∥∥∥∥∥
N∑
n=1

ane
jwTxn

∥∥∥∥∥
2

g(w)dw ≥ 0.

This theorem will be used in Section 6.1.4 to prove positive semi-definiteness

of the proposed kernel function.

158



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

6.1.4 Leveraged Gaussian Processes

The non-stationarity of the kernel function (6.2) comes from the kernel’s capa-

bility to adjust local smoothness by assigning Σi for each data sample xi. In

this section, we focus on the leveraged non-stationary kernel function for a non-

stationary Gaussian process that can vary the leverage of training data.

The motivation behind the development of this kernel function starts with a

relatively simple question. Is it possible to use negative examples in a regression

framework? As the goal of a traditional regression problem is to find a function

(or a regressor) that can best fit given training data, D = {(x, y)i, i = 1, ..., N},

where xi and yi are input and output, respectively, it usually anchor the regressor

to those input and output points.

In our regression formulation, positive data work as an attractive force making

the regressor as close as possible to such points, and negative data work as a

repulsive force making the regressor as far as possible from such points. Moreover,

it can also vary the leverage of each training data from fully negative (−1) to

fully positive (+1). In particular, when the leverage is 0, the corresponding data

will have no effect on the regression.

Leveraged Kernel Function

In this section, we propose a leveraged kernel function that can be used in a novel

regression framework which can incorporate both positive and negative training

data. Furthermore, we prove that the proposed leveraged non-stationary ker-

nel function satisfies the positive semi-definiteness (PSD) condition using kernel

composite rules and Theorem 34.

Each training data has its leverage parameter which varies from −1 to +1,

where −1 indicates a fully negative leverage and +1 indicates a fully positive

159



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

leverage. Following is the proposed leveraged kernel function:

k(xi,xj) = (1− |γi − γj |) kSE(xi, xj), (6.7)

where kSE(xi,xj) = σ2f exp
(
−1

2(
||xi−xj||

σx
)2
)
, xi and xj are input points, γi and γj

are leverage parameters of the i-th and j-th inputs, respectively, and θ = {σ2f , σ2x}

are hyperparameters of the Gaussian process. For test (unseen) inputs, γ will be

set to be 1.

Proposition 1. The proposed leveraged kernel function (6.7) is a positive semi-

definite function.

Proof. Let us begin the proof with the basic properties of generating new kernel

functions from existing valid kernel functions. Here, we assume that a valid kernel

function satisfies the PSD property. Then the sum and product of two valid kernel

functions are also valid [104].

One interesting property of a kernel function is that if k(x1,x
′
1) and k(x2,x

′
2)

are valid over different spaces X1 and X2, then the tensor product k(x,x′) =

k(x1,x
′
1)k(x2,x

′
2) is also a valid kernel function defined on the product space

X1 × X2. These properties can easily be verified using the definition of the PSD

(see Chapter 4 in [104] for details).

Using these properties, we can decompose the kernel function (6.7) into two

parts. The first term is

k(γi, γj) = (1− |γi − γj |) (6.8)

and the second term is

kSE(xi,xj) = σ2f exp

(
−1

2

( ||xi− xj||
σx

)2
)
. (6.9)

The proposed leveraged kernel function (6.7) is a tensor product of two kernel

functions, (6.8) and (6.9). As (6.9) is a well-known squared exponential (SE)

160



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

kernel which satisfies the PSD, proving (6.8) is a PSD function with respect to

every γi and γj in [−1, 1] will complete the proof. Note that γ indicates the

leverage and has values between −1 and 1.

Theorem 34 states that showing the non-negativeness of a Fourier transform of

a stationary kernel, i.e. k(x, x′) = k(x− x′), is equivalent to showing the positive

semi-definiteness. Thus, showing the Fourier transform of

k(t = γi − γj) = 1− |t| (6.10)

is non-negative will complete the proof. Since the domain of (6.10) is [−2, 2],

without loss of generality, we can extend (6.10) to be a periodic function with

period 4 outside the domain, i.e., k(t+ 4) = k(t).

As the extended function of (6.10) is a periodic even function, we can express

(6.10) as a Fourier series as follows:

cn =
1

4

∫ 2

−2
k(t) exp

(−iπnt
2

)
dt

= 2
1− (−1)n
π2n2

=

⎧⎪⎪⎨
⎪⎪⎩
0 for even n,

4/(n2π2) for odd n.

(6.11)

As the Fourier coefficient (6.11) is non-negative for all integers, by the Theorem

34, the kernel (6.10) is positive semi-definite, which completes the proof.

The shape of the proposed leveraged kernel function is shown in Figure 6.1.

We can see that between positive examples (and negative examples), the ker-

nel function works as an ordinary squared-exponential kernel function. However,

between positive and negative data, the correlation decreases as the distance

between inputs decreases.

161



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

Figure 6.1: The proposed leveraged kernel function with different values of γi and

γj .

As we assume that the leverage of unseen data is 1, the positive training data

will work as the ordinary training data. However, as being close to the data with

a negative leverage will lower the correlation, the resulting regressor will be far

from such data.

Leveraged Non-Stationary Gaussian Process Regression

The non-stationary Gaussian process regression results using the proposed lever-

aged kernel function are shown in Figure 6.2(a). The leverages, γi, are shown at

the top of each training data. As illustrated in Section 6.1.4, the training data

with γ = 1 correspond with the ordinary positive training data and the training

data with γ = −1 work as negative training data. In particular, for those with

162



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

(a) (b)

Figure 6.2: (a) Ordinary Gaussian process regression using a squared exponential

(SE) kernel function. (b) Gaussian process regression using the proposed lever-

aged kernel function.

γ = 0, such data will have no effect on the resulting regressor.

Figure 6.2(a) shows regression results of stationary GPR using a squared expo-

nential (SE) kernel and non-stationary GPR using the proposed leveraged kernel

(6.7). In particular, for non-stationary GPR, third, eighth, and ninth data points

work as negative data (γ = −1) and the rest of the data work as positive data

(γ = 1). As shown in Figure 6.2(a), the non-stationary Gaussian process regres-

sion tends to anchor to the positive data and drift away from the negative data.

Figure 6.2(b) shows how the non-stationary GPR varies with different leverage

parameters γ. The removed GPR is the regression result using only the positive

training data, i.e., D = {(x, y)i| i = 1, 2, 4, 5, 6, 7, 10}. We can see that non-

stationary GPR with θ = 0 and removed GPR have similar results as the training

data with γ = 0 have no effect to the regressor in the proposed non-stationary

GPR.

We would like to note the relevance between proposed leveraged non-stationary

Gaussian process and the non-stationary Gaussian process from [95]. In [95],

163



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

the non-stationarity is introduced via the variance which indicates local smooth-

ness. This value varies with the input space and thus an additional function for

modeling varying smoothness is required. Heuristic and domain specific variance

functions are often used in this regard [73]. Moreover, modeling these functions

requires more computational load as the dimension of the input space gets larger.

Similarly, the proposed method has non-stationarity by the additional leverage

parameter γ. However, an additional function is not required as we explicitly

assign γ ∈ [−1, 1] to each training data and 1 for the test input.

6.1.5 Gaussian Process Inverse Reinforcement Learning

Gaussian process inverse reinforcement learning (GPIRL) was proposed in [76].

GPIRL uses the stochastic policy model and represents the reward function as

a Gaussian process, where its structure is determined by its kernel function and

hyperparameters θ. In order to apply Gaussian process regression (GPR) to esti-

mate a reward function, training outputs u ⊂ R and corresponding feature inputs

Xu ⊂ F are required. But, for IRL, training outputs do not exist since we only

observe actions, not the reward outputs. Due to this reason, the true training

outputs u are also estimated during the learning phase. In fact, estimating u

for given Xu can be interpreted as modeling the reward function using a sub-

set of kernel regressors, which are centered at feature points Xu. The process of

choosing a set of inputs Xu is explained in [76].

The most likely values of u and θ can be found by maximizing the following

likelihood given demonstrations D = {ζ}:

P (u, θ|Xu,D) ∝ P (D,u, θ|Xu)

=

[∫
r
P (D|r)P (r|u,Xu, θ)dr

]
P (u|Xu, θ)P (θ|Xu),

(6.12)

where r is a reward function or reward values of entire feature space F, P (D|r) is

164



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

the likelihood of demonstrations which can be computed using (6.1), P (r|u,Xu, θ)

is the GP posterior of the reward function, P (u|Xu, θ) is the prior probability of

GP, and P (θ|Xu) is the predefined prior for hyperparameters. P (u|Xu, θ) is the

Gaussian distribution with mean zero and a covariance matrix, whose entries are

given by the following squared exponential (SE) kernel function1:

kse(xi, xj ; θ) = β exp

(
−1

2
(xi − xj)TΛ(xi − xj)

)
, (6.13)

where θ = {β,Λ}, β is the gain of the SE kernel, and Λ is a diagonal matrix

of length parameters. P (r|u,Xu, θ) also has the Gaussian distribution with a

predictive mean and covariance matrix given all feature points F. However, the

complexity of P (D|r) makes the integral intractable. In order to handle the inte-

gral in (6.12), the deterministic approximation method [101] has been used. Under

this approximation scheme, the integral disappears and the reward function r(x∗)

at an unseen input x∗ becomes k∗uK−1
uuu, where [k∗u]i = kse(x∗,Xui), Xui is the

ith element of Xu, and [Kuu]ij = kse(Xui,Xuj). The resulting likelihood can be

written as:

P (D,u, θ|Xu) = P (D|r = KFuK
−1
uuu)P (u|Xu, θ)P (θ|Xu),

where [KFu]ij = kse(Fi,Xuj) and Fi is the ith element of the feature space F.

By abuse of notation, r indicates the reward values of entire feature space or a

reward function. Once the likelihood is optimized, the approximated reward can

be used to recover the expert’s policy on the entire state space.

Leveraged Gaussian Process

In [32], leveraged Gaussian processes (LGP) are proposed to use both positive

and negative training samples for Gaussian process regression (GPR). A leveraged

1Note that other kernel functions can be used as well.

165



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

kernel function makes the prediction result of GPR close to positive samples and

drift away from negative samples. Each training sample has its leverage value

varying from −1 to +1, where −1 indicates a fully negative sample and +1

indicates a fully positive sample. A smooth leveraged kernel function proposed in

[33] is defined as follows.

k(xi, li, xj , lj ; θ) = klev(li, lj)kse(xi, xj ; θ)

= β cos
(π
2
|li − lj |

)
exp

(
−1

2
(xi − xj)TΛ(xi − xj)

)
,

(6.14)

where xi and xj are inputs, li and lj are leverage values of the ith and jth inputs,

respectively.

A leveraged Gaussian process (LGP) can be used to express multiple corre-

lated Gaussian processes with the same covariance structure by defining cross-

covariance function of two Gaussian processes f and g as follows:

Cf,g(xi, xj) = k(xi, li, xj , lj ; θ).

We note that cos
(
π
2 |li − lj |

)
controls the correlation between two Gaussian pro-

cesses. For learning hyperparameters in LGP regression, derivatives of the lever-

aged kernel function with respect to hyperparameters are required and they can

be computed as follows:

∂k(xi, xj , li, lj)

∂β
=
k(xi, xj , li, lj)

β

∂k(xi, xj , li, lj)

∂λk
= −1

2
(xi,k − xj,k)2k(xi, xj , li, lj),

(6.15)

where λk indicates the kth diagonal element of Λ and xi,k is the kth element of

xi.

166



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

6.1.6 Inverse Reinforcement Learning with Leveraged Gaussian

Processes

Benefits of Negative Demonstrations

Many existing IRL algorithms focus on using demonstrations of what to do. How-

ever, as mentioned in [109], the fact that experts rarely encounter fatal situations

leads to the lack of information about how to overcome in a fatal situation. To

handle this problem, we provide the information about what not to do using a

negative demonstrator. Demonstrations from experts (positive demonstration)

are mostly distributed near the high reward regions. However, we model a neg-

ative demonstrator having an inverted reward function compared to an expert.

Hence, negative demonstrations from a negative demonstrator is more likely to

be generated near low reward regions.

For example, consider the objectworld experiment [76]. Figure 6.3 shows ex-

amples of positive and negative demonstrations and results of IRL algorithms. In

an N ×N objectworld, colored objects are randomly populated and the state is

the location (or cell) in the N×N grid map. Possible actions are moving towards

four adjacent grid cells or staying at the current cell. In Figure 6.3, there are two

outer colors (red and blue). The rewards function is defined such that the cell

near both red and blue colored objects has a reward of +1, the cell near only blue

colored objects has a reward of −1, and other cells have a reward of 0. (More

details about the objectworld are discussed in Section 6.1.7.) In Figure 6.3(a),

most of positive demonstrations move towards high reward regions and positive

demonstrations are rarely distributed near low reward regions. On the other hand,

in Figure 6.3(b), negative demonstrations are more likely to distributed near low

reward regions and negative demonstrations can provide more information about

167



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

what not to do. In Figure 6.3(c) and 6.3(d), reward function reconstruction re-

sults of GPIRL [76] and the proposed method are shown, respectively. The result

from the proposed method, which uses both positive and negative demonstra-

tions, is more accurate than GPIRL, which uses only positive demonstrations

given the same number of demonstrations. We can draw the conclusion that neg-

ative demonstrations can provide information about low reward regions and we

can estimate the reward function more precisely using both positive and negative

demonstrations.

Demonstrator Modeling

Before presenting the problem formulation used In this section, we describe the

model of a demonstrator with multiple levels of proficiencies. The main contri-

bution of the proposed model is that it allows the use of negative and positive

demonstrations in a single framework. The proficiency of a demonstrator is rep-

resented as the leverage parameter in an LGP and we will refer to the leverage

parameter as the proficiency. The proficiency of an expert is +1. On the other

hand, a fully negative demonstrator has the proficiency of −1, i.e., she optimizes

a reward function which is inverted from the expert’s reward function. A demon-

strator with the positive or negative proficiency will be referred to as a positive

or negative demonstrator, respectively.

A graphical representation of the proposed demonstrator model is shown in

Figure 6.4. Each demonstrator has a different version of the reward function but

they are related by its proficiency and the original reward function of the expert.

Since we model the expert’s reward function using an LGP, the prior distribution

of expert’s reward function is a zero-mean Gaussian process with the covariance

function based on a leveraged kernel function.

168



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

(a) (b)

(c) (d)

Figure 6.3: A 16×16 objectworld. Colored circles are objects and the brighter the

grid color is, the higher the reward is. Blue arrows are positive demonstrations

and red arrows are negative demonstrations. (a) Examples of positive demonstra-

tions. (b) Examples of negative examples. (c) The reward function reconstructed

by GPIPL [76] using only positive demonstrations. (d) The reward function re-

constructed by the proposed method using both positive and negative demon-

strations.

Figure 6.5 illustrates how the proficiency l affects the demonstrations of a

demonstrator with a unicycle dynamic model. Trajectories from seven different

169



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

Figure 6.4: A graphical representation of the proposed demonstrator model with

multiple proficiencies, where r is the true reward function (expert’s reward) with

proficiency +1, M is the number of demonstrators, Ni is the number of demon-

strations from the ith demonstrator, li is the proficiency of the ith demonstrator,

ri is the reward function of the ith demonstrator, and ζij is the jth demon-

stration from the ith demonstrator. There are a total of N demonstrations, i.e.,∑M
i=1Ni = N .

proficiencies, varying from −1 to 1, are depicted with different colors. Higher

reward regions are shown in a brighter color. The dark blue trajectories (profi-

ciency of +1) move in brighter regions while light blue trajectories (proficiency

between 0.2 and 0.5) move between bright and dark regions. For red trajectories

(proficiency of −1) moves in dark regions, as expected.

Problem Formulation

We consider the problem of finding the reward function from given demonstra-

tions and proficiencies and it can be formulated as follows:

maximize
u,θ

logP (u, θ|Xu, D̄), (6.16)

170



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

Figure 6.5: Sampled trajectories from demonstrators with different proficien-

cies (unicycle dynamic model). In the legend, ’lev’ indicates the proficiency of

a demonstration.

where the reward function is parameterized by Xu and u indicating a subset of

features and corresponding reward values, respectively, and D̄ = {li, {ζij}Ni
j }Mi

Here, we maximize the probability of reward outputs and hyperparameters

given inputs, demonstrations, and proficiencies. We can decompose the objective

function into four parts as follows.

P (u,θ|Xu, D̄) ∝ P (D̄,u, θ|Xu) = P (D̄|u,Xu, θ)P (u|Xu, θ)P (θ|Xu)

=
M∏
i=1

Ni∏
j=1

P (ζij , li|u,Xu, θ)P (u|Xu, θ)P (θ|Xu)

∝
M∏
i=1

Ni∏
j=1

∫
ri

P (ζij |ri)P (ri|li,u,Xu, θ)P (u|Xu, θ)P (θ|Xu),

where li and ri are the proficiency and reward of the ith demonstrator, respec-

tively, and P (ri|li,u,Xu, θ) is the LGP posterior. Since the integral cannot be

analytically computed, we utilize the sparse Gaussian process approximation,

171



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

similar to [76, 101], where a small subset of inputs and its corresponding out-

puts are used to represent the full set. In particular, we assume that the LGP

posterior is deterministic. Then, the integration can be avoided and the resulting

probability can be computed as below.

P (D̄,u, θ|Xu) ∝
M∏
i=1

Ni∏
j=1

P (ζij |ri = KFuK
−1
uuu)P (u|Xu, θ)P (θ|Xu),

where the kernel matrices Kuu and KFu are computed by leveraged kernel func-

tion (6.14) using the proficiency li and the expert’s proficiency +1. The equation

consists of three parts: the likelihood of demonstrations, the LGP marginal like-

lihood of outputs u, and the prior on hyperparameters θ.

Finally, (6.16) becomes

max
u,θ

M∑
i=1

Ni∑
j=1

logP (ζij |ri)︸ ︷︷ ︸
IRL likelihood

+ logP (u|Xu, θ)︸ ︷︷ ︸
LGP marginal likelihood

+ logP (θ|Xu)︸ ︷︷ ︸
prior

, (6.17)

where logP (ζij |ri) is given in (6.1). The other two terms can be computed as

logP (u|Xu, θ) = −
1

2
uTKuu

−1u− 1

2
log |Kuu| −

n

2
log 2π

logP (θ|Xu) = −
1

2
tr(Kuu

−2)−
∑
k

log(λk + 1),

where λk is the kth diagonal entry of Λ. The LGP marginal likelihood and the

prior on hyperparameters have an effect of regularization [76]. The IRL likelihood

in (6.17) allows us to incorporate multiple proficiency information for learning an

expert’s reward function via its derivative. The derivative of the likelihood of the

ith demonstrator is computed as follows:

Ni∑
j=1

∂ logP (ζij |ri)
∂ri

∂ri
∂u

= (μ̂i − μi)TKFuK
−1
uu,

where μ̂i is the empirical state visitation count from Ni demonstrations, μi is

the expected state visitation computed by an iterative algorithm proposed in

172



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

[151] under ri. If li < 0 (negative demonstrator), the kernel matrix KFu makes

the gradient decrease reward values of the states which are highly visited by the

ith demonstrator. On the other hand, if li > 0 (positive demonstrator), the KFu

makes the gradient increase reward values of the states which are highly visited by

the ith demonstrator. Hence, the proposed method finds a reward function such

that positive demonstrations result in higher values and negative demonstrations

result in lower values. We optimize (6.17) using a gradient ascent method. In order

to find the gradient of the objective function, we need to compute the derivatives

of (6.17) we have to compute the derivatives of following three parts.

N∑
i=0

logP (ζi|ri)︸ ︷︷ ︸
IRL likelihood

+ logP (re|Xe, θ)︸ ︷︷ ︸
LGP marginal likelihood

+ logP (θ|Xe)︸ ︷︷ ︸
hyperparameter prior

where the IRL likelihood makes ri generate similar behavior compared to demon-

strations with proficiency li, the LGP marginal likelihood mainly acts as regular-

ization of u, and the hyperparameter prior prevents a singular covariance matrix

and induces sparsity in scale parameters.

Since the problem is not convex, a gradient ascent method can suffer from

local optima. To handle this problem, the process can be repeated with multiple

random restarts and the best solution can be chosen. The derivatives of the other

parts of the objective function can be computed by applying the chain rule and

using the kernel derivatives in (6.15).

Derivatives

The objective function is partial differentiated by the hyperparameters θ and

expert’s output re and derivatives of each terms are computed by chain rule or

direct differentiation.

173



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

IRL Likelihood Derivative

∂ logP (ζi|ri)
∂ri

∂ri
∂re

= (μ̂i − μi)KreK
−1
ee

∂ logP (ζi|ri)
∂ri

∂ri
∂θk

= (μ̂i − μi)
(
∂Kre

∂θk
−KreK

−1
ee

∂Kee

∂θk

)
K−1

ee re

where μ̂i is empirical visitation of li-proficient demonstrator, μi is the expected

visitation under the reward ri, KreK
−1
ee is ∂ri

∂re
and

(
∂Kre
∂θk

−KreK
−1
ee

∂Kee
∂θk

)
K−1

ee re

is ∂ri
∂θk

. μ̂i is estimated by given demonstrations and μi is computed by iterative

algorithm proposed in [151]. Kee
∂θk

and Kre
∂θk

are computed by (6.15).

LGP Marginal Likelihood Derivative

The LGP marginal likelihood has two terms which are data fitting term and

normalization term. The derivative with respect to re is simply computed as

the marginal likelihood is quadratic form. Hence, the derivatives of marginal

likelihood are computed as follows.

∂ logP (re|Xe, θ)

∂re
= −K−1

ee re

∂ logP (re|Xe, θ)

∂θk
=

1

2
rTeK

−1
ee

∂Kee

∂θk
K−1

ee re −
1

2
tr(K−1

ee

∂Kee

∂θk
)

where the derivative with respect to hyperparameters is well explained in [104].

Hyperparameter Prior Derivative

The hyperparameter prior can be differentiated as follows.

∂ logP (θ|Xe)

∂β
= tr(K−3

ee

∂Kee

∂β
)

∂ logP (θ|Xe)

∂λk
= tr(K−3

ee

∂Kee

∂λk
)− 1∑du

k=1 Λkk + 1

where the derivative with respect to scale parameter λk has two terms from

inverse covariance and sparsity inducing regularization.

174



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

Proficiency Estimation

By using our demonstrator model, we can utilize demonstrations with multiple

proficiencies. However, in practice, it may be difficult to collect demonstrations

with proficiencies. To handle this issue, the semi-supervised framework similar

to [118, 11] can be used. Under the semi-supervised framework, we have both

labeled demonstrations D̄ = {li, {ζij}Ni
j }Mi and unlabeled demonstrations D =

{ζ}, where labeled (or unlabeled) demonstration means that the proficiency of

demonstration is known (or unknown). We estimate the proficiencies of D using

the kernel ridge regression [111] based on the SE kernel function defined over a

pair of trajectories in the feature space as follows.

kp(ζi, ζj) = exp

(
− 1

2σp
d(ζi, ζj)

2

)
,

where σp > 0 is a scale parameter, d(ζi, ζj) = ||f̂i − f̂j ||2, f̂i =
∑T

t=0 γ
txi,t, T is

the length of ζi and xi,t is a feature vector corresponding to si,t in ζi. Then, the

proficiency of D can be estimated as follows:

LD = Kp

DD̄K
p

D̄D̄
−1

LD̄,

where LD is a vector stacking estimated proficiencies of D, LD̄ is a vector stacking

the proficiencies of D̄, [Kp

D̄D̄]ij = kp(ζi, ζj), ζi is the ith demonstration in D̄ and

Kp

DD̄ can be computed by the same manner with D and D̄.

6.1.7 Simulations and Experiment

In this section, we evaluate the performance of the proposed inverse reinforce-

ment learning algorithm by comparing against existing methods. The proposed

method (LIRL) is compared with IRL algorithms using only positive demonstra-

tions: AL [1], MMP [105], BIRL [103], MEIRL [152], LEARCH [107], OptV [38],

175



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

FIRL [75] GPIRL [76], and NPBFIRL [30]. We also compare with SSAL [137],

a relatively recent algorithm, which uses both positive and negative demonstra-

tions. The original SSAL is a semi-supervised learning method which learns the

reward function from both labeled and unlabeled demonstrations simultaneously

by clustering unlabeled demonstrations. However, in our simulation, we treat

SSAL as supervised apprenticeship learning (SAL) which maximizes the margin

between positive and negative demonstrations by providing fully labeled demon-

strations. We also implement a supervised version of MMP (SMMP) with a new

constraint which enforces the resulting value function to be bigger than that of

negative demonstrations in a max-margin framework.

To demonstrate the benefit of using negative demonstrations, we have prepared

two types of demonstrations: positive and negative. A positive demonstration is

sampled from the optimal policy with the proficiency of +1. A negative demon-

stration is sampled from the policy, which optimizes the inverted reward function

of the original reward function and its proficiency is −1. While the proposed

method can handle multiple proficiency levels, existing methods can only handle

binary levels. Hence, for a fair comparison, we have only used demonstrations

with either +1 or −1 proficiency. The performance of each algorithm is evaluated

using the expected value difference (EVD), which is the difference between the

optimal value and the value obtained by following the policy learned by an IRL

algorithm.

Objectworld

We first validated the performance of IRL methods using the objectworld ex-

periment [76], where the state and action space consist of an N × N grid map

and five actions (up, down, left, right, or staying), respectively. Given an action,

176



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

an agent successfully performs the action with probability of 0.7 or, otherwise,

makes a random movement. Inside the grid map, objects with random colors are

randomly deployed where each object has an inner and outer colors. Both inner

and outer colors are selected from C ≥ 2 distinct colors. Among C colors, two

specific colors c1 and c2 are used to compute the reward at each state and other

colors work as distracting factors. The reward function is defined as follows:

r(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if d1(s) < 3 ∧ d2(s) < 2

−2, if d1(s) < 3 ∧ d2(s) ≥ 2

0, otherwise,

where d1(s) and d2(s) are the Euclidean distances from state s to the nearest

object whose outer color is c1 and c2, respectively.

The state is represented using a binary feature φ(s) [76], where

φki (s)j =

⎧⎪⎪⎨
⎪⎪⎩
1, if dki (s) ≤ j

0, if dki (s) > j,

for i = 1, . . . , C, j = 1, . . . , N , and k = 1, 2 where dki (s) indicates the Euclidean

distance from state s to the nearest object whose inner (k = 1) or outer (k = 2)

color is ci. Hence, by combining inner and outer colors with C colors and N

distance thresholds, the dimension of a feature becomes 2CN . The reason why

binary feature is utilized is that some algorithms [75, 30] only work with binary

features. In our simulations, we set N = 32 and C = 2.

We have prepared several sets of demonstrations under three different ratios

of the number of negative demonstrations to the number of all demonstrations:

10%, 30% and 50%. Algorithms which can handle both positive and negative

demonstrations are provided with three different sets of mixed demonstrations.

177



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

Algorithms using only positive demonstrations are provided with the same num-

ber of positive demonstrations.

The average EVDs of different algorithms from eight independent runs are

shown in Table 6.2 and Figure 6.6. Since the proposed method (LIRL) and GPIRL

constantly outperforms other methods, results from two algorithms are shown

in Figure 6.6(a). LIRL shows better performance than GPIRL given the same

number of demonstrations. Moreover, the average EVD of LIRL with 160 mixed

demonstrations is better than that of GPIRL with 320 positive demonstrations.

Figure 6.6(b) shows the benefits of using negative examples when the technique

is applied to other methods. SMMP and SAL, which are extensions of MMP and

AL with both positive and negative demonstrations, perform better than MMP

and AL. This result empirically shows that the use of negative demonstrations

can enhance performance of inverse reinforcement learning. The overall results

are shown in Table 6.2, where the best performance is marked in bold.

Highway Driving

The same set of IRL algorithms are tested on the highway driving task [76],

where the state of an agent is the location in a three-lane highway road and

the speed at four different levels (1, 2, 3, 4) and the agent can move one lane to

the left or right and change vehicle’s speed. The action is successfully performed

with probability of 0.7 and is failed with probability of 0.3. In the road, several

vehicles are randomly deployed with the lowest speed where four different types

of vehicle exist by combining two different vehicle types (car and motorcycle) and

two different driver types (civilian and police).

The reward function is designed to learn the driving behavior as fast as pos-

sible unless the agent’s car is located near the police car or motorcycle. If the

178



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

100 200 300 400 500 600
examples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ex
pe

ct
ed

 v
al

ue
 d

iff
er

en
ce

LIRL (30%)
GPIRL

(a)

100 200 300 400 500 600
examples

10

20

30

40

ex
pe

ct
ed

 v
al

ue
 d

iff
er

en
ce SMMP (10%)

SMMP (30%)
SMMP (50%)
MMP
SAL (10%)
SAL (30%)
SAL (50%)
AL

(b)

Figure 6.6: Average expected value differences of different IRL algorithms from

the 32 × 32 objectworld experiment with two colors. (a) Results of LIRL with

30% mixed demonstrations and GPIRL. (b) Results of SMMP, SAL, MMP and

AL.

distance between the agent and the police vehicle is within two lanes, depending

on its speed (1, 2, 3, 4), the agent gets a reward of (0,−2,−10,−10), respectively.

If the distance between the agent and the police vehicle is further than two lanes,

depending on its speed (1, 2, 3, 4), the agent gets a reward of (−2, 0, 2, 6), respec-

tively.

The state of the agent is represented using a 263 dimensional binary feature.

Three dimensions for three lanes and four dimensions for four speed levels are

179



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

Algorithms
Sample Size

10 20 40 80 160 320 640

LIRL (10%) 0.42 0.3 0.20 0.24 0.12 0.16 0.11

LIRL (30%) 0.48 0.34 0.32 0.19 0.12 0.15 0.08

LIRL (50%) 0.79 0.36 0.17 0.43 0.23 0.08 0.13

SMMP (10%) 39.62 18.53 18.60 19.79 17.45 18.34 16.76

SMMP (30%) 24.35 18.51 16.50 17.51 17.04 17.25 16.57

SMMP (50%) 19.59 14.09 17.86 17.68 16.91 16.88 16.68

SAL (10%) 33.00 30.69 34.28 22.62 32.86 25.79 26.95

SAL (30%) 35.61 28.17 30.10 23.70 24.61 24.01 25.04

SAL (50%) 32.49 31.40 30.08 24.04 25.38 28.73 26.54

BIRL 14.72 15.37 15.25 13.26 12.52 12.48 12.91

GPIRL 0.66 0.50 0.45 0.29 0.18 0.17 0.08

NPBFIRL 10.76 10.43 9.99 9.74 10.19 10.17 10.27

MEIRL 18.33 15.76 15.68 14.29 13.79 13.50 13.70

OptV 40.77 36.73 29.78 22.61 14.78 6.77 2.08

MMP 33.72 34.20 33.15 32.61 32.57 32.92 32.63

AL 32.20 32.69 34.16 31.63 31.17 32.70 33.18

LEARCH 36.59 36.20 35.17 34.27 32.30 32.06 31.66

FIRL 42.07 42.36 41.82 42.30 42.15 42.20 42.31

Table 6.2: Results from the 32× 32 objectworld experiment. The average EVDs

from eight independent runs are shown. The best performance is marked in bold.

The percentage value inside parentheses is the mixing ratio of the number of

negative demonstrations to the number of total demonstrations.

180



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

100 200 300 400 500 600
examples

0

2

4

6
ex

pe
ct

ed
 v

al
ue

 d
iff

er
en

ce LIRL (10%)
GPIRL

Figure 6.7: The results of 64-car-length highway driving with varying the number

of 32 length demonstrations. The EVD of LIRL with 10% mixed demonstrations

and GPIRL are shown. LIRL has better performance than GPIRL

added by a combination of four types of vehicles, eight discretization of distance

to the nearest vehicle, and eight outward directions (3 + 4 + 4× 8× 8 = 263).

The average EVDs from eight independent runs are shown in Table 6.3, where

the best performance is marked in bold. The proposed method (LIRL) and GPIRL

constantly outperform other IRL algorithms under a various number of samples.

LIRL shows better performance than GPIRL as the number of demonstrations

increases while the performance gap between LIRL and GPIRL is narrower than

the objectworld experiment. We have also observed the similar performance im-

provement in SMMP over MMP.

6.1.8 Summary

In this section, a new inverse reinforcement learning algorithm is proposed. The

proposed algorithm uses a leveraged Gaussian process to model a nonlinear re-

ward function and can learn from both positive and negative demonstrations. We

have also introduced a novel demonstrator model for modeling demonstrations

181



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

Algorithms
Sample Size

10 20 40 80 160 320 640

LIRL (10%) 5.18 2.67 1.32 0.69 0.39 0.17 0.09

LIRL (30%) 7.16 2.48 1.48 0.82 0.44 0.20 0.09

LIRL (50%) 13.04 3.35 1.55 0.93 0.45 0.24 0.13

SMMP (10%) 72.40 58.29 51.32 50.18 33.56 33.87 36.11

SMMP (30%) 55.44 34.88 39.52 39.41 34.48 34.34 34.66

SMMP (50%) 58.67 37.14 47.40 40.47 37.65 35.63 34.45

SAL (10%) 56.26 58.15 59.36 59.23 62.81 61.88 63.36

SAL (30%) 55.88 55.77 59.15 59.95 62.01 61.85 62.09

SAL (50%) 54.80 55.71 58.82 58.34 60.53 62.54 62.22

BIRL 15.49 11.92 8.18 5.93 4.33 3.15 2.14

GPIRL 5.37 2.37 1.49 0.74 0.38 0.23 0.10

NPBFIRL 38.92 30.64 30.71 25.59 22.94 23.40 19.69

MEIRL 5.22 2.58 1.54 2.06 1.53 0.72 0.59

OptV 19.57 14.61 6.17 4.71 1.72 0.68 0.14

MMP 42.34 42.47 45.71 45.60 48.01 49.59 49.10

AL 45.14 47.77 50.43 51.57 55.72 56.10 56.17

LEARCH 46.87 45.67 45.62 44.88 43.88 43.38 44.09

FIRL 20.36 18.55 10.25 3.54 3.06 2.87 0.71

Table 6.3: Results from the highway driving experiment. The best performance

is marked in bold.

with different proficiencies. To the best of our knowledge, the proposed method

is the first algorithm which can learn a nonlinear reward function using both

positive and negative demonstrations. In simulation, the proposed method out-

182



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

performs existing IRL algorithms. Our experimental results also demonstrate the

benefit of using negative demonstrations in inverse reinforcement learning.

183



Chapter 6. Inverse Reinforcement Learning with Negative
Demonstrations

184



Chapter 7

Conclusion

In this dissertation, we have investigated several robot learning methods. Espe-

cially, we have focused on developing learning frameworks to reduce the sam-

ple complexity of robot learning. In reinforcement learning, we have developed

efficient exploration methods based on entropy and perturbation. In imitation

learning, we have developed a novel imitation learning framework by incorporat-

ing both negative and positive demonstrations.

First, in entropy-based exploration, we have proposed a novel MDP with spare

Tsallis entropy regularization which induces a sparse and multi-modal optimal

policy distribution. We have also analyzed the full mathematical analysis of the

proposed sparse MDPs. Furthermore, we have extended sparse Tsallis entropy to

generalized Tsallis entropy. Hence, we have proposed a unified framework which

widen a class of different Tsalli entropies in RL problems and we call this frame-

work Tsallis MDPs. We have provided the full theoretical analysis about Tsallis

MDPs including guarantees of convergence, optimality, and performance error

bounds. We would like to note that Tsallis MDPs include sparse MDPs and soft

MDPs [51] as special cases. For Tsallis MDPs, we have extended it to the Tsallis

185



Chapter 7. Conclusion

actor-critic (TAC) method to handle a continuous state-action space. It has been

observed that there exists a suitable entropic index for each different RL prob-

lem and TAC with the optimal entropic index outperforms existing actor-critic

methods. However, since finding an entropic index with the brute force search is a

demanding task, we have also present TAC2 that gradually increases the entropic

index. We have applied TAC2 on real-world problems of learning a feedback con-

troller for soft mobile robots and demonstrated that TAC2 shows more efficient

exploration tendency than adjusting the regularization coefficient. Furthermore,

we also have applied a Shannon entropy exploration to online learning for grasping

unknown objects. we have proposed a novel Shannon entropy regularized neural

contextual bandit online learning (SERN). We proved that SERN has no regret

properties and its error converges to zero. In both simulation and the real-world

experiments, we empirically showed that SERN outperforms a ε-greedy method

and improves the grasp performance efficiently.

Second, in perturbation-based exploration, we have analyzed the random per-

turbation method for a stochastic bandit setting under both sub-Gaussian and

heavy-tailed rewards. We have provided the general analysis scheme for the both

upper and lower bound of the regret of heavy-tailed perturbations under both sub-

Gaussian and heavy-tailed rewards. Especially, our analysis scheme have made it

available to analyze the heavy-tailed perturbations, such as Pareto, Fréchet, and

GEV distribution which was not covered by the previous work [64]. The results

of the Pareto and Fréchet perturbations have provided an interesting observation

in that they can achieve the same near-optimal regret bound as the sub-Weibull

perturbation under sub-Gaussian reward assumption. For heavy-tailed rewards,

we have proposed novel p-robust estimator which can handle heavy-tailed noise

distributions which does not require prior knowledge about the bound on the

186



Chapter 7. Conclusion

p-th moment of rewards. By using the proposed estimator, we also proposed an

adaptively perturbed exploration with a p-robust estimator (APE2) and proved

that APE2 has better regret bound than robust UCB. We have theoretically and

empirically demonstrated that APE2 can overcome rewards that are corrupted

by heavy-tailed noises, making APE2 an appropriate solution for many practi-

cal problems, such as online classification, online learning of a recommendation

system, and reinforcement learning.

In imitation learning, we have improved sample efficiency of imitation learning

by employing negative demonstrations. We have proposed a new inverse rein-

forcement learning algorithm which uses a leveraged Gaussian process to model a

nonlinear reward function and can learn from both positive and negative demon-

strations. We have also introduced a novel demonstrator model for modeling

demonstrations with different proficiencies. Furthermore, we empirically showed

that the proposed method outperforms existing IRL algorithms in simulations.

Our experimental results also demonstrate the benefit of using negative demon-

strations in inverse reinforcement learning. Furthermore, we also have applied

entropy-based exploration for model free imitation learning. Hence, we have pro-

posed a novel maximum causal Tsallis entropy (MCTE) framework and proved

that an optimal solution of MCTE framework is a sparsemax distribution. We

have also provided the full mathematical analysis of the proposed framework,

including the concavity of the problem, the optimality condition, and the inter-

pretation as robust Bayes. We have also developed the maximum causal Tsallis

entropy imitation learning (MCTEIL) algorithm. In experiments, we have veri-

fied that the proposed method has advantages over existing methods for learning

the multi-modal behavior of an expert since a sparse MDN can search in diverse

directions efficiently. From the analysis and experiments, we have shown that

187



Chapter 7. Conclusion

the proposed MCTEIL method is an efficient and principled way to learn the

multi-modal behavior of an expert.

188



Appendices

189





Appendix A

Proofs of Chapter 3.1.

In this section, we provide entire proofs of Chapter 3.1.

A.1 Useful Properties

We first introduce notations and properties. Before introducing a notations, we

would like to mention a state-action rewards function r(s, a). r(s, a, s′) is generally

used as a reward function. Then, state-action reward is defined as

r(s, a) := E[r(s, a, St+1)|St = s,At = a] =
∑
s′
r(s, a, s′)P(s′|s, a)

where P(s′|s, a) is a transition probability. In Table A.1, all notations and defi-

nitions are summarized. For notational simplicity, we denote the expectation of

a discounted sum, E[
∑∞

t=0 γ
tf(st, at)|π, d, T ], by Eπ[f(s, a)], where f(s, a) is a

function of a state and an action, such as a rewards function, r(s, a), or an in-

dicator function, I{s′=s,a′=a}. We also denote the expectation conditioned on an

initial state, E[
∑∞

t=0 γ
tf(st, at)|π, s0 = s, T ], by Eπ[f(s, a)|s0 = s]. The utility,

value, state visitation can be compactly expressed as below in terms of vectors

191



Appendix A. Proofs of Chapter 3.1.

and matrices:

Jspπ = dᵀG−1
π rspπ , V sp

π = G−1
π rspπ

Jsoftπ = dᵀG−1
π rsoftπ , V soft

π = G−1
π rsoftπ , ρπ = dᵀG−1

π

where xᵀ is the transpose of vector x, Gπ = (I−γTπ), sp indicates a sparse MDP

problem which is defined as follows:

maximize
π

E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣π, d, T
]
+ αW (π)

subject to ∀ s
∑
a′
π(a′|s) = 1,

∀ s, a π(a′|s) ≥ 0,

(A.1)

and soft indicates a soft MDP problem which is defined as follows:

maximize
π

E

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣π, d, T
]
+ αH(π)

subject to ∀ s
∑
a′
π(a′|s) = 1,

∀ s, a π(a′|s) ≥ 0.

(A.2)

A.2 Sparse Bellman Optimality Equation

The following theorem explains the optimality condition of the sparse MDP from

Karush-Kuhn-Tucker (KKT) conditions.

Proof of Theorem 1. The KKT conditions of (A.1) are as follows:

∀s, a
∑
a′
π(a′|s)− 1 = 0, −π(a|s) ≤ 0 (A.3)

∀s, a λsa ≥ 0 (A.4)

∀s, a λsaπ(a|s) = 0 (A.5)

∀s, a ∂L(π, c, λ)

∂π(a|s) = 0 (A.6)

192



Appendix A. Proofs of Chapter 3.1.

where c and λ are Lagrangian multipliers for the equality and inequality con-

straints, respectively, and (A.3) is the feasibility of primal variables, (A.4) is the

feasibility of dual variables, (A.5) is the complementary slackness and (A.6) is

the stationarity condition. The Lagrangian function of (A.1) is written as follows:

L(π, c, λ)

= −Jspπ +
∑
s

cs

(∑
a′
π(a′|s)− 1

)
−
∑
s,a

λsaπ(a|s)

where the maximization of (A.1) is changed into the minimization problem, i.e.,

minπ −Jspπ . First, the derivative of Jspπ can be obtained by using the chain rule.

∂Jπ
∂π(a|s) = dᵀG−1

π

∂rspπ
∂π(a|s) + γdᵀG−1

π

∂Tπ
∂π(a|s)G

−1
π rspπ

= ρᵀπ
∂rspπ

∂π(a|s) + γρᵀπ
∂Tπ

∂π(a|s)V
sp
π

= ρπ(s)

(
r(s, a) +

α

2
− απ(a|s) + γ

∑
s′
V sp
π (s′)T (s′|s, a)

)

= ρπ(s)
(
Qspπ (s, a) +

α

2
− απ(a|s)

)
.

Here, the partial derivative of Lagrangian is obtained as follows:

∂L(π, c, λ)

∂π(a|s)

= −ρπ(s)(Qspπ (s, a) +
α

2
− απ(a|s)) + cs − λsa = 0.

First, consider a positive π(a|s) where the corresponding Lagrangian multiplier

λsa is zero due to the complementary slackness. By summing π(a|s) with respect

to action a, Lagrangian multiplier cs can be obtained as follows:

0 = −ρπ(s)(Qsp
π (s, a) +

α

2
− απ(a|s)) + cs

π(a|s) =
(
− cs
ρπ(s)α

+
1

2
+
Qsp

π (s, a)

α

)
∑

π(a′|s)>0

π(a′|s) =
∑

π(a′|s)>0

(
− cs
ρπ(s)α

+
1

2
+
Qsp

π (s, a′)
α

)
= 1

∴ cs = ρπ(s)α

⎡
⎣∑π(a′|s)>0

Qsp
π (s,a′)

α − 1

K
+

1

2

⎤
⎦

193



Appendix A. Proofs of Chapter 3.1.

where K is the number of positive elements of π(·|s). By replacing cs with this

result, the optimal policy distribution is induced as follows.

π(a|s) =
(
− cs
ρπ(s)α

+
1

2
+
Qspπ (s, a)

α

)

=
Qspπ (s, a)

α
−
∑

π(a′|s)>0
Qsp

π (s,a′)
α − 1

K

As this equation is derived under the assumption that π(a|s) is positive. For

π(a|s) > 0, following condition is necessarily fulfilled,

Qspπ (s, a)

α
>

∑
π(a′|s)>0

Qsp
π (s,a′)
α − 1

K
.

We notate this supporting set as S(s) = {a|1 +KQsp
π (s,a)
α >

∑
π(a′|s)>0

Qsp
π (s,a′)
α }.

S(s) contains the actions which has larger action values than threshold

τ(Qspπ (s, ·)) =
∑

π(a′|s)>0
Qsp

π (s,a′)
α − 1

K
.

By using these notations, the optimal policy distribution can be rewritten as

follows:

π(a|s) = max

(
Qspπ (s, a)

α
− τ
(
Qspπ (s, ·)

α

)
, 0

)
.

By substituting π(a|s) with this result, the following optimality equation of V sp
π

194



Appendix A. Proofs of Chapter 3.1.

is induced.

V sp
π (s)

=
∑
a

π(a|s)
(
Qspπ (s, a) +

α

2
(1− π(a|s))

)
=
∑
a

π(a|s)
(
Qspπ (s, a)− α

2
π(a|s)

)
+
α

2

∑
a

π(a|s)

=
∑
a∈S(s)

π(a|s)

×
(
Qspπ (s, a)− α

2

(
Qspπ (s, a)

α
− τ
(
Qspπ (s, ·)

α

)))
+
α

2

=
∑
a∈S(s)

π(a|s)α
2

(
Qspπ (s, a)

α
+ τ

(
Qspπ (s, ·)

α

))
+
α

2

= α

⎡
⎣1
2

K∑
a∈S(s)

((
Qspπ (s, a)

α

)2

− τ
(
Qspπ (s, ·)

α

)2
)

+
1

2

⎤
⎦

To summarize, we obtain the sparse Bellman equation as follows:

Qsp
π (s, a) = r(s, a) + γ

∑
s′

V sp
π (s′)T (s′|s, a)

V sp
π (s) = α

⎡
⎣1

2

K∑
a∈S(s)

((
Qsp

π (s, a)

α

)2

− τ

(
Qsp

π (s, ·)
α

)2
)

+
1

2

⎤
⎦

π(a|s) = max

(
Qsp

π (s, a)

α
− τ

(
Qsp

π (s, ·)
α

)
, 0

)
.

where the final equations can be obtained by change r(s, a) into r(s, a, s′).

A.3 Sparse Tsallis Entropy

In this section, the connection between W (π) and Tsallis entropy is explained.

The Tsallis entropy is defined as follows:

Sq,k(p) =
k

q − 1

(
1−
∑
i

pqi

)
,

where p is a probability mass function, q is a parameter called entropic-index,

and k is a positive real constant.

195



Appendix A. Proofs of Chapter 3.1.

The following theorem shows that W (π) is equivalent to the discounted ex-

pected sum of special case of Tsallis entropy when q = 2 and k = 1
2 .

Proof of Theorem 2. The proof is simply done by rewriting our regularization as

follows:

W (π)

= E

[ ∞∑
t=0

γt
1

2
(1− π(at|st))

∣∣∣∣∣π, d, T
]

=
∑
s,a

1

2
(1− π(a|s))E

[ ∞∑
t=0

γtI{st=s,at=a}

∣∣∣∣∣π, d, T
]

=
∑
s,a

1

2
(1− π(a|s))ρπ(s, a)

=
∑
s

ρπ(s)
∑
a

1

2
(1− π(a|s))π(a|s)

=
∑
s

ρπ(s)
1

2
(
∑
a

π(a|s)−
∑
a

π(a|s)2)

=
∑
s

ρπ(s)
1

2
(1−

∑
a

π(a|s)2)

=
∑
s

S2, 1
2
(π(·|s))ρπ(s) = Eπ

[
S2, 1

2
(π(·|s))

]
.

A.4 Upper and Lower Bounds for Sparsemax Opera-

tion

In this section, we prove the lower and upper bounds of spmax(z) defined as

spmax(z) � 1

2

K∑
i=1

(
z2(i) − τ(z)2

)
+

1

2
. (A.7)

The lower bound and upper bound of spmax(z) is as follows,

max(z) ≤ αspmax(
z

α
) ≤ max(z) + α

d− 1

2d
. (A.8)

196



Appendix A. Proofs of Chapter 3.1.

Note that the proof of lower bound of (A.8) is provided in [85]. However, we find

another interesting way to prove (A.8) by using the Cauchy-Schwartz inequality

and the nonnegative property of a quadratic equation.

We first prove max(z) ≤ spmax(z) and next prove spmax(z) ≤ max(z) + d−1
2d .

For simplicity of derivation, we assume that α = 1 but the original inequalities

can be simply obtained by replacing z with z
α .

Lemma 10. For all z ∈ R
d, max(z) ≤ spmax(z) holds.

Proof. We prove that, for all z, spmax(z) − z(1) ≥ 0 where z(1) = max(z) by

definition. The proof is done by simply rearranging the terms in (A.7),

spmax(z)− z(1)

=
1

2

K∑
i=1

(
z2(i) − τ(z)2

)
+

1

2
− z(1)

=
1

2

K∑
i=1

z2(i) −
K

2

(∑K
i=1 z(i) − 1

K

)2

+
1

2
− z(1)

=
1

2

K∑
i=1

z2(i) −
1

2K

(
K∑
i=1

z(i) − 1

)2

+
1

2
− z(1)

=
K
∑K

i=1 z
2
(i) −

(∑K
i=1 z(i) − 1

)2
− 2Kz(1) +K

2K

=
1

2K

(
Kz2(1) +K

K∑
i=2

z2(i)

−
(
z(1) +

K∑
i=2

z(i) − 1

)2

− 2Kz(1) +K

)
.

The quadratic term can be decomposed as follows:

(
z(1) +

K∑
i=2

z(i) − 1

)2

= z2(1) +

(
K∑
i=2

z(i)

)2

+ 1 + 2z(1)

K∑
i=2

z(i) − 2z(1) − 2
K∑
i=2

z(i).

197



Appendix A. Proofs of Chapter 3.1.

By putting this result into the equation and rearranging them, three terms are

obtained as follows:

spmax(z)− z(1)

=
1

2K

(
(K − 1)z2(1) − 2z(1)

{
K∑
i=2

z(i) +K − 1

}

+K
K∑
i=2

z2(i) + 2
K∑
i=2

z(i) +K −
(

K∑
i=2

z(i)

)2)
.

Then, K
∑K

i=2 z
2
(i) + 2

∑K
i=2 z(i) + K can be replaced with K

∑K
i=2

(
z(i) + 1

)2 −
2(K−1)∑K

i=2 z(i) and we also decompose the second term−2z(1)
{∑K

i=2 z(i) +K − 1
}

into two parts: −2z(1)
{∑K

i=2(z(i) + 1)
}
and 2z(1), and rearrange the equation as

follows,

=
1

2K

(
(K − 1)z2(1) − 2z(1)

{
K∑
i=2

(
z(i) + 1

)}

+K
K∑
i=2

(
z(i) + 1

)2 − 2(K − 1)
K∑
i=2

z(i) −
(

K∑
i=2

z(i)

)2)
.

Again, we change −2(K−1)
∑K

i=2 z(i)−
(∑K

i=2 z(i)

)2
into −

(∑K
i=2(z(i) + 1)

)2
+

(K − 1)2 by adding and subtracting (K − 1)2 as follow,

=
1

2K

(
(K − 1)z2(1) − 2z(1)

{
K∑
i=2

(
z(i) + 1

)}

+K
K∑
i=2

(
z(i) + 1

)2 −
(

K∑
i=2

(z(i) + 1)

)2

+ (K − 1)2

)
.

Then, the term (K − 1)z2(1) − 2z(1)

{∑K
i=2

(
z(i) + 1

)}
is reformulated as (K −

1)

(
z(1) −

∑K
i=2(z(i)+1)
K−1

)2

− (K − 1)

(∑K
i=2(z(i)+1)

K−1

)2

. By using this reformulation,

198



Appendix A. Proofs of Chapter 3.1.

we can obtain following equation.

=
(K − 1)

2K

[
z(1) −

∑K
i=2

(
z(i) + 1

)
K − 1

]2
+

1

2K

(
−

(∑K
i=2(z(i)+1)

)2
K − 1

+K
K∑
i=2

(
z(i) + 1

)2 −
(

K∑
i=2

(z(i) + 1)

)2

+ (K − 1)2

)
.

Finally, we can obtain three terms by rearranging the above equation,

=
(K − 1)

2K

[
z(1) −

∑K
i=2

(
z(i) + 1

)
K − 1

]2

+
1

2K

(
K

K∑
i=2

(
z(i) + 1

)2 −K
(∑K

i=2(z(i) + 1)
)2

K − 1

)
+

(K − 1)2

2K

=
(K − 1)

2K

[
z(1) −

∑K
i=2

(
z(i) + 1

)
K − 1

]2

+
K − 1

2

⎡
⎣ K∑

i=2

(
z(i) + 1

)2
K − 1

−
(

K∑
i=2

(z(i) + 1)

K − 1

)2
⎤
⎦+

(K − 1)2

2K

where the first and third terms are quadratic and always nonnegative. The second

term is also always nonnegative by the Cauchy-Schwartz inequality. The Cauchy-

Schwartz inequality is written as (pᵀq)2 ≤ ||p||2||q||2. Let z2:K = [z(2), · · · , z(K)]
ᵀ,

then, by setting p = z2:K + I and q = 1
K−1I where I is a K − 1 dimensional

vector of ones, it can be shown that the second term is nonnegative. Therefore,

spmax(z) − z(1) is always nonnegative for all z since three remaining terms are

always nonnegative, completing the proof.

Now, we prove the upper bound of sparsemax operation.

Lemma 11. For all z ∈ R
d, spmax(z) ≤ max(z) + d−1

2d holds.

199



Appendix A. Proofs of Chapter 3.1.

Proof. First, we decompose the summation of (A.7) into two terms as follows:

spmax(z) =
1

2

K∑
i=1

(
z2(i) − τ(z)2

)
+

1

2

=
1

2

K∑
i=1

(
z(i) − τ(z)

) (
z(i) + τ(z)

)
+

1

2

≤ 1

2

K∑
i=1

p∗i (z)
(
z(i) + τ(z)

)
+

1

2

=
1

2

K∑
i=1

p∗i (z)z(i) +
τ(z)

2

K∑
i=1

p∗i (z) +
1

2

=
1

2

K∑
i=1

p∗i (z)z(i) +
τ(z)

2
+

1

2

=
1

2

K∑
i=1

p∗i (z)z(i) +
1

2

K∑
i=1

z(i)

K
− 1

2K
+

1

2

where p∗i = max(z(i) − τ(z), 0) which is the optimal solution of the simplex pro-

jection problem and
∑K

i=1 p
∗
i (z) = 1 by definition. Now, we use the fact that, for

every p on d− 1 dimensional simplex,
∑d

i pizi ≤ max(z) for all z ∈ R
d. By using

this property, as p∗(z) and 1
K I are on the probability simplex, following inequality

is induced,

spmax(z) =
1

2

K∑
i=1

p∗i (z)z(i) +
1

2

K∑
i=1

z(i)

K
− 1

2K
+

1

2

≤ 1

2
max(z) +

1

2
max(z)− 1

2K
+

1

2
≤ max(z)− 1

2K
+

1

2

≤ max(z)− 1

2d
+

1

2

where d ≥ K by definition of K. Therefore, spmax(z) ≤ max(z)+ d−1
2d holds.

A.5 Comparison to Log-Sum-Exp

We explain the error bounds for the log-sum-exp operation and compare it to the

bounds of the sparsemax operation. The log-sum-exp operation has widely known

200



Appendix A. Proofs of Chapter 3.1.

bounds,

max(z) ≤ logsumexp(z) ≤ max(z) + log(d).

We would like to note that sparsemax has tighter bounds than log-sum-exp as it

is always satisfied that, for all d > 1, d−1
2d ≤ log(d). Intuitively, the approximation

error of log-sum-exp increases as the dimension of input space increases. However,

the approximation error of sparsemax approaches to 1
2 as the dimension of input

space goes infinity. This fact plays a crucial role in comparing performance error

bounds of the sparse MDP and soft MDP.

A.6 Convergence and Optimality of Sparse Value It-

eration

In this section, the monotonicity, discounting property, contraction of sparse Bell-

man operation U sp are proved.

Proof of Lemma 1. In [85], the monotonicity of (A.7) is proved. Then, the mono-

tonicity of U sp can be proved using (A.7). Let x and y are given such that x ≤ y.

Then,

r(s, a) + γ
∑

s′ x(s
′)T (s′|s, a)

α
≤ r(s, a) + γ

∑
s′ y(s

′)T (s′|s, a)
α

where T (s′|s, a) is a transition probability which is always nonnegative. Since the

sparsemax operation is monotone, the following inequality is induced

αspmax

(
r(s, a) + γ

∑
s′ x(s

′)T (s′|s, a)
α

)

≤ αspmax

(
r(s, a) + γ

∑
s′ y(s

′)T (s′|s, a)
α

)
.

Finally, we can obtain

∴ Usp(x) ≤ Usp(y).

201



Appendix A. Proofs of Chapter 3.1.

Proof of Lemma 2. In [85], it is shown that for c ∈ R and x ∈ R
|S|, spmax(x +

cI) = spmax(x) + cI. Using this property,

Usp(x+ cI)(s)

= αspmax

(
r(s, a) + γ

∑
s′(x(s

′) + c)T (s′|s, a)
α

)

= αspmax

(
r(s, a) + γ

∑
s′ x(s

′)T (s′|s, a) + γc
∑

s′ T (s
′|s, a)

α

)

= αspmax

(
r(s, a) + γ

∑
s′ x(s

′)T (s′|s, a)
α

+
γc

α

)

= αspmax

(
r(s, a) + γ

∑
s′ x(s

′)T (s′|s, a)
α

)
+ γc

∴ Usp(x+ cI) = Usp(x) + γcI.

Proof of Lemma 3. First, we prove that U sp is a γ-contraction mapping with

respect to dmax. Without loss of generality, the proof is discussed for a general

function φ : R|S| → R
|S| with discounting and monotone properties.

Let dmax(x, y) = M . Then, y −MI ≤ x ≤ y +MI is satisfied. By monotone

and discounting properties, the following inequality between mappings φ(x) and

φ(y) is established.

φ(y)− γMI ≤ φ(x) ≤ φ(y) + γMI,

where γ is a discounting factor of φ. From this inequality, dmax(φ(x), φ(y)) ≤

γM = γdmax(x, y) and γ ∈ (0, 1). Therefore, φ is a γ-contraction mapping. In

our case, U sp is a γ-contraction mapping.

As R
|S| and dmax(x, y) are a non-empty complete metric space, by Banach

fixed-point theorem, a γ-contraction mapping U sp has a unique fixed point.

202



Appendix A. Proofs of Chapter 3.1.

Using Lemma 1, Lemma 2, and Lemma 3, we can prove the convergence and

optimality of sparse value iteration.

Proof of Theorem 3. Sparse value iteration converges into a fixed point of U sp

by the contraction property. Let x∗ be a fixed point of U sp and, by definition of

U sp, x∗ is the point that satisfies the sparse Bellman equation, i.e. x∗ = U sp(x∗).

Hence, by Theorem 1, x∗ satisfies necessity conditions of the optimal solution.

By the Banach fixed point theorem, x∗ is a unique point which satisfies necessity

conditions of optimal solution. In particular, x∗ = U sp(x∗) is precisely equivalent

to the sparse Bellman equation. In other words, there is no other point that

satisfies the sparse Bellman equation. Therefore, x∗ is the optimal value of a

sparse MDP.

A.7 Performance Error Bounds for Sparse Value It-

eration

In this section, we prove the performance error bounds for sparse value iteration

and soft value iteration. We first show that the optimal vlaues of a sparse MDP

and a soft MDP are greater than that of the original MDP.

Proof of Lemma 4. We first prove the inequality of the sparse Bellman operation

Un(x) ≤ (U sp)n(x), x∗ ≤ xsp∗ .

This inequality can be proven by the mathematical induction. When n = 1, the

inequality is proven as follows:

maxa′ (r(s, a
′) + γ

∑
s′ x(s

′)T (s′|s, a′))

≤ spmax (r(s, ·) + γ
∑

s′ x(s
′)T (s′|s, ·))

(∵ max(z) ≤ spmax(z)).

203



Appendix A. Proofs of Chapter 3.1.

Therefore,

U(x) ≤ U sp(x).

For some positive integer k, let us assume that Uk(x) ≤ (U sp)k(x) holds for every

x ∈ R
|S|. Then, when n = k + 1,

Uk+1(x) = Uk(U(x))

≤ (U sp)k(U(x)) (∵ Uk(x) ≤ (U sp)k(x))

≤ (U sp)k(U sp(x)) (∵ U(x) ≤ U sp(x))

= (U sp)k+1(x).

Therefore, by mathematical induction, it is satisfied Un(x) ≤ (U sp)n(x) for every

positive integer n. Then, the inequality of the fixed points of U and U sp can be

obtained by n→∞,

x∗ ≤ xsp∗

where ∗ indicates the fixed point. The above arguments also hold when U sp and

sparsemax are replaced with U soft and log-sum-exp operation, respectively.

Before showing the performance error bounds, the upper bounds of W (π) and

H(π) are proved first.

Proof of Lemma 5. For W (π),

W (π) =
∑
s

ρπ(s)
∑
a

1

2
(1− π(a|s))π(a|s)

≤
∑
s

ρπ(s)
|A| − 1

2|A| (∵
∑
a

1

2
(1− π(a|s))π(a|s) ≤ |A| − 1

2|A| )

=
1

1− γ
|A| − 1

2|A| (∵
∑
s

ρπ(s) =
1

1− γ ).

204



Appendix A. Proofs of Chapter 3.1.

The inequality that
∑

a
1
2(1 − π(a|s))π(a|s) ≤ |A|−1

2|A| can be obtained by finding

the point where the derivative of 1
2(1− x)x is zero. Similarly, for H(π),

H(π) = E

[ ∞∑
t=0

γt − log(π(at|st))
∣∣∣∣∣π, d, T

]

=
∑
s,a

− log(π(a|s))E
[ ∞∑
t=0

γtI{st=s,at=a}

∣∣∣∣∣π, d, T
]

=
∑
s,a

− log(π(a|s))ρπ(s, a)

=
∑
s

ρπ(s)
∑
a

− log(π(a|s))π(a|s)

≤
∑
s

ρπ(s) log(|A|) (∵
∑
a

− log(π(a|s))π(a|s) ≤ log(|A|))

=
1

1− γ log(|A|) (∵
∑
s

ρπ(s) =
1

1− γ ).

The inequality that
∑

a− log(π(a|s))π(a|s) ≤ log(|A|) also can be obtained by

finding the point where the derivative of −x log(x) is zero.

Using Lemma 4 and Lemma 5, the error bounds of sparse and soft value iter-

ations can be proved.

Proof of Theorem 4. Let π∗ be the optimal policy of the original MDP, where the

problem is defined as maxπ Eπ[r(s, a)].

Eπsp
∗ [r(s, a)] ≤ max

π
Eπ[r(s, a)] = Eπ∗ [r(s, a)].

The rightside inequality is by the definition of optimality. Before proving the

leftside inequality, we first derive the following inequality from Lemma 4:

V∗ ≤ V sp
∗ , (A.9)

where ∗ indicates an optimal value. Since the fixed points of U and U sp are the

optimal solutions of the original MDP and sparse MDP, respectively, (A.9) can

205



Appendix A. Proofs of Chapter 3.1.

be derived from Lemma 4. The leftside inequality is proved using (A.9) as follows:

Eπ∗(r(s, a)) = dᵀV∗

≤ dᵀV sp
∗ = Jsp∗ = Eπsp

∗ (r(s, a)) + αW (πsp∗ )

≤ Eπsp
∗ (r(s, a)) +

α

1− γ
|A| − 1

2|A| (∵ Lemma 5).

Proof of Theorem 5. Let π∗ be the optimal policy of the original MDP which

is defined as maxπ Eπ(r(s, a)). The rightside inequality is by the definition of

optimality.

E
πsoft
∗

[r(s, a)] ≤ max
π

Eπ[r(s, a)] = Eπ∗ [r(s, a)].

Before proving the leftside inequality, we first derive following inequality from

Lemma 4:

V∗ ≤ V soft
∗ (A.10)

where ∗ indicates an optimal solution. Then, the proof of the leftside inequality

is done by using (A.10) as follows:

Eπ∗(r(s, a)) = dᵀV∗

≤ dᵀV soft
∗ = Jsoft∗ = E

πsoft
∗

(r(s, a)) + αH(πsoft∗ )

≤ E
πsoft
∗

(r(s, a)) +
α

1− γ log(|A|) (∵ Lemma 5).

206



Appendix A. Proofs of Chapter 3.1.

Table A.1: Notations and Properties

T
er
m
s

sp
a
rs
e
M
D
P

so
ft

M
D
P

U
ti
li
ty

J
sp π

�
E
π

[ r(s
′ ,
a
′ )
+

α 2
(1
−
π
(a

′ |s
′ )
)]

=
∑ s

d
(s
)V

sp π
(s
)
=
∑ s

rs
p π
(s
)ρ
π
(s
)

J
so
f
t

π
�

E
π
[r
(s

′ ,
a
′ )
−
α
lo
g
(π
(a

′ |s
′ )
)]

=
∑ s

d
(s
)V

so
f
t

π
(s
)
=
∑ s

rs
o
f
t

π
(s
)ρ
π
(s
)

V
al
u
e

V
sp π
(s
)�

E
π

[ r(s
′ ,
a
′ )
+

α 2
(1
−
π
(a

′ |s
′ )
)∣ ∣ s 0

=
s] =

rs
p π
(s
)
+
γ
∑ s′

V
sp π
(s

′ )
T
π
(s

′ |s
)

V
so
f
t

π
(s
)�

E
π
[r
(s

′ ,
a
′ )
−
α
lo
g
(π
(a

′ |s
′ )
)|s

0
=
s]
=

rs
o
f
t

π
(s
)
+
γ
∑ s′

V
so
f
t

π
(s

′ )
T
π
(s

′ |s
)

A
ct
io
n
va
lu
e

Q
sp π
(s
,a
)
�

r(
s,
a
)
+
γ
∑ s′

V
sp π
(s

′ )
T
(s

′ |s
,a
)

Q
so
f
t

π
(s
,a
)
�

r(
s,
a
)
+
γ
∑ s′

V
so
f
t

π
(s

′ )
T
(s

′ |s
,a
)

E
x
p
ec
te
d
S
ta
te

R
ew

a
rd

rs
p π
(s
)
�

∑ a
′( r(

s,
a
′ )
+

α 2
(1
−
π
(a

′ |s
))
) π(a

′ |s
)

rs
o
f
t

π
(s
)
�

∑ a
′(
r(
s,
a
′ )
−
α
lo
g
(π
(a

′ |s
))
)
π
(a

′ |s
)

P
ol
ic
y
R
eg
u
la
ri
za
ti
o
n

W
(π
)
�

E
π

[ 1 2
(1
−
π
(a
|s)

)]
=
∑ s,

a
1 2
(1
−
π
(a
|s)

)π
(a
|s)
ρ
(s
)

H
(π
)
=

E
π
[−
π
(a
|s)

lo
g
(π
(a
|s)

)]
=
∑ s,

a
−
π
(a
|s)

lo
g
(π
(a
|s)

)ρ
(s
)

M
a
x
A
p
p
ro
x
im

a
ti
o
n

sp
m
a
x
(z
)
�

1 2

∑ K i=
1

( z
2 (i
)
−
τ
(z
)2
) +

1 2
lo
g
su
m
ex
p
(z
)
�

lo
g
∑ i

ex
p
(z
i)

V
al
u
e
It
er
a
ti
o
n
O
p
er
a
to
r

U
sp
(x
)(
s)

=
α
sp
m
a
x
( r(s

,·)
+
γ
∑ s

′x
(s

′ )
T
(s

′ |s
,·)

α

)
U
so
f
t (
x
)(
s)

=
α
lo
g
su
m
ex
p
( r(s

,·)
+
γ
∑ s

′x
(s

′ )
T
(s

′ |s
,·)

α

)
S
ta
te

V
is
it
a
ti
o
n

ρ
π
(s
)
�

E
π

[ I {s′
=
s}
] =

d
(s
)
+
γ
∑ s′

,a
′T

(s
|s′
,a

′ )
ρ
π
(s

′ ,
a
′ )

S
ta
te

A
ct
io
n
V
is
it
a
ti
o
n

ρ
π
(s
,a
)
�

E
π

[ I {s′
=
s,
a
′ =
a
}] =

π
(a
|s)
d
(s
)
+
γ
∑ s′

,a
′π

(a
|s)
T
(s
|s′
,a

′ )
ρ
π
(s

′ ,
a
′ )

T
ra
n
si
ti
o
n
P
ro
b
a
b
il
it
y
gi
ve
n
π

T
π
(s

′ |s
)
�
∑ a

T
(s

′ |s
,a
)π
(a
|s)

207



Appendix A. Proofs of Chapter 3.1.

208



Appendix B

Proofs of Chapter 3.2.

We consider the maximum causal Tsallis entropy problem defined as follows:

maximize
π

αW (π)

subject to Eπ [φ(s, a)] = EπE [φ(s, a)] ,

∀ s, a
∑
a′
π(a′|s) = 1, π(a|s) ≥ 0.

(B.1)

Note that the constraints for Π are explicitly added. For the remainder of this

supplementary material, we will explicitly write all constraints for Π and M.

B.1 Change of Variables

Proof of Theorem 7. The proof is simply done by checking two equalities. First,

W (π) =
1

2
Eπ [1− π(a|s)] =

1

2

∑
s,a

ρπ(s, a) (1− π(a|s))

=
1

2

∑
s,a

ρπ(s, a)

(
1− ρπ(s, a)∑

a′ ρπ(s, a
′)

)

209



Appendix B. Proofs of Chapter 3.2.

and, second,

W̄ (ρ) =
1

2

∑
s,a

ρ(s, a)

(
1− ρ(s, a)∑

a′ ρ(s, a
′)

)
=

1

2

∑
s,a

ρπρ(s, a) (1− πρ(a|s))

=W (πρ).

Base on Theorem 6 and Theorem 12, we convert the problem (B.1) into

maximize
ρ

αW̄ (ρ)

subject to
∑
s,a

ρ(s, a)φ(s, a) =
∑
s,a

ρE(s, a)φ(s, a),

∀ s, a, ρ(s, a) ≥ 0,
∑
a

ρ(s, a) = d(s) + γ
∑
s′,a′

T (s|s′, a′)ρ(s′, a′)

(B.2)

where W̄ (ρ) =W ( ρ∑
a ρ

), the second constraints are Bellman flow constraints for

M, and ρE is the state action visitation corresponding to πE .

B.2 Concavity of Maximum Causal Tsallis Entropy

The following theorem shows that the objective function W̄ (ρ) of the problem

(B.2) is a concave function.

Proof of Theorem 8. Proof of concavity of W̄ (ρ) is equivalent to show that fol-

lowing inequality is satisfied for all state s and action a pairs:

(λ1ρ1(s, a) + λ2ρ2(s, a))

(
1− λ1ρ1(s, a) + λ2ρ2(s, a)

λ1
∑

a′ ρ1(s, a
′) + λ2

∑
a′ ρ2(s, a

′)

)

≥ λ1ρ1(s, a)

(
1− ρ1(s, a)∑

a′ ρ1(s, a
′)

)
+ λ2ρ2(s, a)

(
1− ρ2(s, a)∑

a′ ρ2(s, a
′)

)

where λ1 ≥ 0, λ2 ≥ 0, and λ1 + λ2 = 1. For notational simplicity, ρi(s, a) and∑
a′ ρi(s, a

′) are replaced with ai and bi, respectively. Then, the right-hand side

210



Appendix B. Proofs of Chapter 3.2.

is ∑
i=1,2

λiai

(
1− ai

bi

)
=
∑
i=1,2

λiai

(
1− λiai

λibi

)

=

⎛
⎝∑
j=1,2

λjbj

⎞
⎠ ∑

i=1,2

⎡
⎣ λibi(∑

j=1,2 λjbj

) λiai
λibi

(
1− λiai

λibi

)⎤⎦ .
Let F (x) = x(1− x), which is a concave function. Then the above equation can

be expressed as follows,

∑
i=1,2

λiai

(
1− ai

bi

)
=

⎛
⎝∑
j=1,2

λjbj

⎞
⎠ ∑

i=1,2

⎡
⎣ λibi(∑

j=1,2 λjbj

)F (λiai
λibi

)⎤⎦ .
By using the property of concave function F (x)1, we obtain the following inequal-

ity:⎛
⎝∑
j=1,2

λjbj

⎞
⎠ ∑

i=1,2

⎡
⎣ λibi(∑

j=1,2 λjbj

)F (λiai
λibi

)⎤⎦

≤

⎛
⎝∑
j=1,2

λjbj

⎞
⎠F

⎛
⎝∑
i=1,2

⎡
⎣ λibi(∑

j=1,2 λjbj

) λiai
λibi

⎤
⎦
⎞
⎠ =

⎛
⎝∑
j=1,2

λjbj

⎞
⎠F

(∑
i=1,2 λiai∑
j=1,2 λjbj

)

=

⎛
⎝∑
j=1,2

λjbj

⎞
⎠ ∑i=1,2 λiai∑

j=1,2 λjbj

(
1−

∑
i=1,2 λiai∑
j=1,2 λjbj

)
=
∑
i=1,2

λiai

(
1−

∑
i=1,2 λiai∑
j=1,2 λjbj

)
.

Finally, we have the following inequality for every state and action pair,

(λ1ρ1(s, a) + λ2ρ2(s, a))

(
1− λ1ρ1(s, a) + λ2ρ2(s, a)

λ1
∑

a′ ρ1(s, a
′) + λ2

∑
a′ ρ2(s, a

′)

)

≥ λ1ρ1(s, a)

(
1− ρ1(s, a)∑

a′ ρ1(s, a
′)

)
+ λ2ρ2(s, a)

(
1− ρ2(s, a)∑

a′ ρ2(s, a
′)

)
,

and, by summing up with respect to s, a, we get

W̄ (λ1ρ1 + λ2ρ2) ≥ λ1W̄ (ρ1) + λ2W̄ (ρ2).

Therefore, W̄ (ρ) is a concave function.

1∑
i μiF (xi) ≤ F (

∑
i μixi), for some (xi, . . . , xn) and (μi, . . . , μn) such that μi ≥ 0 and∑

i μi = 1.

211



Appendix B. Proofs of Chapter 3.2.

Theorem 8 tells us that the problem (B.2) is a concave problem and, hence,

strong duality holds. The dual problem can be found as follows:

max
θ,c,λ

min
ρ

LW (θ, c, λ, ρ)

subject to ∀ s, a, λ(s, a) ≥ 0

(B.3)

where LW (θ, c, λ, ρ) = −αW̄ (ρ)−∑s,a ρ(s, a)θ
ᵀφ(s, a) +

∑
s,a ρE(s, a)θ

ᵀφ(s, a)−∑
s,a λsaρ(s, a) +

∑
s cs

(∑
a ρ(s, a)− d(s)− γ

∑
s′,a′ T (s|s′, a′)ρ(s′, a′)

)
and θ, c,

and λ are Lagrangian multipliers. Since strong duality holds, the optimal solu-

tions of primal and dual variables necessarily and sufficiently satisfy the KKT

conditions.

B.3 Optimality Condition of Maximum Causal Tsallis

Entropy

The following theorem explains the optimality condition of the maximum causal

Tsallis entropy problem and also tells us that the optimal policy distribution has

a sparse and multi-modal distribution.

Proof of Theorem 9. These conditions are derived from the stationary condition

of KKT, where the derivative of LW is equal to zero,

∂LW
∂ρ(s, a)

= 0.

We first compute the derivative of W̄ as follows:

∂W̄

∂ρ(s, a)
=

1

2
− ρ(s, a)∑

a′ ρ(s, a
′)
+

1

2

∑
a′

(
ρ(s, a′)∑
a′ ρ(s, a

′)

)2

.

212



Appendix B. Proofs of Chapter 3.2.

We also check the derivative of Bellman flow constraints as follows:

∂
∑

s cs

(∑
a′ ρ(s, a

′)− d(s)− γ∑s′,a′ T (s|s′, a′)ρ(s′, a′)
)

∂ρ(s′′, a′′)

= cs′′ − γ
∑
s

csT (s|s′′, a′′).

Hence, the stationary condition can be obtained as

∂LW
∂ρ(s, a)

=α

[
−1

2
+

ρ(s, a)∑
a′ ρ(s, a

′)
− 1

2

∑
a′

(
ρ(s, a′)∑
a′ ρ(s, a

′)

)2
]
− θᵀφ(s, a)

+ cs − γ
∑
s′
cs′T (s

′|s, a)− λsa = 0.

(B.4)

First, let us consider a positive a ∈ S(s) = {a|ρ(s, a) > 0}. From the comple-

mentary slackness, the corresponding λsa is zero. By replacing ρ(s,a)∑′
a ρ(s,a

′) with

πρ(a|s) and using the definition of qsa, the following equation is obtained from

the stationary condition (B.4).

π(a|s)− qsa
α

=
1

2
+

1

2

∑
a′

(
π(a′|s)

)2 − cs
α
. (B.5)

It can be observed that the right hand side of the equation only depends on the

state s and is constant for the action a. In this regards, by summing up with

respect to the action with positive ρ(s, a) > 0, cs is obtained as follows:

1−
∑
a∈S(s)

qsa
α

= K

(
1

2
+

1

2

∑
a′

(
π(a′|s)

)2 − cs
α

)

cs
α

=
1

2
+

1

2

∑
a′

(
π(a′|s)

)2
+

∑
a∈S(s)

qsa
α − 1

K
,

where K is the number of actions with positive ρ(s, a) > 0. By plug in cs
α into

(B.5), we obtain a policy as follows:

π(a|s) = qsa
α
−
(∑

a∈S(s)
qsa
α − 1

K

)

213



Appendix B. Proofs of Chapter 3.2.

Now, we define τ( qsα ) �
∑

a∈S(s)
qsa
α

−1

K , and, interestingly, τ is the same as the

threshold of a sparsemax distribution [85]. Then, we can obtain the optimality

condition for the policy distribution π(a|s) as follows:

∀s, a π(a|s) = max
(qsa
α
− τ(s), 0

)
.

where τ(s) indicates τ( qsα ).

The Lagrangian multiplier cs can be found from π as follows:

cs
α

=
1

2
+

1

2

∑
a′

(
π(a′|s)

)2
+ τ(s)

=
1

2
+

1

2

∑
a′∈S(s)

(qsa′
α
− τ(s)

)2
+ τ(s)

=
1

2
+

1

2

∑
a′∈S(s)

(qsa′
α

)2
−
∑

a′∈S(s)

qsa′

α
τ(s) +

K

2
τ(s)2 + τ(s)

=
1

2
+

1

2

∑
a′∈S(s)

(qsa′
α

)2
−K

∑
a′∈S(s)

qsa′
α − 1

K
τ(s) +

K

2
τ(s)2

=
1

2
+

1

2

∑
a′∈S(s)

(qsa′
α

)2
− K

2
τ(s)2

cs = α

⎡
⎣1
2

∑
a∈S(s)

((qsa
α

)2
− τ
(qs
α

)2)
+

1

2

⎤
⎦ .

To summarize, we obtain the optimality condition of (B.2) as follows:

qsa � θᵀφ(s, a) + γ
∑
s′
cs′T (s

′|s, a),

cs = α

⎡
⎣1
2

∑
a∈S(s)

((qsa
α

)2
− τ
(qs·
α

)2)
+

1

2

⎤
⎦ ,

π(a|s) = max
(qsa
α
− τ
(qs·
α

)
, 0
)
.

214



Appendix B. Proofs of Chapter 3.2.

B.4 Interpretation as Robust Bayes

In this section, the connection between MCTE estimation and a minimax game

between a decision maker and the nature is explained. We prove that the proposed

MCTE problem is equivalent to a minimax game with the Brier score.

Proof of Theorem 10. The objective function can be reformulated as

Eπ̃

[∑
a′

1

2

(
I{a′=a} − π(a′|s)

)2]
= Eπ̃ [B(s, a)] =

∑
s,a

ρπ̃(s, a)B(s, a)

=
1

2

∑
s,a

ρπ̃(s, a)

(
1− 2π(a|s) +

∑
a′
π(a′|s)2

)
,

Hence, the objective function is quadratic with respect to π(a|s) and is linear

with respect to ρπ̃(s, a). By using the one-to-one correspondence between π̃ and

ρπ̃, we change the variable of inner maximization into the state action visitation.

After changing the optimization variable, by using the minimax theorem [86],

the minimization and maximization of the original problem are interchangeable

as follows:

min
π∈Π

max
ρπ̃∈M

Eπ̃

[∑
a′

1

2

(
I{a′=a} − π(a|s)

)2]

= max
ρπ̃∈M

min
π∈Π

Eπ̃

[∑
a′

1

2

(
I{a′=a} − π(a|s)

)2]

where sum-to-one, positivity, and Bellman flow constraints are omitted here. Af-

ter converting the problem, an optimal solution of the inner minimization with

respect to π is easily computed as π = π̃ using ∇π(a′′|s′′)Eπ̃ [B(s, a)] = 0. After

applying π = π̃ and recovering the variables from ρπ̃ to π̃, the problem (3.13) is

converted into

max
π̃∈Π

1

2

∑
s

ρπ̃(s)

(
1−
∑
a

π̃(a|s)2
)

= max
π̃∈Π

W (π̃),

215



Appendix B. Proofs of Chapter 3.2.

where ρπ̃(s) =
∑

a ρπ̃(s, a). Hence, the problem (3.13) is equivalent to the maxi-

mum causal Tsallis entropy problem.

In summary, the policy found in the maximum causal Tsallis entropy problem

can be interpreted as the optimal decision maker considering the worst nature in

sense of the Brier score.

B.5 Generative Adversarial Setting with Maximum

Causal Tsallis Entropy

In this section, we convert the maximum causal Tsallis entropy problem (B.3)

into the generative adversarial setting by adding a reward regularization defined

as follows:

max
θ

min
π

− αW (π)− Eπ [θ
ᵀφ(s, a)] + EπE [θᵀφ(s, a)]− ψ(θ)

subject to ∀ s, a
∑
a′
π(a′|s) = 1, π(a|s) ≥ 0

(B.6)

The proof consists of two parts. We first show that the maximization and mini-

mization of the problem (B.6) are interchangable, which means that the solution

of the maxi-min problem is equivalent to that of the mini-max problem.

Proof of Theorem 11. We first change the variable from π to ρ as follows:

max
θ

min
ρ

− αW̄ (ρ)− θᵀ
∑
s,a

ρ(s, a)φ(s, a)− θᵀ
∑
s,a

ρE(s, a)φ(s, a)− ψ(θ)

subject to ∀s, a,
∑
s,a

ρ(s, a)φ(s, a) =
∑
s,a

ρE(s, a)φ(s, a),

ρ(s, a) ≥ 0,
∑
a

ρ(s, a) = d(s) + γ
∑
s′,a′

T (s|s′, a′)ρ(s′, a′),

(B.7)

where ρE is ρπE . Let

L̄(ρ, θ) � −αW̄ (ρ)− ψ(θ)− θᵀ
∑
s,a

ρ(s, a)φ(s, a) + θᵀ
∑
s,a

ρE(s, a)φ(s, a). (B.8)

216



Appendix B. Proofs of Chapter 3.2.

From Theorem 8, W̄ (ρ) is a concave function with respect to ρ for a fixed θ.

Hence, L̄(ρ, θ) is also a concave function with respect to ρ for a fixed θ. From

the convexity of ψ, L̄(ρ, θ) is a convex function with respect to θ for a fixed ρ.

Furthermore, the domain of ρ is compact and convex and the domain of θ is

convex. Based on this property of L̄(ρ, θ), we can use minimax duality [86]:

max
θ

min
ρ

L̄(ρ, θ) = min
ρ

max
θ

L̄(ρ, θ).

Hence, the maximization and minimization are interchangable. By using this fact,

we have:

max
θ

min
ρ

L̄(ρ, θ) = min
ρ

max
θ

L̄(ρ, θ)

= min
ρ

− αW̄ (ρ) + max
θ

(
−ψ(θ) + θᵀ

∑
s,a

(ρ(s, a)− ρE(s, a))φ(s, a)
)

= min
ρ

− αW̄ (ρ) + ψ∗
(∑

s,a

(ρ(s, a)− ρE(s, a))φ(s, a)
)

= min
π

ψ∗ (Eπ [φ(s, a)]− EπE [φ(s, a)])− αW (π)

B.6 Tsallis Entropy of a Mixture of Gaussians

The Tsallis entropy of a mixture of Gaussian distribution has an analytic.

Proof of Theorem 12. The causal Tsallis entropy of a mixture of Gaussian distri-

217



Appendix B. Proofs of Chapter 3.2.

bution can be obtained as follows:

W (π) =
1

2

∑
s

ρπ(s)

(
1−
∫
A
π(a|s)2da

)

=
1

2

∑
s

ρπ(s)

⎛
⎝1−

∫
A

(
K∑
i

wi(s)N (a;μi(s),Σi(s))

)2

da

⎞
⎠

=
1

2

∑
s

ρπ(s)

×

⎛
⎝1−

K∑
i

K∑
j

wi(s)wj(s)

∫
A
N (a;μi(s),Σi(s))N (a;μj(s),Σj(s))da

⎞
⎠

=
1

2

∑
s

ρπ(s)

⎛
⎝1−

K∑
i

K∑
j

wi(s)wj(s)N (μi(s);μj(s),Σi(s) + Σj(s))

⎞
⎠

(B.9)

B.7 Causal Entropy Approximation

In our implementation of maximum causal Tsallis entropy imitation learning

(MCTEIL), we approximate W (π) using sampled trajectories as follows:

W (π) = Eπ

[
1

2
(1− π(a|s))

]
≈ 1

N

N∑
i=0

Ti∑
t=0

γt

2

(
1−
∫
A
π(a|si,t)2da

)
, (B.10)

where {(si,t, ai,t)Tit=0}Ni=0 are N trajectories and Ti is the length of the ith tra-

jectory. Since the integral part of (B.10) is analytically computed by Theorem

12, there is no additional computational cost. We have also tested the following

approximation:

W (π) = Eπ

[
1

2
(1− π(a|s))

]
≈ 1

N

N∑
i=0

Ti∑
t=0

γt

2
(1− π(ai,t|si,t)) .

However, this approximation has performed poorly compared to (B.10).

For soft GAIL, H(π) is approximated as the sum of discounted likelihoods

H(π) = Eπ [− log (π(a|s))] ≈ 1

N

N∑
i=0

Ti∑
t=0

−γt log (π(ai,t|si,t)) .

218



Appendix B. Proofs of Chapter 3.2.

Note that the same approximation (B.10) of W (π) is not available for H(π) since

−
∫
A π(a|s) log (π(a|s))da is intractable when we model π(a|s) as a mixture of

Gaussians.

219



Appendix B. Proofs of Chapter 3.2.

220



Appendix C

Proofs of Chapter 4.1.

We show that the Tsallis entropy is a concave function over the distribution P

and has the maximum at an uniform distribution. Note that this is an well known

fact, but, we restate it to make the manuscript self-contained.

Proposition 2. Assume that X is a finite space. Let P is a probability distribu-

tion over X . If q > 0, then, Sq(P ) is concave with respect to P .

Proof. Let us consider the function f(x) = −x lnq(x) defined over (x > 0). Second

derivative of d2f(x)/dx2 is computed as

d2f(x)

dx2
= −qxq−2 < 0 (x > 0, q > 0).

Thus, f(x) is a concave function. Now, using this fact, we show that the following

inequality holds. For λ1, λ2 ≥ 0 such that λ1 + λ2 = 1, and probabilities P1 and

P2,

Sq(λ1P1 + λ2P2) =
∑
x

−(λ1P1(x) + λ2P2(x)) lnq(λ1P1(x) + λ2P2(x))

<
∑
x

−λ1P1(x) lnq(P1(x))− λ2P2(x) lnq(P2(x))

= λ1Sq(P1) + λ2Sq(P2).

221



Appendix C. Proofs of Chapter 4.1.

Consequently, Sq(P ) is concave with respect to P .

Proposition 3. Assume that X is finite space. Then, Sq(P ) is maximized when

P is a uniform distribution, i.e., P = 1/|X | where |X | is the number of elements

in X .

Proof. We would like to employ the KKT condition on the following optimization

problem.

max
P∈Δ

Sq(P ) (C.1)

where Δ = {P |P (x) ≥ 0,
∑

x P (x) = 1} is a probability simplex. Since X is finite,

the optimization variables are probability mass defined over each element. The

KKT condition of C.1 is

∀x ∈ X , ∂ (Sq(π)−
∑

x λ
�(x)P (x)− μ� (1−∑x P (x)))

∂P (x)

∣∣∣∣
P (x)=P �(x)

= − lnq(P
�(x))− (P �(x))q−1 − λ�(x) + μ�

= −q lnq(P �(x))− 1− λ�(x) + μ� = 0

∀x ∈ X , 0 = 1−
∑
x

P �(x), P �(x) ≥ 0

∀x ∈ X , λ�(x) ≤ 0

∀x ∈ X , λ�(x)P �(x) = 0

where λ� and μ� are the Lagrangian multipliers for constraints in Δ. First, let

us consider P �(x) > 0. Then, λ�(x) = 0 from the last condition (complementary

slackness). The first condition implies

P �(x) = expq

(
μ� − 1

q

)
.

Hence, P �(x) has constant probability mass which means P �(x) = 1/|S| where

S = {x|P �(x) > 0} . The optimal value is Sq(P
�) = − lnq(1/|S|). Since − lnq(x) is

222



Appendix C. Proofs of Chapter 4.1.

a monotonically decreasing function, |S| should be the largest number as possible

as it can be. Hence, S = X and P �(x) = 1/|X |.

C.1 q-Maximum: Bounded Approximation of Maxi-

mum

Now, we prove the property of q-maximum which is defined by

Proof of Theorem 13. First, consider the lower bound. Let Δ be a probability

simplex. Then,

q-max
x

(f(x)) = max
P∈Δ

[
E

X∼P
[f(X)] + Sq(P )

]
≤ max

P∈Δ E
X∼P

[f(X)] + max
P∈Δ

Sq(P )

= max
x

(f(x))− lnq

(
1

|X |

) (C.2)

where Sq(P ) has the maximum at an uniform distribution.

The upper bound can be proven using the similar technique. Let P ′ be the

distribution whose probability is concentrated at a maximum element, which

means if x = argmaxx′ f(x
′), then, P ′(x) = 1 and, otherwise, P ′(x) = 0. If there

are multiple maximum at f(x), then, one of them can be arbitrarily chosen. Then,

the Tsallis entropy of P ′ becomes zero since all probability mass is concentrated

at a single instance, i.e., Sq(P
′) = 0. Then, the upper bound can be computed as

follows:

q-max
x

(f(x)) = max
P∈Δ

[
E

X∼P
[f(X)] + Sq(P )

]

≥ E
X∼P ′

[f(X)] + Sq(P
′) = f

(
argmax

x′
f(x′)

)
= max

x
f(x).

(C.3)

We now analyze the solution of q-maximum operator.

223



Appendix C. Proofs of Chapter 4.1.

Proposition 4. The optimal solution of q-maximum operator is

π�q (a) = expq

(
r(a)

q
− ψq

(
r

q

))
, (C.4)

where the q-potential function ψq is a functional defined on {A, r}. ψq is deter-

mined uniquely for given {A, r} by the following normalization condition:

∑
a

π�q (a) =
∑
a

expq

(
r(a)

q
− ψq

(
r

q

))
= 1. (C.5)

Furthermore, using π�q , the optimal value can be written as

E
a∼π�

[R] + Sq(π
�) = (q − 1)

∑
a

r(a)

q
expq

(
r(a)

q
− ψq

(
r

q

))
+ ψq

(
r

q

)
. (C.6)

Proof. It is easy to check ψq exists uniquely for given {A, r}. Indeed, because

expq ∈ [0,∞) is a continuous monotonic function, for any {A, r},∑a expq

(
r
q − ξ

)
converge to 0 and ∞ if ξ goes to +∞ and −∞, respectively. Therefore by the

intermediate value theorem, there exists a unique constant ξ∗ ∈ R such that∑
a expq

(
r(a)
q − ξ∗

)
= 1. Hence it is sufficient to take ψq(r/q) = ξ∗.

To show the remains, we mainly employ the convex optimization technique.

Since Sq(π) is concave and the expectation and constraints of Δ are linear w. r.

t. π, the problem is concave. Thus, strong duality holds and we can use KKT

conditions to obtain an optimal solution.

Δ has two constraints: sum-to-one and nonnegativity. Let μ be a dual variable

for 1 − ∑a π(a) = 0 and λ(a) be a dual variable for π(a) ≥ 0. Then, KKT

conditions are as follows:

∀ i 1−
∑
a

π�q (a) = 0, π�q (a) ≥ 0

∀ i λ�(a) ≤ 0

∀ i λ�(a)p�i = 0

∀ i r(a)− μ� − lnq(π
�
q (a))− (π�q (a))

q−1 + λ�(a) = 0

(C.7)

224



Appendix C. Proofs of Chapter 4.1.

where � indicates an optimal solution. We focus on the last condition. The last

condition is converted into

0 = r(a)− μ� − lnq(π
�
q (a))− (π�q (a))

q−1 + λ�(a)

0 = r(a)− μ� − lnq(π
�
q (a))− (q − 1)

π�q (a)
q−1 − 1

q − 1
− 1 + λ�(a)

0 = r(a)− μ� − q lnq(π�q (a))− 1 + λ�(a)

(C.8)

First, let’s consider positive measure π�q (a) > 0 (λ�(a) = 0). Then, from equa-

tion (C.8),

expq

(
r(a)

q
− μ� + 1

q

)
= π�q (a) (C.9)

and μ� can be found by solving the following equation:

∑
a

expq

(
r(a)

q
− μ� + 1

q

)
= 1. (C.10)

Since the equation (C.10) is exactly same as a normalization equation (C.5), μ�

can be found using a q-potential function ψq:

μ� = qψq

(
r

q

)
− 1 (C.11)

Then,

π�q (a) = expq

(
r(a)

q
− ψq

(
r

q

))
. (C.12)

The optimal value of primal problem is

E
a∼π�

q

[R] + Sq(π
�
q ) =

∑
a

r(a)π�q (a)−
∑
a

[
r(a)

q
− ψq

(
r

q

)]
π�q (a)

= (q − 1)
∑
a

r(a)

q
expq

(
r(a)

q
− ψq

(
r

q

))
+ ψq

(
r

q

)
.

(C.13)

Finally, let’s check the supporting set. For π�q (a) > 0, the following condition

should be satisfied:

1 + (q − 1)

(
r(a)

q
− ψq

(
r

q

))
> 0, (C.14)

where this condition comes from the definition of expq(x).

225



Appendix C. Proofs of Chapter 4.1.

C.2 Tsallis Bellman Optimality Equation

Markov Decision Processes with Tsallis entropy maximization is formulated as

follows.

maximize
π∈Π E

τ∼P,π

[ ∞∑
t

γtRt

]
+ αS∞

q (π) (C.15)

In this section, we analyze the optimality condition of a Tsallis MDP.

Before starting proof, we first remind two propositions and prove one lemma.

They are mainly employed to convert the optimization variable from π to the

state action visitation ρ.

Proposition 5. Let a state visitation be ρπ(s) = Eτ∼P,π
[∑∞

t=0 γ
t
I(st = s)

]
and

state action visitation be ρπ(s, a) = Eτ∼P,π
[∑∞

t=0 γ
t
I(st = s, at = a)

]
. Following

relationships hold.

ρπ(s) =
∑
a

ρπ(s, a), ρπ(s, a) = ρπ(s)π(a|s) (C.16)

∑
a

ρπ(s, a) = d(s) +
∑
s′,a′

P (s|s′, a′)ρπ(s′, a′), ρπ(s, a) (C.17)

where Equation (C.17) is called Bellman Flow constraints.

Proof. Proof can be found in [98, 126]

Proposition 5 tells us, for fixed policy π, ρπ satisfies Bellman Flow constraints.

Then, the next remark show the opposite direction where if some function ρ sat-

isfies Bellman Flow constraints, then there exist an unique policy which induces

ρ.

Proposition 6 (Theorem 2 of [126]). Let M be a set of state-action visitation

measures, i.e.,

M � {ρ|∀s, a, ρ(s, a) ≥ 0,
∑
a

ρ(s, a) = d(s) +
∑
s′,a′

P (s|s′, a′)ρ(s′, a′)}.

226



Appendix C. Proofs of Chapter 4.1.

If ρ ∈ M, then it is a state-action visitation measure for πρ(a|s) � ρ(s,a)∑
a′ ρ(s,a′)

,

and πρ is the unique policy whose state-action visitation measure is ρ.

Proof. Proof can be found in [98, 126].

Now, proposition 5 and 6 tell us that a policy and state action visitation have

the one-to-one correspondence. In the following lemmas, we convert the optimiza-

tion variable from π to ρ based on one-to-one correspondence.

Lemma 12. Let

S̄∞
q (ρ) = −

∑
s,a

ρ(s, a) lnq

(
ρ(s, a)∑
a′ ρ(s, a

′)

)
.

Then, for any stationary policy π ∈ Π and any state-action visitation measure

ρ ∈M, S∞
q (π) = S̄∞

q (ρπ) and S̄
∞
q (ρ) = S∞

q (πρ) hold.

Proof. First, show that S∞
q (π) = S̄∞

q (ρπ).

S∞
q (π) = E

τ∼P,π

[ ∞∑
t=0

γtSq(π(·|st))
]

=
∑
s

Sq(π(·|s)) · Eτ∼P,π
[ ∞∑
t=0

γtI(st = s)

]

=
∑
s

Sq(π(·|s))ρπ(s) =
∑
s,a

− lnq(π(a|s))π(a|s)ρπ(s)

=
∑
s,a

− lnq

(
ρπ(s, a)∑
a′ ρπ(s, a

′)

)
ρπ(s, a) = S̄∞

q (ρπ)

(C.18)

Next, show that S̄∞
q (ρ) = S∞

q (πρ).

S̄∞
q (ρ) =

∑
s,a

− lnq

(
ρ(s, a)∑
a′ ρ(s, a

′)

)
ρ(s, a)

=
∑
s,a

− lnq(πρ(a|s))πρ(a|s)ρ(s) = S∞
q (πρ)

(C.19)

227



Appendix C. Proofs of Chapter 4.1.

Corollary 11. The problem (C.20) is equivalent to a Tsallis MDP, which means

if ρ� is an optimal solution of (C.20), then, πρ� is an optimal solution of a Tsallis

MDP and vice versa.

Proof. Let ρ� be an optimal solution of (C.20). Assume that there exist an-

other policyt π′ such that J(π′) + S∞
q (π′) > J(πρ�) + S∞

q (πρ�) where J(π) =

Eτ∼π,P
[∑∞

t=0 γ
tRt

]
. Then,

∑
s,a ρπ′(s, a)r(s, a)+S̄∞

q (ρπ′) >
∑

s,a ρ�(s, a)r(s, a)+

S̄∞
q (ρ�). It contradicts to the fact that ρ� is the optimal solution of (C.20). Thus,

for all π, J(π) + S∞
q (π) ≤ J(πρ�) + S∞

q (πρ�) which means πρ� is the optimal

policy. The opposite direction also can be proven in the same way.

Lemma 12 shows that S̄∞
q (ρ) and S∞

q (π) has the same function value. Thus, we

can freely change the optimization variable from π to ρ since the optimal point

does not change due to the Corollary 11.

C.3 Variable Change

Based on Proposition 6 and Lemma 12, we convert a Tsallis MDP problem to

maximize
ρ

∑
s,a

ρ(s, a)
∑
s′

r(s, a, s′)P (s′|s, a)−
∑
s,a

ρ(s, a) lnq

(
ρ(s, a)∑
a′ ρ(s, a

′)

)

subject to ∀s, a, ρ(s, a) ≥ 0,
∑
a

ρ(s, a) = d(s) +
∑
s′,a′

P (s|s′, a′)ρ(s′, a′).
(C.20)

Now, the optimization variables in the problem (C.20) is a state action visitation.

In the following lemmas, we show that the problem (C.20) is concave with respect

to a state action visitation.

Lemma 13. S̄∞
q (ρ) is concave function with respect to ρ ∈M

Proof. Let us consider the function f(x) = −x lnq(x) defined over (x > 0). Second

228



Appendix C. Proofs of Chapter 4.1.

derivative of d2f(x)/dx2 is computed as

d2f(x)

dx2
= −qxq−2 < 0 (x > 0).

Since its second derivative is always negative on its domain, f(x) is a concave

function. From this fact, we can show that S̄∞
q (ρ) is concave. Proving the con-

cavity is equivalent to show that for any 0 < λ1, λ2 < 1 such that λ1 + λ2 = 1,

and for ρ1, ρ2 ∈M the following inequality holds

S̄∞
q (λ1ρ1 + λ2ρ2) > λ1S̄

∞
q (ρ1) + λ2S̄

∞
q (ρ2)

For notional simplicity, let ρ̃ be λ1ρ1 + λ2ρ2 and define μ1 =
λ1

∑
a′ ρ1(s,a

′)∑
a′ ρ̃(s,a′)

and

μ2 =
λ2

∑
a′ ρ2(s,a

′)∑
a′ ρ̃(s,a′)

. Note that from the definition, μ1 + μ2 = 1. It can be shown

as follow:

S̄∞
q (λ1ρ1 + λ2ρ2) = −

∑
s,a

ρ̃(s, a) lnq

(
λ1ρ1(s, a) + λ2ρ2(s, a)∑

a′ ρ̃(s, a′)

)

= −
∑
s,a

ρ̃(s, a) lnq

(
μ1ρ1(s, a)∑
a′ ρ1(s, a′)

+
μ2ρ2(s, a)∑
a′ ρ2(s, a′)

)

= −
∑
s,a

(∑
a′

ρ̃(s, a′)
λ1ρ1(s, a) + λ2ρ2(s, a)∑

a′ ρ̃(s, a′)

)
lnq

(
μ1ρ1(s, a)∑
a′ ρ1(s, a′)

+
μ2ρ2(s, a)∑
a′ ρ2(s, a′)

)

= −
∑
s,a

∑
a′

ρ̃(s, a′)
(

μ1ρ1(s, a)∑
a′ ρ1(s, a′)

+
μ2ρ2(s, a)∑

a′ ρ̃(s, a′)

)
lnq

(
μ1ρ1(s, a)∑
a′ ρ1(s, a′)

+
μ2ρ2(s, a)∑
a′ ρ2(s, a′)

)
(C.21)

Then, for all s, a,

−
(

μ1ρ1(s, a)∑
a′ ρ1(s, a′)

+
μ2ρ2(s, a)∑

a′ ρ̃(s, a′)

)
lnq

(
μ1ρ1(s, a)∑
a′ ρ1(s, a′)

+
μ2ρ2(s, a)∑
a′ ρ2(s, a′)

)

> −μ1
ρ1(s, a)∑
a′ ρ1(s, a′)

lnq

(
ρ1(s, a)∑
a′ ρ1(s, a′)

)
− μ2

ρ2(s, a)∑
a′ ρ2(s, a′)

lnq

(
ρ2(s, a)∑
a′ ρ2(s, a′)

)

Equation (C.21) becomes

S̄∞
q (λ1ρ1 + λ2ρ2)

=−
∑
s,a

∑
a′

ρ̃(s, a′)
(

μ1ρ1(s, a)∑
a′ ρ1(s, a′)

+
μ2ρ2(s, a)∑

a′ ρ̃(s, a′)

)
lnq

(
μ1ρ1(s, a)∑
a′ ρ1(s, a′)

+
μ2ρ2(s, a)∑
a′ ρ2(s, a′)

)

>−
∑
s,a

∑
a′

ρ̃(s, a′)μ1
ρ1(s, a)∑
a′ ρ1(s, a′)

lnq

(
ρ1(s, a)∑
a′ ρ1(s, a′)

)

−
∑
s,a

∑
a′

ρ̃(s, a′)μ2
ρ2(s, a)∑
a′ ρ2(s, a′)

lnq

(
ρ2(s, a)∑
a′ ρ2(s, a′)

)

229



Appendix C. Proofs of Chapter 4.1.

Since
∑

a′ ρ̃(s, a
′)μ1

ρ1(s,a)∑
a′ ρ1(s,a′)

=
∑

a′ ρ̃(s, a
′)λ1

∑
a′ ρ1(s,a

′)∑
a′ ρ̃(s,a′)

ρ1(s,a)∑
a′ ρ1(s,a′)

= λ1ρ1(s, a),

finally, we get

S̄∞
q (λ1ρ1 + λ2ρ2)

>−
∑
s,a

∑
a′
ρ̃(s, a′)μ1

ρ1(s, a)∑
a′ ρ1(s, a

′)
lnq

(
ρ1(s, a)∑
a′ ρ1(s, a

′)

)

−
∑
s,a

∑
a′
ρ̃(s, a′)μ2

ρ2(s, a)∑
a′ ρ2(s, a

′)
lnq

(
ρ2(s, a)∑
a′ ρ2(s, a

′)

)

=−
∑
s,a

λ1ρ1(s, a) lnq

(
ρ1(s, a)∑
a′ ρ1(s, a

′)

)
−
∑
s,a

λ2ρ2(s, a) lnq

(
ρ2(s, a)∑
a′ ρ2(s, a

′)

)

=λ1S̄
∞
q (ρ1) + λ2S̄

∞
q (ρ2)

Note that this proof holds for every q value greater than zero.

Corollary 12. The problem (C.20) is concave with respect to ρ ∈M

Proof. The objective function of (C.20) is concave function w.r.t ρ since the first

term is linear and the second term is concave be Lemma 13. All constraints are

linear w.r.t ρ. Thus, the problem is a concave problem.

C.4 Tsallis Bellman Optimality Equation

Proof of Theorem 14. Since the problem (C.20) is concave with respect to ρ, the

primal and dual solutions necessarily and sufficiently satisfy a KKT condition.

First, the Lagrangian objecitve L �
∑

s,a ρ(s, a)r(s, a)−
∑

s,a ρ(s, a) lnq

(
ρ(s,a)∑
a′ ρ(s,a′)

)
+∑

s,a λ(s, a)ρ(s, a)+
∑

s μ(s)
(
d(s) +

∑
s′,a′ P (s|s′, a′)ρ(s′, a′)−

∑
a ρ(s, a)

)
where

λ(s, a) and μ(s) are dual variables for nonnegativity and Bellman flow constraints.

230



Appendix C. Proofs of Chapter 4.1.

The KKT conditions of the problem (C.20) are as follows:

∀s, a, ρ�(s, a) ≥ 0, d(s) +
∑
s′,a′

P (s|s′, a′)ρ�(s′, a′)−
∑
a

ρ�(s, a) = 0

∀s, a, λ�(s, a) ≤ 0

∀s, a, λ�(s, a)ρ�(s, a) = 0

∀s, a, 0 =
∑
s′

r(s, a, s′)P (s′|s, a) + γ
∑
s′
μ�(s′)P (s′|s, a)

− μ�(s)− q lnq
(

ρ�(s, a)∑
a′ ρ

�(s, a′)

)
− 1 +

∑
a

(
ρ�(s, a)∑
a′ ρ

�(s, a′)

)q
+ λ�(s, a)

(C.22)

We would like to note that the dervative of S̄∞
q (ρ) is computed as follows:

∂S̄∞
q (ρ)

∂ρ(s′′, a′′)
=−

∑
s,a

∂ρ(s, a)

∂ρ(s′′, a′′)
lnq

(
ρ(s, a)∑
a′ ρ(s, a′)

)
−
∑
s,a

ρ(s, a)
∂ lnq

(
ρ(s, a)/

∑
a′ ρ(s, a

′)
)

∂ρ(s′′, a′′)

=− lnq

(
ρ(s′′, a′′)∑
a′ ρ(s′′, a′)

)

−
∑
a

ρ(s′′, a)
(

ρ(s′′, a)∑
a′ ρ(s′′, a′)

)q−2
(

δa′′(a)∑
a′ ρ(s′′, a′)

− ρ(s′′, a)(∑
a′ ρ(s′′, a′)

)2
)

=− lnq

(
ρ(s′′, a′′)∑
a′ ρ(s′′, a′)

)
−
(

ρ(s′′, a′′)∑
a′ ρ(s′′, a′)

)q−1

+
∑
a

(
ρ(s′′, a)∑
a′ ρ(s′′, a′)

)q

=− q lnq

(
ρ(s′′, a′′)∑
a′ ρ(s′′, a′)

)
− 1 +

∑
a

(
ρ(s′′, a)∑
a′ ρ(s′′, a′)

)q

(C.23)

Then, we show that μ�(s) is the same as optimal value V �
q (s). From the sta-

tionary condition, by multiplying πρ�(a|s) = ρ�(s, a)/
∑

a′ ρ
�(s, a′) and summing

231



Appendix C. Proofs of Chapter 4.1.

up with respect to a, the following equation is obtained:

0 =
∑
a

∑
s′

r(s, a, s′)P (s′|s, a)πρ�(a|s) + γ
∑
s′

μ�(s′)
∑
a

P (s′|s, a)πρ�(a|s)− μ�(s)

− q
∑
a

πρ�(a|s) lnq

(
ρ�(s, a)∑
a′ ρ�(s, a′)

)
− 1 +

∑
a

πρ�(a|s)
∑
a′′

(
ρ�(s, a′′)∑
a′ ρ�(s, a′)

)q

+
∑
a

λ�(s, a)πρ�(a|s)

=
∑
a

∑
s′

r(s, a, s′)P (s′|s, a)πρ�(a|s) + γ
∑
s′

μ�(s′)
∑
a

P (s′|s, a)πρ�(a|s)

− μ�(s)− q
∑
a

πρ�(a|s) lnq (πρ�(a|s))− 1 +
∑
a′′

πρ�(s, a)
q

+
∑
a

λ�(s, a)πρ�(a|s)

=
∑
a

∑
s′

r(s, a, s′)P (s′|s, a)πρ�(a|s) + γ
∑
s′

μ�(s′)
∑
a

P (s′|s, a)πρ�(a|s)

− μ�(s)− q
∑
a

πρ�(a|s) lnq (πρ�(a|s))− 1 +
∑
a′′

πρ�(s, a)
q

=
∑
a

∑
s′

r(s, a, s′)P (s′|s, a)πρ�(a|s) + γ
∑
s′

μ�(s′)
∑
a

P (s′|s, a)πρ�(a|s)

− μ�(s)− q
∑
a

πρ�(a|s) lnq (πρ�(a|s)) + (q − 1)
∑
s,a

πρ�(s, a) lnq (πρ�(s, a))

=
∑
a

∑
s′

r(s, a, s′)P (s′|s, a)πρ�(a|s) + γ
∑
s′

μ�(s′)
∑
a

P (s′|s, a)πρ�(a|s)

− μ�(s)−
∑
s,a

πρ�(s, a) lnq (πρ�(s, a)) .

(C.24)

Finally,

μ�(s) =
∑
a

∑
s′

r(s, a, s′)P (s′|s, a)πρ�(a|s) + γ
∑
s′
μ�(s′)

∑
a

P (s′|s, a)πρ�(a|s)

−
∑
a

πρ�(a|s) lnq (πρ�(a|s))

=Es′∼P,a∼π
[
r(s, a, s′) + αSq(πρ�(·|s)) + γμ�(s′)

∣∣s]
(C.25)

This equation (C.25) exactly satisfies Tsallis Bellman expectation (TBE) equation

of πρ� . Thus, we want to claim that μ�(s) is the value V πρ� (s) of optimal policy

πρ� , i.e., μ
�(s) = V �

q (s). However, to guarantee μ�(s) = V �
q (s), we should prove

the following statement: if an arbitrary function f(s) satisfies a TBE equation

for π, then, f(s) = V π(s).

232



Appendix C. Proofs of Chapter 4.1.

Then, we first analyze a positive state-action visitation ρ�(s, a) > 0 (λ�(s, a) =

0). Using the fact that μ� = V �
q , we can obtain Q�q(s, a) = Es′∼P [r(s, a, s′) +

γμ�(s′)]. By replacing ρ�(s, a)/
∑

a′ ρ
�(s, a′) with πρ�(a|s) and using Q�q(s, a) =

Es′∼P [r(s, a, s′) + γμ�(s′)] and μ�(s) = V �(s),

Q�q(s, a)− V �
q (s)− q lnq (πρ�(a|s))− 1 +

∑
a

πρ�(a|s)q = 0

Q�q(s, a)

q
−
V �
q (s) + 1−∑a (πρ�(a|s))q

q
= lnq (πρ�(a|s))

expq

(
Q�q(s, a)

q
−
V �
q (s) + 1−∑a (πρ�(a|s))q

q

)
= πρ�(a|s).

(C.26)

Now, we can use
∑

a π(a|s) = 1. By summing up with respect to a,

∑
a

expq

(
Q�q(s, a)

q
−
V �
q (s) + 1−∑a (πρ�(a|s))q

q

)
= 1. (C.27)

This equation is the normalization equation of q-exponential distribution (C.5).

So, we can obtain the relationship between q-potential and the optimal value

function.

ψq

(
Q�q(s, ·)

q

)
=
V �
q (s) + 1−∑a (πρ�(a|s))q

q
(C.28)

Finally, it is shown that the optimal policy has q-exponential distribution of

Q�q(s, ·).

expq

(
Q�q(s, a)

q
− ψq

(
Q�q(s, ·)

q

))
= πρ�(a|s) (C.29)

233



Appendix C. Proofs of Chapter 4.1.

By plugging in this result into (C.25),

V �
q (s) =

∑
a

πρ�(a|s)
∑
s′

[
r(s, a, s′) + γV �

q (s
′)P (s′|s, a)

]
−
∑
a

πρ�(a|s) lnq
(
π�q (a|s)

)
=
∑
a

πρ�(a|s)Q�q(s, a)−
∑
a

πρ�(a|s) lnq
(
π�q (a|s)

)
=
∑
a

πρ�(a|s)Q�q(s, a)−
∑
a

πρ�(a|s)
(
Q�q(s, a)

q
− ψq

(
Q�q(s, ·)

q

))

= (q − 1)
∑
a

πρ�(a|s)
Q�q(s, a)

q
+ ψq

(
Q�q(s, ·)

q

)

= q-max
a′

(
Q�q(s, a

′)
)

(C.30)

where the last equation is derived using the Equation (C.6).

To summarize, we obtain the optimality condition for a Tsallis MDP as follows:

Q�q(s, a) = Es′
[
r(s, a, s′) + γV �(s′)

∣∣s, a]
V �
q (s) = q-max

a′
(Q�q(s, a

′))

π�q (a|s) = expq

(
Q�q(s, a)

q
− ψq

(
Q�q(s, ·)

q

)) (C.31)

We call these equations Tsallis Bellman optimality (TBO) equations.

C.5 Tsallis Policy Iteration

C.6 Tsallis Bellman Expectation (TBE) Equation

In Tsallis policy evaluation, for fixed π, the value functions of π have the rela-

tionship as follows:

Qπq (s, a) = E
s′∼P

[r(s, a, s′) + γV π
q (s

′)|s, a]

V π
q (s) = E

a∼π
[Qπq (s, a)− lnq(π(a|s))],

(C.32)

234



Appendix C. Proofs of Chapter 4.1.

These equations are derived from the definition of V π
q and Qπq . Thus, if we have

some value functions of Tsallis MDP, then, they satisfies TBE equation trivially.

However, main goal of Tsallis policy evaluation is to prove the opposite direction:

if an arbitrary function f(s) satisfies a TBE equation for π, then, f(s) = V π(s).

C.7 Tsallis Bellman Expectation Operator and Tsallis

Policy Evaluation

[
T πq F

]
(s, a) � E

s′∼P
[r(s, a, s′) + γVF (s

′)|s, a]

VF (s) � E
a∼π

[F (s, a)− lnq(π(a|s))],
(C.33)

where s′ ∼ P indicates s′ ∼ P (·|s, a) and a′ ∼ π indicates a′ ∼ π(·|s). Then,

policy evaluation method in a Tsallis MDP can be simply defined as

Fk+1 = T πq Fk.

Before proving the Tsallis policy evaluation step, we first drive the properties

of T πq .

Lemma 14. For F : S × A → R and c ∈ R+, T πq (F + c1) = T πq F + γc1 where

1 : S ×A → 1

Proof. For all s, a,

VF+c1(s) = E
a∼π

[F (s, a) + c− lnq(π(a|s))] = E
a∼π

[F (s, a)− lnq(π(a|s))] + c

= VF (s) + c

(C.34)

Thus,[
T πq (F + c1)

]
(s, a) = E

s′∼P
[r(s, a, s′) + γVF+c1(s

′)|s, a]

= E
s′∼P

[r(s, a, s′) + γVF (s
′) + γc|s, a]

= E
s′∼P

[r(s, a, s′) + γVF (s
′)|s, a] + γc = T πq F (s) + γc

(C.35)

235



Appendix C. Proofs of Chapter 4.1.

Lemma 15. For F,G : S × A → R and F � G, T πq (F ) � T πq (G) where �

indicates F (s, a) ≥ G(s, a) for all s, a.

Proof. For all s, a,

VF (s) = E
a∼π

[F (s, a)− lnq(π(a|s))] < E
a∼π

[G(s, a)− lnq(π(a|s))] = VG(s) (C.36)

Thus,

[
T πq F

]
(s, a) = E

s′∼P
[r(s, a, s′) + γVF (s

′)|s, a]

< E
s′∼P

[r(s, a, s′) + γVG(s
′)|s, a] =

[
T πq G

]
(s, a)

(C.37)

Lemma 16. T πq is γ-contraction mapping in (C(S × A, R), | · |∞) where C(S ×

A, R) � {F : S ×A → R} and |F −G|∞ = sups,a |F (s, a)−G(s, a)|

Proof. Let d = |F −G|∞. The, G− d1 � F � G+ d1. From Lemma 15, T πq (G+

d1) � T πq F � T πq (G− d1). From Lemma 14, T πq G+ γd1 � T πq F � T πq G− γd1.

Then,γd1 � T πq F − T πq G � −γd1. Finally,

|T πq F − T πq G|∞ ≤ γd = γ|F −G|∞.

Consequently, T πq is γ-contraction.

Proof of Tsallis Policy Evaluation

Proof of Theorem 15. From Lemma 16, T πq is γ-contraction and has an unique

fixed point F∗ = T πq F∗ from the Banach fixed point theorem. Then, for any

initial function F , a sequence of Fk converges to the fixed point, i.e., F∗ =

236



Appendix C. Proofs of Chapter 4.1.

limk→∞(T πq )kF0. The fixed point F∗ satisfies a TBE equation as follows:

F∗(s, a) = E
s′∼P

[r(s, a, s′) + γVF∗(s
′)|s, a]

VF∗(s) = E
a∼π

[F∗(s, a)− lnq(π(a|s))],
(C.38)

Since F∗ is unique, F∗ is the only function which satisfies a TBE equation. Thus,

F∗ = Qπq .

C.8 Tsallis Policy Improvement

The value function evaluated from Tsallis policy evaluation can be employed to

update the policy distribution. In policy improvement step, the policy will be

updated to maximize

∀s, πk+1(·|s) � argmax
π(·|s) E

a∼π
[Qπkq (s, a)− lnq(π(a|s))|s] (C.39)

Proof of Theorem 16. Since πk+1 is updated by maximizing Equation (C.39) and

the maximization in Equation (C.39) is concave with respect to π, the following

inequality holds

E
a∼πk+1

[
Qπkq (s, a)− lnq(πk+1(a|s))

∣∣s] ≥ E
a∼πk

[
Qπkq (s, a)− lnq(πk(a|s))

∣∣s] = V πk
q (s),

(C.40)

where the equality holds when πk+1 = πk. This inequality induces a performance

237



Appendix C. Proofs of Chapter 4.1.

improvement,

Qπk
q (s, a) = E

s1∼P

[
r(s0, a0, s1) + γV πk

q (s1)
∣∣s0 = s, a0 = a

]
≤ E

s1∼P
[r(s0, a0, s1)|s0 = s, a0 = a]

+ γ E
s1,a1∼P,πk+1

[
Qπk

q (s1, a1)− lnq(πk+1(a1|s1))
∣∣s0 = s, a0 = a

]
= E

s1∼P
[r(s0, a0, s1)|s0 = s, a0 = a]

+ γ E
s1:2,a1∼P,πk+1

[
r(s1, a1, s2)− lnq(πk+1(a1|s1)) + γV πk

q (s2)
∣∣s0 = s, a0 = a

]
≤ E

s1∼P
[r(s0, a0, s1)|s0 = s, a0 = a]

+ γ E
s1:t+1,a1:t∼P,πk+1

[
t∑

k=1

γk−1 (r(sk, ak, sk+1)− lnq(πk+1(ak|sk))
∣∣∣∣∣s0 = s, a0 = a

]

+ γt+1
E

st+1∼P,πk+1

[
V πk
q (st+1)

∣∣s0 = s, a0 = a
]

...

≤ E
s1∼P

[
r(s0, a0, s1) + γV

πk+1
q (s1)

∣∣s0 = s, a0 = a
]
= Q

πk+1
q (s, a),

(C.41)

where γt+1
Est+1∼P,πk+1

[
V πk
q (st+1)

∣∣s0 = s, a0 = a
]
→ 0 as t→∞.

Proof of Theorem 17. From the fact that reward function r has upper bound

rmax and S ×A is bounded, Qπkq is also bouned. Then, since a sequence of Qπkq is

monotonically non-decreasing and bounded, it converges to some point π∗. Now,

proof will be done by showing π∗ = π�q . First, from the policy improvement, We

have π∗(·|s) = argmaxπ(·|s) Ea∼π[Qπ∗q (s, a) − lnq(π(a|s))|s] and at π∗, the equal-

ity in Equation (C.40) holds, i.e., V π∗
q (s) = Ea∼π∗

[
Qπ∗q (s, a)− α lnq(π∗(a|s))

∣∣s].
Then, the following equality holds,

V π∗
q (s) = max

π(·|s) E
a∼π
[
Qπ∗q (s, a)− α lnq(π(a|s))

∣∣s] ,
which is equivalent to V π∗

q (s) = q-maxa′ Q
π∗(s, a′). It can be also known that π∗ is

the solution of q-maximum. From the TBE equation,Qπ∗q (s, a) = Es′∼P [r(s, a, s′)+

γV π∗
q (s′)|s, a]. Thus, π∗ satisfies a TBO equation and by Theorem 14, π∗ = π�q .

238



Appendix C. Proofs of Chapter 4.1.

C.9 Tsallis Value Iteration

Tsallis value iteration is derived from the optimality equation. From TBO equa-

tion, Tsallis Bellman optimality operator is defined by

[TqF ] (s, a) � E
s′∼P

[
r(s, a, s′) + γVF (s)

∣∣s, a]
VF (s) � q-max

a′

(
F (s, a′)

)
.

(C.42)

Then, a Tsallis value iteration is defined by repeatedly applying TBO operator:

Fk+1 = TqFk.

Before proving the Tsallis value iteration, we first drive the properties of q-

maximum and Tq.

Lemma 17. For any function f(x) defined on finite input space X and c ∈ R,

The following equality hold:

1. q-maxx(f(x) + c1) = q-maxx(f(x)) + c

2. q-maxx(f(x)) is monotone. If f � g, then q-maxx(x) ≤ q-maxx(y)

where 1 is a constant function whose value is one.

Proof. For property 1,

q-max
x

(f(x) + c1) = max
P∈Δ

[
E

X∼P
[f(X) + c1(X)] + Sq(P )

]

= max
P∈Δ

[
E

X∼P
[f(X)] + c+ Sq(P )

]

= max
P∈Δ

[
E

X∼P
[f(X)] + Sq(P )

]
+ c = q-max

x
(f(x)) + c

(C.43)

239



Appendix C. Proofs of Chapter 4.1.

For property 2,

q-max
x

(f(x)) = max
P∈Δ

[
E

X∼P
[f(X)] + Sq(P )

]
= E

X∼P �(f)
[f(X)] + Sq(P

�(f)) ≤ E
X∼P �(f)

[g(X)] + Sq(P
�(f))

(∵ f � g)

≤ max
P ′∈Δ

[
E

X∼P ′
[g(X)] + Sq(P

′)
]
= q-max

x
(f(x)),

(C.44)

where P �(f) indicates the optimal distribution of q-maxx(f(x)).

Lemma 18. For F : S × A → R and c ∈ R, Tq (F + c1) = TqF + γc1 where

1 : S ×A → 1

Proof. For all s, a,

VF+c1(s) = q-max
a′

(
F (s, a′) + c

)
= q-max

a′

(
F (s, a′)

)
+ c = VF (s) + c

[TqF + c1] (s, a) = E
s′∼P

[
r(s, a, s′) + γVF+c1(s

′)
∣∣s, a]

= E
s′∼P

[
r(s, a, s′) + γVF (s

′) + γc
∣∣s, a]

= E
s′∼P

[
r(s, a, s′) + γVF (s

′)
∣∣s, a]+ γc = [TqF ] (s, a) + γc

(C.45)

Lemma 19. For F,G : S × A → R and F � G, Tq (F ) � Tq (G) where �

indicates F (s, a) ≥ G(s, a) for all s, a.

Proof. For all s, a,

VF (s) = q-max
a′

(
F (s, a′)

)
≤ q-max

a′

(
G(s, a′)

)
= VG(s)

[TqF ] (s, a) = E
s′∼P

[
r(s, a, s′) + γVF (s

′)
∣∣s, a]

≤ E
s′∼P

[
r(s, a, s′) + γVG(s

′)
∣∣s, a] = [TqG] (s, a)

(C.46)

240



Appendix C. Proofs of Chapter 4.1.

Lemma 20. Tq is γ-contraction mapping in (C(S × A, R), | · |∞) where C(S ×

A, R) � {F : S ×A → R} and |F −G|∞ = sups,a |F (s, a)−G(s, a)|

Proof. Let d = |F −G|∞. The, G− d1 � F � G+ d1. From Lemma 15, Tq(G+

d1) � TqF � Tq(G − d1). From Lemma 14, TqG + γd1 � TqF � TqG − γd1.

Then,γd1 � TqF − TqG � −γd1. Finally,

|TqF − TqG|∞ ≤ γd = γ|F −G|∞.

Consequently, Tq is γ-contraction.

Proof of Tsallis Value Iteration

Proof of Theorem 18. From Lemma 20, Tq is γ-contraction and has an unique

fixed point F∗ = TqF∗ from the Banach fixed point theorem. Then, for any

initial function F , a sequence of Fk converges to the fixed point, i.e., F∗ =

limk→∞(Tq)kF0. The fixed point F∗ satisfies a TBO equation as follows:

F∗(s, a) = E
s′∼P

[r(s, a, s′) + γVF∗(s
′)|s, a]

VF∗(s) = q-max
a

[F∗(s, a)],
(C.47)

Since TBO equation is the necessary and sufficient conditions,F∗ = Q�q .

C.10 Performance Error Bounds

Lemma 21. Let

[T F ](s, a) � E
s′∼P

[r(s, a, s′) + γmax
a′

F (s′, a′)|s, a]

for a function F . T is the original Bellman optimality operator which is used for

an original value iteration. Then, for all positive integer k and any function F

over S ×A,

T kq F � T kF

241



Appendix C. Proofs of Chapter 4.1.

where T k indicates k tiems application of T . Furthermore, V �
q � V � holds which

means that the optimal value of Tsallis MDP is greater than the optimal value of

the original MDP.

Proof. When k = 1, from Lemma 17, for all s, a,

[T F ] (s, a) = E
s′∼P

[r(s, a, s′) + γmax
a′

F (s′, a′)|s, a]

≤ E
s′∼P

[
r(s, a, s′) + γ q-max

a′
F (s′, a′)|s, a

]
= [TqF ](s, a)

(C.48)

Now, assume that the statement holds when k = n, then,

T n+1F = T T nF � TqT nF � TqT nq F � T n+1
q F (C.49)

From mathematical induction, the statement holds for all positive integers. Fur-

thermore,

V � = lim
k→∞

T kF � lim
k→∞

T kq F = V �
q

We would like to note that the gap between V � and V �
q is induced from the

Tsallis entropy.

Proof of Performance Error Bounds

Proof of Theorem 19. The upper bound is trivial. Since the original MDP max-

imizes J(π) without the entropy maximization, it is clear that J(π�q ) ≤ J(π�)

242



Appendix C. Proofs of Chapter 4.1.

where J(π) � Eτ∼π,P [
∑∞

t=0 γ
tRt]. For the lower bound, using Lemma 21,

J(π�) = Es0∼d [V
�(s0)] ≤ Es0∼d

[
V �
q (s0)

]
= J(π�q ) + S∞

q

(
π�q
)

≤ J(π�q ) + Eτ∼π,P

[ ∞∑
t=0

γtSq
(
π�q (·|st)

)]

≤ J(π�q ) + Eτ∼π,P

[ ∞∑
t=0

γt max
π(·|st)

Sq (π(·|st))
]

≤ J(π�q )− Eτ∼π,P

[ ∞∑
t=0

γt lnq (1/|A|)
]

≤ J(π�q )− (1− γ)−1 lnq (1/|A|)

(C.50)

C.11 q-Scheduling

Proof of Theorem 20. The proof directly follows from Theorem 19.

J(π�) + (1− γ)−1 lnqk (1/|A|) ≤ J(πk)

J(π�) + (1− γ)−1 lim
k→∞

lnqk (1/|A|) ≤ lim
k→∞

J(πk)

J(π�) ≤ lim
k→∞

J(πk) (∵ lim
k→∞

lnqk (1/|A|) = 0)

∴ J(π�) = lim
k→∞

J(πk)

(C.51)

243



Appendix C. Proofs of Chapter 4.1.

244



Appendix D

Proofs of Chapter 4.2.

D.1 Infinite Exploration

Before starting the proof of Theorem 21, we first prove the following Lemma.

Lemma 22. The policy of SERN has a constant lower bound greater than zero,

i.e., [πt]a ≥ c > 0, where c = 1
K exp(− 1

α).

Proof of Lemma 22. For each round, the proposed method samples an action

from

πt := argmax
π

{
E
a∼π

[r̂a(st; θt−1)] + αS(π)

}
.

Thus, the policy distribution is the optimal solution of

max
π

{
E
a∼π

[r̂a(st; θt−1)] + αS(π)

}

which is a concave maximization problem since Ea∼π [r̂a(st; θt−1)] is linear for π

and αS(π) is concave for π. The domain of this problem has two constraints, i.e.,∑
a πa − 1 = 0 and πa ≥ 0. Since the problem is concave, strong duality holds

and let us denote a dual variable for
∑

a πa − 1 = 0 as μ and dual variable for

245



Appendix D. Proofs of Chapter 4.2.

positivity πa ≥ 0 as λa. Then, from Karush-Kuhn-Tucker (KKT) conditions, we

have

r̂a(st; θt−1)− α ln(πa)− α+ λa + μ = 0.

We first compute μ by multiplying πa to both sides and summing up with respect

to a. Then, μ = α − αS(π) − Ea∼π [r̂a(st; θt−1)] where λaπa = 0, one of KKT

conditions, is used. By using S(π) ≤ − ln(1/K) and Ea∼π [r̂a(st; θt−1)] ≤ 1, μ ≥

α+ α ln(1/K)− 1. Since ln(x) requires x > 0 and for all a, πa > 0 holds, λa = 0

for all a from KKT conditions. Thus,

ln(πa) =
r̂a(st; θt−1)− α+ μ

α
≥ ln(1/K)− 1

α

where r̂a ≥ 0. Finally, we get

πa ≥
1

K
exp

(
− 1

α

)
.

The proof of Theorem 21 is as follows.

Proof of Theorem 21. Using Lemma 22, for all t and a, [πt]a ≥ c where c =

1
K exp(− 1

α). Thus, E [Na(t)] =
∑

t[πt]a ≥ ct.

Proof of Theorem 22. LetN ′
a(t) = Na(t)−ct. To prove thatN ′

a(t) is sub-Martingale,

we need to check E[N ′
a(t)|N ′

a(t− 1)] ≥ N ′
a(t− 1). The inequality holds as follows:

E[N ′
a(t)|N ′

a(t− 1)] = E[Na(t)− ct|N ′
a(t− 1)]

= E[Na(t− 1)− c(t− 1) + I(at = a)− c|N ′
a(t− 1)]

= N ′
a(t− 1) + E[I(at = a)− c|N ′

a(t− 1)]

= N ′
a(t− 1) + [πt]a − c

≥ N ′
a(t− 1) (∵ [πt]a ≥ c).

246



Appendix D. Proofs of Chapter 4.2.

For sub-Martingale random variable, since |N ′
a(t)−N ′

a(t−1)| < 1+c < 2 for all t,

Azuma-Hoeffding inequality holds, P (N ′
a(t)−N ′

a(0) ≤ −δ) = P (Na(t) ≤ ct− δ) ≤

exp
(
− δ2

8t

)
.

D.2 Regret Bound

Before proving the regret bound, we introduce a new lemma for our policy dis-

tribution.

Lemma 23. For any vector r ∈ R
|A|, let a distribution be

π := argmax
π′

{
E

a∼π′
[ra] + αS(π′)

}
.

Then,

max
a

ra − Ea∼π [ra] ≤ α ln(K)

where K = |A|

Proof of Lemma 23. Let π′′ := argmaxπ′ Ea∼π′ [ra], Then,

max
a

ra = E
a∼π′′

[ra] = E
a∼π′′

[ra] + αS(π′′) (∵ S(π′′) = 0)

≤ E
a∼π

[ra] + αS(π) ≤ E
a∼π

[ra] + αmax
π′ S(π′)

= E
a∼π

[ra] + α ln(K)

Consequently, maxa ra − Ea∼π [ra] ≤ α ln(K)

By using this Lemma, we prove the Theorem 23.

247



Appendix D. Proofs of Chapter 4.2.

Proof of Theorem 23.

RT = E
s1:T ,a1:T

[
T∑
t=1

max
a′

ra′(st)− rat(st)
]

≤
T∑
t=1

max
a′

E
s1:T

[ra′(st)]− E
s1:T ,a1:T

[rat(st)]

≤
T∑
t=1

max
a′

E
st
[ra′(st)]− E

st,a1:t
[rat(st)] .

We first compute the bound of the regret for each round maxa′ Est [ra′(st)] −

Est,a1:t [rat(st)].

Let us define a� := argmaxa′ Es [ra′(s)] and â
�
t−1 := argmaxa′ Es [r̂a′(s; θt−1)].

Then, the regret at round t is

max
a′

E
st
[ra′(st)]− E

st,a1:t
[rat(st)] = E

st
[ra�(st)]− E

s1:t,a1:t
[r̂a�(st; θt−1)] (D.1)

+ E
s1:t,a1:t

[r̂a�(st; θt−1)]− E
s1:t,a1:t

[
r̂â�t−1

(st; θt−1)
]

(D.2)

+ E
s1:t,a1:t

[
r̂â�t−1

(st; θt−1)
]
− E
s1:t,a1:t

[r̂at(st; θt−1)] (D.3)

+ E
s1:t,a1:t

[r̂at(st; θt−1)]− E
st,a1:t

[rat(st)] . (D.4)

From Assumption 3, the (D.1) and (D.4) terms are caused by an estimation error

and are bounded as follows:

E
s1:t,a1:t

[r̂at(st; θt−1)− rat(st; θt−1)] ≤ E
s1:t,a1:t

[|r̂at(st; θt−1)− rat(st; θt−1)|]

≤ β E
s1:t,a1:t

[
1√

(Nat(t− 1) + 1)

]

and, similarly,

E
s1:t,a1:t

[r̂a�(st; θt−1)− ra�(st; θt−1)] ≤ β E
s1:t,a1:t

[
1√

(Na�(t− 1) + 1)

]
.

the (D.2) term comes from the failure probability for classifying the optimal

248



Appendix D. Proofs of Chapter 4.2.

action using r̂a(st). Thus, we can rewrite it as follows:

E
s1:t,a1:t

[r̂a�(st; θt−1)]− E
s1:t,a1:t

[
r̂â�t−1

(st; θt−1)
]

= E
s1:t,a1:t

[
I(a� �= â�t−1)(r̂a�(st; θt−1)− r̂â�t−1

(st; θt−1))
]

≤ E
s1:t,a1:t

[
I(a� �= â�t−1)

]
= P(a� �= â�t−1).

The (D.3) term is bounded by Lemma 23,

E
s1:t,a1:t

[
r̂â�t−1

(st; θt−1)
]
− E
s1:t,a1:t

[r̂at(st; θt−1)]

≤ max
a

E
s1:t,a1:t

[r̂a(st; θt−1)]− E
at∼πt

E
s1:t,a1:t−1

[r̂at(st; θt−1)]

≤ α ln(K)

Finally, we have,

max
a′

E
st
[ra′(st)]− E

st,a1:t
[rat(st)] ≤β E

s1:t,a1:t

[
1√

(Na�(t− 1) + 1)

]

+ β E
s1:t,a1:t

[
1√

(Nat(t− 1) + 1)

]

+ P(a� �= â�t−1) + α ln(K).

Consequently, for the expected cumulative regret,

RT ≤β
T∑
t=1

E
s1:t,a1:t

[
1√

(Na�(t− 1) + 1)

]
+ β

T∑
t=1

E
s1:t,a1:t

[
1√

(Nat(t− 1) + 1)

]

+
T∑
t=1

P(a� �= â�t−1) + α ln(K)T.

Proof of Theorem 24. From Theorem 23, it is known that the expected regret is

bounded by three terms: estimation error, the failure probability, and regular-

ization. For Es1:t,a1:t

[
1√

(Na(t−1)+1)

]
, since the proposed method explores every

249



Appendix D. Proofs of Chapter 4.2.

arms infinitely, estimation errors of all arms become zero. Now, for any a, we can

compute the upper bound by using Theorem 21 and 22,

E
s1:t,a1:t

[
1√

(Na(t− 1) + 1)

]
= E
s1:t,a1:t

[
1√

(Na(t− 1) + 1)
I

(
Na(t− 1) >

ct

2

)]

+ E
s1:t,a1:t

[
1√

(Na(t− 1) + 1)
I

(
Na(t− 1) ≤ ct

2

)]

≤ E
s1:t,a1:t

[√
2

ct
I

(
Na(t− 1) >

ct

2

)]

+ E
s1:t,a1:t

[
I

(
Na(t− 1) ≤ ct

2

)]

≤
√

2

ct
P

(
Na(t− 1) >

ct

2

)
+ P

(
Na(t− 1) ≤ ct

2

)

≤
√

2

ct
· 2E [Na(t− 1)]

ct
+ P

(
Na(t− 1) ≤ ct

2

)

≤
√

2

ct
· 2t
ct

+ P

(
Na(t− 1) ≤ ct

2

)

≤23/2

c3/2
1√
t
+ exp

(
−c

2t

32

)
where for the last inequality we use the Markov inequality and the Azuma Ho-

effding inequality, respectively. Finally, we get

E
s1:t−1,a1:t

[
1√

(Nat(t− 1) + 1)

]
= E

at

[
E

s1:t−1,a1:t−1

[
1√

(Nat(t− 1) + 1)

]]

≤ E
at

[
23/2

c3/2
1√
t
+ exp

(
−c

2t

32

)]

≤ 23/2

c3/2
1√
t
+ exp

(
−c

2t

32

)
and

E
s1:t−1,a1:t

[
1√

(Na�(t− 1) + 1)

]
= E

at

[
E

s1:t−1,a1:t−1

[
1√

(Na�(t− 1) + 1)

]]

≤ E
at

[
23/2

c3/2
1√
t
+ exp

(
−c

2t

32

)]

≤ 23/2

c3/2
1√
t
+ exp

(
−c

2t

32

)
.

250



Appendix D. Proofs of Chapter 4.2.

For the failure probability P(a� �= â�t−1), let us define an estimation error bound

of Assumption 3 as βNa(t−1) :=
β√

Na(t−1)+1
. We obtain the bound as follows:

P
(
a� �= â�t−1

)
= P

(
r̂a�(st) < r̂â�t−1

(st)
)

≤
∑
a �=a�

P (r̂a�(st) < r̂a(st))

≤
∑
a �=a�

P
(
ra�(st)− βNa� (t−1) < ra(st) + βNa(t−1)

)
≤
∑
a �=a�

P
(
Δa(st) < βNa� (t−1) + βNa(t−1)

)
≤
∑
a �=a�

P
(
Δ2 < βNa� (t−1) + βNa(t−1)

)
≤
∑
a �=a�

P

(
Δ2

2
< βNa� (t−1)

)
+ P

(
Δ2

2
< βNa(t−1)

)
.

Now, we can bound P
(
Δ2
2 < βNa(t−1)

)
using Theorem 22,

P

(
Δ2

2
< βNa(t−1)

)
= P

(
Na(t− 1) <

(
2β

Δ2

)2

− 1

)

≤ exp

(
−(ct− (2β/Δ2)

2 + 1)2

8t

)

= exp

(
−c

2t

8
+

(2β/Δ2)
2 − 1

4
− ((2β/Δ2)

2 − 1)2

8t

)

≤ exp

(
(2β/Δ2)

2 − 1

4

)
exp

(
−c

2t

8

)

Hence, we get,

P
(
a� �= â�t−1

)
≤
∑
a �=a�

2 exp

(
(2β/Δ2)

2 − 1

4

)
exp

(
−c

2t

8

)

= 2(K − 1) exp
(
(β/Δ2)

2 − 1/4
)
exp

(
−c

2t

8

)

Let C0 = 2
7
2K

3
2β, C1 = 2β, C2 = 2(K − 1) exp((β/Δ2)

2 − 1/4), d1 = 1/(32K2),

251



Appendix D. Proofs of Chapter 4.2.

and d2 = 1/(8K2). By combining all bounds, RT can be bounded as follows:

RT ≤
25/2β

c3/2

T∑
t=1

1√
t
+ 2β

T∑
t=1

exp

(
−c

2t

32

)

+ 2(K − 1) exp
(
(β/Δ2)

2 − 1/4
) T∑
t=1

exp

(
−c

2t

8

)
+ α ln(K)T

=
C0K

−3/2/2

c3/2

T∑
t=1

1√
t
+ C1

T∑
t=1

exp

(
−c

2t

32

)

+ C2

T∑
t=1

exp

(
−c

2t

8

)
+ α ln(K)T

≤C0K
−3/2/2

c3/2
(1 + 2

√
T − 2

√
2)

+ C1
exp
(
−c2T/32

)
− 1

exp (−c2/32)− 1
+ C2

exp
(
−c2T/8

)
− 1

exp (−c2/8)− 1
+ α ln(K)T

≤C0K
−3/2

c3/2

√
T +

C1

1− exp (−c2/32) +
C2

1− exp (−c2/8) + α ln(K)T.

Note that all terms are sub-linear except for α ln(K)T . To make α ln(K)T sub-

linear, we set α to be α0(ln(T
p))−1 with α0 > 0. Then, the lower bound c becomes

exp
(
− 1

α0

)
KT p and let c0 := exp

(
− 1
α0

)
. Finally,

RT ≤
C0K

−3/2

c3/2

√
T +

C1

1− exp (−c2/32) +
C2

1− exp (−c2/8) + α ln(K)T

≤ C0

c
3/2
0

T
3p+1

2 + C1(1− exp(−T−2p · c20/(32K2)))−1

+ C2(1− exp(−T−2p · c20/(8K2)))−1 + α0 ln(K)T (ln(T p))−1

≤ C0

c
3/2
0

T
3p+1

2 + C1(1− exp(−c20d1T−2p))−1

+ C2(1− exp(−c20d2T−2p))−1 + α0 ln(K)T (ln(T p))−1.

Proof of Theorem 25. To prove that limT→∞ RT
T = 0, we show that the upper

bound of RT /T converges to zero, then, proof will be done since the lower bound

252



Appendix D. Proofs of Chapter 4.2.

of RT /T is also zero.

RT

T
≤ C0

c
3/2
0

T
3p−1

2 + C1(1− exp(−d1T−2p))−1T−1

+ C2(1− exp(−d2T−2p))−1T−1

+ ln(K)(ln(T p))−1.

Since 1/3 > p > 0, T(3p−1)/2 converges to zero and ln(T p)−1 also converges to

zero. To show that the second and third terms converge to zero, we prove that,

for a positive a, limx→∞(1− exp(−ax−2p)x)−1x−1 = 0 as follows:

lim
x→∞(1− exp(−ax−2p))−1ax−2p · x2p−1/a = 1 · 0 = 0

where limz→0
z

exp(z)−1 = 1 is used.

253



Appendix D. Proofs of Chapter 4.2.

254



Appendix E

Proofs of Chapter 5.1.

E.1 General Regret Lower Bound of APE

Proof of Theorem 26. We construct aK-armed multi-armed bandit problem with

deterministic rewards. Let the optimal arm a� give the reward of Δ = 1
2

√
c(K−1)

T F−1
(
1− 1

K

)
whereas the other arms provide zero rewards. Note that Δ ∈ [0, 1] for T ≥
c(K−1)

4

∣∣F−1
(
1− 1

K

)∣∣2 and the estimator becomes r̂a = ΔI[a = a�] since there is

no noise. Let Et be the set of events which satisfy

∑
a �=a�

nt,a ≤ cT

If P(Et) ≤ 1/2, then the regret bound is computed as follows

E[RT ] ≥
1

2
E[Rt|Ect ] ≥

cT

2
Δ =

c
√
c

4

√
(K − 1)TF−1

(
1− 1

K

)

hence it satisfies the lower bound. Otherwise, it is sufficient to prove P(at �= a�) ≥

1/8. Then it holds

E[RT ] =

T∑
t=1

ΔP(at = a�) ≥ T

8
Δ =

√
c

16

√
(K − 1)TF−1

(
1− 1

K

)

and we get the desired result since 0 < c < K−1
K+3 .

255



Appendix E. Proofs of Chapter 5.1.

Observe that

P(at �= a�)

= P

⎛
⎝ ⋃
a �=a�

{r̂a� + βt,a�Gt,a� ≤ r̂a + βt,aGt,a}

⎞
⎠

≥ P (Et−1)P

⎛
⎝ ⋃
a �=a�

{r̂a� + βt,a�Gt,a� ≤ 2Δ ≤ r̂a + βt,aGt,a}
∣∣∣Et−1

⎞
⎠

≥ 1

2
E

[
P

(
Gt,a� ≤

Δ

βt,a�

∣∣∣Ht−1, Et−1

)

× P

⎛
⎝ ⋃
a �=a�

{2Δ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

⎞
⎠∣∣∣∣∣Et−1

]

≥ 1

2
E

[
P

(
Gt,a� ≤

Δ
√
(1− c)T
c

∣∣∣Ht−1, Et−1

)

× P

⎛
⎝ ⋃
a �=a�

{2Δ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

⎞
⎠∣∣∣∣∣Et−1

]

where the last inequality holds due to nt−1,a� ≥ (1 − c)T provided Et−1. Since

c < K−1
K+3 , we have

Δ
√

(1− c)T
c

=

√
(1− c)(K − 1)

4c
F−1

(
1− 1

K

)
> F−1

(
1− 1

K

)
.

Hence, P

(
Gt,a� ≤ Δ

√
(1−c)T
c

∣∣∣Ht−1, Et−1

)
≥ 1− 1

K so that

P(at �= a�) ≥ 1

2

(
1− 1

K

)
E

⎡
⎣P
⎛
⎝ ⋃
a �=a�

{2Δ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

⎞
⎠∣∣∣∣∣Et−1

⎤
⎦ .

256



Appendix E. Proofs of Chapter 5.1.

Observe that

P

⎛
⎝ ⋃
a �=a�

{2Δ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

⎞
⎠

≥ 1− P

⎛
⎝ ⋂
a �=a�

{
Gt,a ≤

2Δ

βt,a

} ∣∣∣Ht−1, Et−1

⎞
⎠

≥ 1−
∏
a �=a�

F

(
2Δ
√
nt−1,a

c

)

≥ 1−
∣∣∣∣F
(
2Δ

∑
a �=a�

√
nt−1,a

c(K − 1)

)∣∣∣∣K−1

,

where the last inequality holds by the log-concavity of F . Under Et−1, note that

∑
a �=a�

√
nt−1,a ≤

√
(K − 1)

∑
a �=a�

nt−1,a ≤
√
c(K − 1)T

which implies

F

(
2Δ

∑
a �=a�

√
nt−1,a

c(K − 1)

)
≤ F

(
2Δ

√
T

c(K − 1)

)
= 1− 1

K

Therefore, we get

P(at �= a�) ≥ 1

2

(
1− 1

K

)(
1−
(
1− 1

K

)K−1
)
≥ 1

8

since 1 − 1
K ≥ 1

2 and 1 −
(
1− 1

K

)K−1 ≥ 1
2 hold for K ≥ 2 and the theorem is

proved.

E.2 General Regret Upper Bound of APE

In this section, assuming sub-Gaussian reward, we provide the proof of Theorem

27 and the related lemmas.

Proof of Lemma 7. Fix arm a ∈ A. Let τk denotes the smallest round when the

arm a is sampled for the k-th time i.e. k =
∑τk

t=1 I[Et,a]. We let τ0 := 0 and

257



Appendix E. Proofs of Chapter 5.1.

τk = T for k > na(T ). Then it is easy to see that for τk < t ≤ τk+1

I[Et,a] =

⎧⎪⎪⎨
⎪⎪⎩
1 : t = τk+1

0 : t �= τk+1

(E.1)

Therefore,

T∑
t=1

P

(
E

(1)
t,a

)
=

T∑
t=1

E

[
I[E

(1)
t,a ]
]
=

T−1∑
k=0

E

⎡
⎣ τk+1∑
t=1+τk

I[E
(1)
t,a ]

⎤
⎦

= E

[
τ1∑
t=1

I

(
Et,a ∩ Êct,a

)]
+

T−1∑
k=1

E

⎡
⎣ τk+1∑
t=1+τk

I[Et,a ∩ Êct,a]

⎤
⎦

≤ 1 +

T−1∑
k=1

P

(
Êcτk+1,a

)

where the last inequality holds by the definition of τk. Also, by the definition of

Êt,a and Chernoff bounds with sub-Gaussian condition with parameter σ,

T−1∑
k=1

P

(
Êcτk+1,a

)
≤

T−1∑
k=1

exp

(
−Δ2

ak

18σ2

)
≤ 18σ2

Δ2
a

which implies the desired result. The lemma is proved.

Lemma 24 (Proof of Lemma 8). Suppose (i) of Assumption 1. Then for any

action a ∈ A, it holds

T∑
t=1

P

(
E

(2)
t,a

)
≤
[
C1 +

F (0)

1− F (0)

]
18σ2

Δ2
a

+
144σ2

Δ2
a

+ 2
T∑
k=1

F

(
−Δa

√
k

6c

)

Proof. If a = a�, then Δa = 0 so the desired result trivially holds. Threfore, we

take a ∈ A\{a�}. For notational convenience, we write r̃t,a := r̂t−1,a+βt−1,aGt,a.

Due to the selection rule, at = a implies r̃t,a′ ≤ r̃t,a for a
′ ∈ A. Therefore, it holds

Et,a ∩ Ẽt,a ⊂
⋂
a′∈A

{r̃t,a′ ≤ ya} = {r̃t,a� ≤ ya} ∩ {r̃t,a′ ≤ ya, ∀a′ �= a�} (E.2)

258



Appendix E. Proofs of Chapter 5.1.

This implies

P

(
Et,a ∩ Ẽt,a|Ht−1

)
≤ P

( ⋂
a′∈A

{r̃t,a′ ≤ ya}|Ht−1

)
(E.3)

Note that events {r̃t,a� ≤ ya} and {r̃t,a′ ≤ ya, ∀a′ �= a�} are independent when

Ht−1 is given conditionally (see A.2 in [64] for detail). By applying this fact

repeatedly, (E.3) is equal to

P

( ⋂
a′∈A

{r̃t,a′ ≤ ya}|Ht−1

)

= P (r̃t,a� ≤ ya|Ht−1)P
(
r̃t,a′ ≤ ya, ∀a′ �= a�|Ht−1

)
=

P (r̃t,a� ≤ ya|Ht−1)

P (r̃t,a� > ya|Ht−1)
P (r̃t,a� > ya|Ht−1)P

(
r̃t,a′ ≤ ya, ∀a′ �= a�|Ht−1

)
=

P (r̃t,a� ≤ ya|Ht−1)

P (r̃t,a� > ya|Ht−1)
P
(
{r̃t,a� > ya} ∩ {r̃t,a′ ≤ ya, ∀a′ �= a�}|Ht−1

)
Recall F is the cumulative density function of G. Since r̂t−1,a� , βt−1,a� are already

determined when Ht−1 is given conditionally, we get

P (r̃t,a� ≤ ya|Ht−1) = F

(
ra� − r̂t−1,a� − Δa

3

βt−1,a�

)

To avoid notational complexity, we write Ft,a� := F

(
ra�−r̂t−1,a�−Δa

3
βt−1,a�

)
. Analogous

to (E.2), we can see that

{r̃t,a� > ya} ∩ {r̃t,a′ ≤ ya, ∀a′ �= a�} ⊂ Et,a� ∩ Ẽt,a (E.4)

and this implies

P
(
{r̃t,a� > ya} ∩ {r̃t,a′ ≤ ya, ∀a′ �= a�}|Ht−1

)
≤ P

(
Et,a� ∩ Ẽt,a|Ht−1

)
(E.5)

Therefore,

P

(
Et,a ∩ Ẽt,a|Ht−1

)
≤ Ft,a�

1− Ft,a�
P

(
Et,a� ∩ Ẽt,a|Ht−1

)
(E.6)

259



Appendix E. Proofs of Chapter 5.1.

By taking the expection and the definition of conditional expectation, we arrive

in

P

(
E

(2)
t,a

)
= P

(
Et,a ∩ Êt,a ∩ Ẽt,a

)
≤ E

[
Ft,a�

1− Ft,a�
I[Et,a� ∩ Êt,a ∩ Ẽt,a]

]
(E.7)

Now recall the definition of τk from Lemma 26. In this case, we set τk denotes

the smallest round when the optimal arm a� is sampled for the k-th time. Then

the summation of the right-hand side of E.7 over t = 1, . . . , T is controlled by

T∑
t=1

E

[
Ft,a�

1− Ft,a�
I[Et,a� ∩ Êt,a ∩ Ẽt,a]

]

=

T−1∑
k=0

E

⎡
⎣ τk+1∑
t=τk+1

Ft,a�

1− Ft,a�
I[Et,a� ∩ Êt,a ∩ Ẽt,a]

⎤
⎦

=
T−1∑
k=0

E

[
Fτk+1,a�

1− Fτk+1,a�
I[Et,a� ∩ Êt,a ∩ Ẽt,a]

]

≤
T∑
k=1

E

[
Fτk,a�

1− Fτk,a�

]

To derive the upper bound of the above expection terms, we analyze the condi-

tional expectation E

[
Fτk,a�

1−Fτk,a�

∣∣∣Hτk

]
instead. Due to the definition of τk and βt,a,

observe that nτk,a = k and βτk,a =
c√
k
. Therefore,

E

[
Fτk,a�

1− Fτk,a�

∣∣∣Hτk

]
= E

⎡
⎣ F

(√
k
c

{
ra� − r̂τk,a� − Δa

3

})
1− F

(√
k
c

{
ra� − r̂τk,a� − Δa

3

})
∣∣∣∣∣Hτk

⎤
⎦

=

∫
R

F
(√

k
c

{
ra� − x− Δa

3

})
1− F

(√
k
c

{
ra� − x− Δa

3

})P(r̂ ∈ dx) (E.8)

We decompose R = I1 ∪ I2 ∪ I3 into three intervals where I1 := {x ≤ ra� − Δa
3 },

I2 := {ra� − Δa
3 < x ≤ ra� − Δa

6 }, and I3 := {ra� − Δa
6 < x}. We derive the upper

bound of (E.8) on the each interval.

260



Appendix E. Proofs of Chapter 5.1.

Due to the change of variable formula,

∫
I1

F
(√

k
c

{
ra� − x− Δa

3

})
1− F

(√
k
c

{
ra� − x− Δa

3

})P(r̂ ∈ dx)

=

∫ ra�−Δa
3

−∞

F
(√

k
c

{
ra� − x− Δa

3

})
1− F

(√
k
c

{
ra� − x− Δa

3

})fr̂(x)dx
=

c√
k

∫ ∞

0

F (g)

1− F (g)fr̂
(
ra� −

c√
k
g − Δa

3

)
dg

where fr̂ is the density function of the measure P(r̂ ∈ dx). Note that the following

equality holds by the fundamental theorem of calculus

F (g)

1− F (g) =

∫ g

0

h(u)

1− F (u)du+
F (0)

1− F (0)

Therefore,

c√
k

∫ ∞

0

F (g)

1− F (g)fr̂
(
ra� −

c√
k
g − Δa

3

)
dg

=
c√
k

∫ ∞

0

(∫ g

0

h(u)

1− F (u)du+
F (0)

1− F (0)

)
fr̂

(
ra� −

c√
k
g − Δa

3

)
dg

=
F (0)

1− F (0)P
(
Δa

3
≤ ra� − r̂τk,a�

)
(E.9)

+
c√
k

∫ ∞

0

(∫ g

0

h(u)

1− F (u)du
)
fr̂

(
ra� −

c√
k
g − Δa

3

)
dg (E.10)

Since we assume sub-Gaussian noise εt and

ra� − r̂τk,a� =
1

k

k∑
t=1

ετt , (E.11)

we have

P

(
Δa

3
≤ ra� − r̂τk,a�

)
≤ exp

(
− kΔ

2
a

18σ2

)
(E.12)

Hence we can get the upper bound of the first term in (E.10). Also, by Fubini-

261



Appendix E. Proofs of Chapter 5.1.

Tonelli theorem, we can transform the second term in (E.10) as follows

c√
k

∫ ∞

0

(∫ g

0

h(u)

1− F (u)du
)
fr̂

(
ra� −

c√
k
g − Δa

3

)
dg

=

∫ ∞

0

(∫ ∞

u
fr̂

(
ra� −

c√
k
g − Δa

3

)
c√
k
dg

)
h(u)

1− F (u)du

=

∫ ∞

0

(∫ ra�− c√
k
u−Δa

3

−∞
fr̂ (g) dg

)
h(u)

1− F (u)du

=

∫ ∞

0
P

(
ra� − r̂τk,a� ≥

c√
k
u+

Δa

3

)
h(u)

1− F (u)du (E.13)

Similar to (E.12), we have

P

(
ra� − r̂τk,a� ≥

c√
k
u+

Δa

3

)
≤ exp

⎛
⎜⎝−

(
cu+ Δa

3

√
k
)2

2σ2

⎞
⎟⎠

Thus, we obtain the following upper bound:∫ ∞

0
P

(
ra� − r̂τk,a� ≥

c√
k
u+

Δa

3

)
h(u)

1− F (u)du

≤
∫ ∞

0
exp

⎛
⎜⎝−

(
cu+ Δa

3

√
k
)2

2σ2

⎞
⎟⎠ h(u)

1− F (u)du

≤ exp

(
− kΔ

2
a

18σ2

)∫ ∞

0
exp

(
−c

2u2

2σ2

)
h(u)

1− F (u)du

≤ C1 exp

(
− kΔ

2
a

18σ2

)
Therefore,

∫
I1

F
(√

k
c

{
ra� − x− Δa

3

})
1− F

(√
k
c

{
ra� − x− Δa

3

})P(r̂ ∈ dx) ≤ C1 exp

(
− kΔ

2
a

18σ2

)
+

F (0)

1− F (0) exp
(
− kΔ

2
a

18σ2

)
(E.14)

Now we derive the upper bound of the integrand on I2 = {ra� − Δa
3 < x ≤

ra� − Δa
6 }. Since F (0) ≤ 1/2, it is easy to see that

F
(√

k
c

{
ra� − x− Δa

3

})
1− F

(√
k
c

{
ra� − x− Δa

3

}) ≤ 2F

(√
k

c

{
ra� − x−

Δa

3

})
(E.15)

262



Appendix E. Proofs of Chapter 5.1.

for x ∈ I2 ∪ I3. Hence

∫
I2

F
(√

k
c

{
ra� − x− Δa

3

})
1− F

(√
k
c

{
ra� − x− Δa

3

})P(r̂ ∈ dx)

=

∫ ra�−Δa
6

ra�−Δa
3

F
(√

k
c

{
ra� − x− Δa

3

})
1− F

(√
k
c

{
ra� − x− Δa

3

})P(r̂ ∈ dx)

≤
∫ ra�−Δa

6

ra�−Δa
3

2F

(√
k

c

{
ra� − x−

Δa

3

})
P(r̂ ∈ dx)

≤ 2P

(
Δa

6
≤ ra� − r̂τk,a�

)

Similar to (E.12), we have

2P

(
Δa

6
≤ ra� − r̂τk,a�

)
≤ 2 exp

(
− kΔ

2
a

72σ2

)
(E.16)

Hence we get the upper bound of the integral on I2.

Finally, due to (E.15) again,

∫
I3

F
(√

k
c

{
ra� − x− Δa

3

})
1− F

(√
k
c

{
ra� − x− Δa

3

})P(r̂ ∈ dx) (E.17)

=

∫ ∞

ra�−Δa
6

F
(√

k
c

{
ra� − x− Δa

3

})
1− F

(√
k
c

{
ra� − x− Δa

3

})P(r̂ ∈ dx)

≤ 2

∫ ∞

ra�−Δa
6

F

(√
k

c

{
ra� − x−

Δa

3

})
P(r̂ ∈ dx)

≤ 2F

(
−
√
kΔa

6c

)
(E.18)

263



Appendix E. Proofs of Chapter 5.1.

By combining (E.14), (E.16), and (E.18),

T∑
k=1

E

[
Fτk,a�

1− Fτk,a�

∣∣∣Hτk

]
≤

T∑
k=1

{
C1 exp

(
− kΔ

2
a

18σ2

)
+

F (0)

1− F (0) exp
(
− kΔ

2
a

18σ2

)}

+

T∑
k=1

2 exp

(
− kΔ

2
a

72σ2

)
+

T∑
k=1

2F

(
−
√
kΔa

6c

)

≤
{
C1 +

F (0)

1− F (0)

}
18σ2

Δ2
a

+
144σ2

Δ2
a

+
T∑
k=1

2F

(
−
√
kΔa

6c

)

Therefore, thanks to (E.7), we obtained the desired result. The lemma is proved.

Proof of Lemma 9. Recall τk from Lemma (26). Obviously,

T∑
t=1

P

(
E

(3)
t,a

)
≤

T∑
k=1

P

(
Êτk,a ∩ Ẽcτk,a

)

Due to the definition of τk and βt,a, observe that nτk,a = k and βτk,a =
c√
k
. Hence

by the conditioning on Hτk ,

P

(
Êτk,a ∩ Ẽcτk,a

∣∣∣Hτk

)
≤ P

(
r̂τk ≤ xa, Gτk,a >

ya − r̂τk,a
βτk,a

∣∣∣Hτk

)

≤ P

(
Gτk,a >

ya − xa
βτk,a

∣∣∣Hτk

)

= P

(
Gτk,a >

Δa

√
k

3c

∣∣∣Hτk

)
= 1− F

(
Δa

√
k

3c

)
(E.19)

Let � be the maximal time such as

F

(
Δa

√
�

3c

)
≤ 1− c2

TΔ2
a

Note that

� ≤ 9c2

Δ2
a

{
F−1

(
1− c2

TΔ2
a

)}2

(E.20)

and for k > �

1− F
(
Δa

√
k

3c

)
≤ c2

TΔ2
a

(E.21)

264



Appendix E. Proofs of Chapter 5.1.

Therefore, by (E.19), (E.20), and (E.21),

T∑
k=1

P

(
Êτk,a ∩ Ẽcτk,a

)
≤

T∑
k=1

(
1− F

(
Δa

√
k

3c

))

≤ �+
T∑

k=�+1

(
1− F

(
Δa

√
k

3c

))

≤ 9c2

Δ2
a

{
F−1

(
1− c2

TΔ2
a

)}2

+

T∑
k=�+1

c2

TΔ2
a

≤ 9c2

Δ2
a

{
F−1

(
1− c2

TΔ2
a

)}2

+
c2

Δ2
a

The lemma is proved.

Proof of Theorem 27. Recall the definition of regret RT , and the fact P(at =

a) = P(Et,a) =
∑3

i=1 P(E
(i)
t,a). Hence

E[RT ] :=
∑
a∈A

T∑
t=1

ΔaP (at = a) =
∑
a �=a�

3∑
i=1

T∑
t=1

ΔaP

(
E

(i)
t,a

)
(E.22)

By Lemmas 7, 8, and 9,

T∑
t=1

ΔaP

(
E

(1)
t,a

)
≤ Δa +

18σ2

Δa

T∑
t=1

ΔaP

(
E

(2)
t,a

)
≤
(
C1 +

F (0)

1− F (0)

)
18σ2

Δa
+

144σ2

Δa
+ 2Δa

T∑
k=1

F

(
−Δa

√
k

6c

)

T∑
t=1

ΔaP

(
E

(3)
t,a

)
≤ 9c2

Δa

{
F−1

(
1− c2

TΔ2
a

)}2

+
c2

Δa

Therefore, we can estimate the upper bound of (E.22) by combining the above

results as follows

E[RT ] ≤
∑
a �=a�

[(
C1 +

F (0)

1− F (0)

)
18σ2

Δa
+ 2Δa

T∑
k=1

F

(
−Δa

√
k

6c

)

+
9c2

Δa

{
F−1

(
1− c2

TΔ2
a

)}2

+
162σ2 + c2

Δa
+Δa

]

The theorem is proved.

265



Appendix E. Proofs of Chapter 5.1.

E.3 Proofs of Corollaries

Proof of Corollary 1. The cumulative density function of a Weibull distribution

is given as

F (x) = 1− exp

(
−
(x
λ

)k)

Then, its inverse is

F−1(y) = λ

[
ln

(
1

1− y

)] 1
k

,

Then,

[
F−1

(
1− c2

TΔ2
a

)]2
= λ

[
ln

(
TΔ2

a

c2

)] 2
k

.

Unfortunately, h(x) of Weibull distribution with 1 < k ≤ 2 is not bounded. Thus,

we compute C1 instead of M1 as follows,

∫ ∞

0

h(z) exp
(
− c2z2

2σ2

)
1− F (z)

dz =

∫ ∞

0

k

λ

( z
λ

)k−1 exp
(
−
(
z
λ

)k)
exp
(
− c2z2

2σ2

)
exp
(
−2
(
z
λ

)k) dz

≤
∫ ∞

0

k

λ

( z
λ

)k−1
exp

(
−c

2z2

2σ2
+
( z
λ

)k)
dz =: C1

∵ C1 exists when k < 2 or k = 2 and c >

√
2σ2

λ2
.

where C1 is the same as in [64]. For
∑T

k=1ΔaF
(
−Δa

√
k

6c

)
, we have,

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
= 0

266



Appendix E. Proofs of Chapter 5.1.

since the support of x is (0,∞). Then, the problem dependent regret bound

becomes,

E [RT ] ≤
∑
a �=a�

[
C1 +

F (0)

1− F (0)

]
18σ2

Δa
+ 2

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
(E.23)

+
9c2

Δa

[
F−1

(
1− c2

TΔ2
a

)]2
+
c2 + 162σ2

Δa
+Δa (E.24)

≤
∑
a �=a�

C1
18σ2

Δa
+

9c2

Δa

[
ln

(
TΔ2

a

c2

)] 2
k

+
c2 + 162σ2

Δa
+Δa (E.25)

≤C

⎛
⎝∑
a �=a�

Δa +
9c2

Δa

[
ln

(
TΔ2

a

c2

)] 2
k

⎞
⎠ . (E.26)

The problem independent regret bound can be obtained by choosing the threshold

of the minimum gap as Δ = c
√
K/T ln(K)1/k,

E [RT ] ≤
∑
a �=a�

C1
18σ2

Δa
+

9c2

Δa

[
ln

(
TΔ2

a

c2

)] 2
k

+
c2 + 162σ2

Δa
+Δa (E.27)

≤K
[
C1

18σ2

Δ
+

9c2

Δ

[
ln

(
TΔ2

c2

)] 2
k

+
c2 + 162σ2

Δ

]
+ΔT (E.28)

≤
√
KT

[
1

c ln(K)1/k
C118σ

2 +
9c2

c ln(K)1/k

[
ln
(
K ln(K)2/k

)]2/k
(E.29)

+
c2 + 162σ2

c ln(K)1/k
+ c ln(K)1/k

]
(E.30)

≤
√
KT

[
1

c ln(K)1/k
C118σ

2 +
9c2

c ln(K)1/k
[(1 + 1/k) ln (K)]2/k (E.31)

+
c2 + 162σ2

c ln(K)1/k
+ c ln(K)1/k

]
(E.32)

∵ See Appendix 5 in [29] (E.33)

≤O
(
√
KT

[(1 + 1/k) ln (K)]2/k

ln(K)1/k

)
(E.34)

≤O
(√

KT ln(K)1/k
)
. (E.35)

267



Appendix E. Proofs of Chapter 5.1.

The lower bound is simply obtained by plugging F−1 into the general lower bound,

so we can conclude that regret bound is tight. The corollary is proved.

Proof of Corollary 2. The upper and lower bound of cumulative density function

of a Gaussian distribution with σg > 0 are given as

1− 1

2
exp

(
− x2

2σ2g

)
≤ F (x) ≤ 1−

√
2σ2g
π

exp
(
− x2

2σ2
g

)
x+

√
x2 + 4σ2g

where the upper bound holds for x > 0. Then, its inverse is bounded by using

the lower bound of F as follows,

F−1(y) ≤
√
2σg

√
ln

(
1

2(1− y)

)
.

Then,[
F−1

(
1− c2

TΔ2
a

)]2
≤
√
2σg ln

(
TΔ2

a

c2

)
−
√
2σg ln(2) ≤

√
2σg ln

(
TΔ2

a

c2

)
.

Unfortunately, h(x) of Gaussian distribution is not bounded. Thus, similarly to

a Weibull distribution, we compute C1 instead of M1 as follows,∫ ∞

0

h(z) exp
(
− c2z2

2σ2

)
1− F (z)

dz

=

∫ ∞

0

1√
2πσ2g

(
z +
√
z2 + 4σ2g

)2
exp
(
− z2

2σ2
g

)
exp
(
− c2z2

2σ2

)
2σ2

g

π exp
(
− z2

σ2
g

) dz

≤
∫ ∞

0

√
π

(2πσ2g)
3/2

(
z +
√
z2 + 4σ2g

)2
exp

(
−c

2z2

2σ2
+

z2

2σ2g

)
dz =: C1

∵ C1 exists since c >

√
σ2

σ2g
.

For
∑T

k=1ΔaF
(
−Δa

√
k

6c

)
, we use the following relation of CDF of a Gaussian

distribution, for x > 0,

1√
2πσ2g

∫ −x

−∞
exp

(
− z2

2σ2g

)
dz =

1√
2πσ2g

∫ ∞

x
exp

(
− z2

2σ2g

)
dz ≤ exp

(
− x2

2σ2g

)

268



Appendix E. Proofs of Chapter 5.1.

we have,

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
≤

T∑
k=1

Δa exp

(
− Δ2

ak

72σ2gc
2

)
≤

72σ2gc
2

Δa

Then, the problem dependent regret bound becomes,

E [RT ] ≤
∑
a �=a�

[
C1 +

F (0)

1− F (0)

]
18σ2

Δa
+ 2

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
(E.36)

+
9c2

Δa

[
F−1

(
1− c2

TΔ2
a

)]2
+
c2 + 162σ2

Δa
+Δa (E.37)

≤
∑
a �=a�

C1
18σ2

Δa
+

72σ2gc
2

Δa
+

18c2

Δa

[
ln

(
TΔ2

a

c2

)]
+
c2 + 162σ2

Δa
+Δa

(E.38)

≤C

⎛
⎝∑
a �=a�

Δa +
18c2

Δa

[
ln

(
TΔ2

a

c2

)]⎞⎠ . (E.39)

The problem independent regret bound can be obtained by choosing the threshold

of the minimum gap as Δ = c
√
K/T ln(K),

E [RT ] ≤
∑
a �=a�

C1
18σ2

Δa
+

18c2

Δa

[
ln

(
TΔ2

a

c2

)]
+

(72σ2g + 1)c2 + 162σ2

Δa
+Δa

(E.40)

≤K
[
C1

18σ2

Δ
+

18c2

Δ

[
ln

(
TΔ2

c2

)]
+

(72σ2g + 1)c2 + 162σ2

Δ

]
+ΔT

(E.41)

≤
√
KT

[
1

c
√
ln(K)

C118σ
2 +

18c2

c
√

ln(K)
[ln (K ln(K))] (E.42)

+
(72σ2g + 1)c2 + 162σ2

c
√
ln(K)

+ c
√
ln(K)

]
(E.43)

≤
√
KT

[
1

c
√
ln(K)

C118σ
2 +

18c2

c
√

ln(K)

3

2
ln(K) (E.44)

+
(72σ2g + 1)c2 + 162σ2

c
√
ln(K)

+ c
√
ln(K)

]
(E.45)

269



Appendix E. Proofs of Chapter 5.1.

∵ See Appendix 5 in [29] (E.46)

≤O
(√

KT ln(K)
)
. (E.47)

For the lower bound, let us define a constant cK = F−1
(
1− 1

K

)
. Note that cK > 0

since 1− 1
K ≥ 1

2 . Then, we can apply the upper bound of F (x) as follows,

1− 1

K
< 1−

√
2σ2g
π

exp
(
− c2K

2σ2
g

)
cK +

√
c2K + 4σ2g

(E.48)

− c2K
2σ2g

+ ln

⎛
⎝
√

2σ2g
π

⎞
⎠− ln

(
cK +

√
c2K + 4σ2g

)
<− ln (K) (E.49)

σg

√√√√√2 ln (K) + ln

⎛
⎝
√

2σ2g
π

⎞
⎠− ln

(
cK +

√
c2K + 4σ2g

)
<cK (E.50)

Ω
(√

ln(K)
)
<cK (E.51)

Consequently, the lower bound is simply obtained by the general lower bound, so

we can conclude that regret bound is tight. The corollary is proved.

Proof of Corollary 3. The CDF of a Pareto distribution is given as

F (x) = 1− 1

(x/λ+ 1)α

Then, its inverse is

F−1(y) = λ (1− y)−
1
α − λ,

Then, [
F−1

(
1− c2

TΔ2
a

)]2
= λ2

[(
TΔ2

a

c2

) 1
α

− 1

]2
.

In [5], the suph can be obtained as follows,

suph =
α

λ
.

270



Appendix E. Proofs of Chapter 5.1.

M1 can be obtained as,

∫ ∞

0

exp
(
− c2z2

2σ2

)
1− F (z)

dz =

∫ ∞

0

( z
λ
+ 1
)α

exp

(
−c

2z2

2σ2

)
dz

≤
∫ ∞

0

exp

(
−c

2z2

2σ2
+ α ln

( z
λ
+ 1
))

dz

≤
∫ ∞

0

exp

(
−c

2z2

2σ2
+ α

z

λ

)
dz ∵ ln(x+ 1) ≤ x

≤
√

2πσ2

c2
exp

(
σ2α2

2c2λ2

)

≤
√

2πσ2

c2
exp

(
σ2

2c2

)
:=M1,

∵ α ≤ λ.

For
∑T

k=1ΔaF
(
−Δa

√
k

6c

)
, we have,

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
= 0

since the support of x is (0,∞). Then, the problem dependent regret bound

becomes,

E [RT ] ≤
∑
a �=a�

[
‖h‖∞M1 +

F (0)

1− F (0)

]
18σ2

Δa
+ 2

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
(E.52)

+
9c2

Δa

[
F−1

(
1− c2

TΔ2
a

)]2
+
c2 + 162σ2

Δa
+Δa (E.53)

≤
∑
a �=a�

α

λ
M1

18σ2

Δa
+

9c2λ2

Δa

[(
TΔ2

a

c2

) 1
α

− 1

]2
+
c2 + 162σ2

Δa
+Δa (E.54)

≤C

⎛
⎝∑
a �=a�

Δa +
9c2λ2

Δa

[(
TΔ2

a

c2

) 1
α

− 1

]2⎞⎠ . (E.55)

The problem independent regret bound can be obtained by choosing the threshold

271



Appendix E. Proofs of Chapter 5.1.

of the minimum gap as Δ = c
√
K/T

√
α

K2/α and λ =
√
α.

E [RT ] ≤
∑

Δa≥Δ

α

λ
M1

18σ2

Δa
+

9c2λ2

Δa

[(
TΔ2

a

c2

) 1
α

− 1

]2
+
c2 + 162σ2

Δa
+ΔT

(E.56)

≤K
[
α

λ
M1

18σ2

Δ
+

9c2λ2

Δ

[(
TΔ2

c2

) 1
α

− 1

]2
+
c2 + 162σ2

Δ

]
+ΔT (E.57)

≤
√
KT

[
α

λ

√
K2/α

αc2
M118σ

2 + 9cλ2

√
K2/α

α

[(
K

α

K2/α

) 1
α − 1

]2
(E.58)

+
c2 + 162σ2

c

√
K2/α

α
+ c

√
α

K2/α

]
(E.59)

≤
√
KT

[
α

λ

√
K2/α

αc2
M118σ

2 + 9cλ2K2/α
( α

K2/α

) 2
α
− 1

2
(E.60)

+
c2 + 162σ2

c

√
K2/α

α
+ c

√
α

K2/α

]
(E.61)

≤
√
KT

[√
K2/α

c2
M118σ

2 + 9cα
1
2
+ 2

αK3/α (E.62)

+
c2 + 162σ2

c

√
K2/α

α
+ c

√
α

K2/α

]
(E.63)

∵ λ =
√
α and

3

2
− 2

α
≤ 3

2
(E.64)

≤O
(√

α1+ 4
αK1+6/αT

)
. (E.65)

For the optimal rate, we set α = ln(K), then,

O

(√
ln(K)

1+ 4
ln(K)K1+6/ ln(K)T

)
≤ O

(√
KT ln(K)

)

where ln(K)
1+ 4

ln(K) ≤ e4/e ln(K) and K6/ ln(K) = e6. The lower bound is simply

obtained by plugging F−1 into the general lower bound. The corollary is proved.

272



Appendix E. Proofs of Chapter 5.1.

Proof of Corollary 4. The CDF of a Fréchet distribution with α > 0 is given as

F (x) = exp

(
−
(x
λ

)−α)

Then, its inverse is

F−1(y) = λ ln(1/y)−1/α ≤ λ (1− y)−1/α ,

where ln(x) ≤ x− 1 is used. Then,

[
F−1

(
1− c2

TΔ2
a

)]2
≤ λ2

[
TΔ2

a

c2

]2/α
.

Using the same technique in [5], we have suph ≤ 2α/λ and M1 can be obtained,

∫ ∞

0

exp
(
− c2z2

2σ2

)
(
1− exp

(
−
(
z
λ

)−α))dz ≤
∫ ∞

0

(
1 +
( z
λ

)α)
exp

(
−c

2z2

2σ2

)
dz

∵ 1/(1− exp(−x−1)) ≤ 1 + x

=

√
πσ2

2c2
+

∫ ∞

0

( z
λ

)α
exp

(
−c

2z2

2σ2

)
dz

≤
√
πσ2

2c2
+

∫ ∞

0

exp

(
−c

2z2

2σ2
+ α

(
ln(
( z
λ

)
)
))

dz

≤
√
πσ2

2c2
+

∫ ∞

0

exp

(
−c

2z2

2σ2
+ α

(( z
λ

)
− 1
))

dz

≤
√
πσ2

2c2
+

√
2πσ2

c2
exp

(
α2σ2

2c2λ2
− α
)

∵ σ2α

2c2
≤ λ2

≤3

2

√
2πσ2

c2
=:M1

Unlikely other results, for Fréchet distribution, M1 depends on a parameter of

distribution α. For
∑T

k=1ΔaF
(
−Δa

√
k

6c

)
, the summation is zero,

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
= 0,

273



Appendix E. Proofs of Chapter 5.1.

since its support is (0,∞). Then, the problem dependent regret bound becomes,

E [RT ] ≤
∑
a �=a�

[
‖h‖∞M1 +

F (0)

1− F (0)

]
18σ2

Δa
+ 2

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
(E.66)

+
9c2

Δa

[
F−1

(
1− c2

TΔ2
a

)]2
+
c2 + 162σ2

Δa
+Δa (E.67)

≤
∑
a �=a�

3
α

λ

√
2πσ2

c2
18σ2

Δa
+

9c2λ2

Δa

[
TΔ2

a

c2

]2/α
+
c2 + 162σ2

Δa
+Δa (E.68)

≤C

⎛
⎝∑
a �=a�

Δa +
9c2λ2

Δa

[
TΔ2

a

c2

]2/α⎞⎠ . (E.69)

The problem independent regret bound can be obtained by choosing the threshold

of the minimum gap as Δ = c
√
K/T

√
α

K2/α .

E [RT ] ≤
∑
a �=a�

3
α

λ

√
2πσ2

c2
18σ2

Δa
+

9c2λ2

Δa

[
TΔ2

a

c2

]2/α
+
c2 + 162σ2

Δa
+Δa (E.70)

≤K
[ ∑
a �=a�

3
α

λ

√
2πσ2

c2
18σ2

Δ
+

9c2λ2

Δ

[
TΔ2

c2

]2/α
+
c2 + 162σ2

Δ

]
+ΔT

(E.71)

≤
√
KT

[
3

λ

√
2πσ2

c2
18σ2

c

√
αK2/α + 9cλ2 [K]2/α

[ α

K2/α

] 2
α
− 1

2
(E.72)

+
c2 + 162σ2

c

√
K2/α

α
+ c

√
α

K2/α

]
(E.73)

≤
√
KT

[
6
√
π
18σ2

c

√
αK2/α +

9σ2α2

2c

(
K2/α

α

) 3
2
− 2

α

(E.74)

+
c2 + 162σ2

c

√
K2/α

α
+ c

√
α

K2/α

]
(E.75)

∵ λ2 =
σ2α

2c2
(E.76)

≤
√
KT

[
6
√
π
18σ2

c

√
αK2/α +

9σ2α
1
2
+ 2

α

2c

(
K2/α

) 3
2
− 2

α
(E.77)

+
c2 + 162σ2

c

√
K2/α

α
+ c

√
α

K2/α

]
(E.78)

274



Appendix E. Proofs of Chapter 5.1.

≤
√
KT

[
6
√
π
18σ2

c

√
αK2/α +

9σ2α
1
2
+ 2

α

2c
K3/α +

c2 + 162σ2

c

√
K2/α

α

(E.79)

+ c

√
α

K2/α

]
(E.80)

∵ 3

2
− 2

α
≤ 3

2
(E.81)

≤O
(√

α1+ 4
αK1+ 6

αT

)
. (E.82)

The optimal rate is obtained by setting α = ln(K),

O

(√
ln(K)

1+ 4
ln(K)K

1+ 6
ln(K)T

)
≤ O

(√
KT ln(K)

)
,

where ln(K)
1
2
+ 2

ln(K) ≤ e2/e ln(K). Before proving the lower bound, note that

F−1

(
1− 1

K

)
= ln

(
1

1− 1
K

)−1/α

≥ (K − 1)1/α

The lower bound is simply obtained by plugging F−1 into the general lower

bound. The corollary is proved.

Proof of Corollary 5. The CDF of a generalized extreme value distribution with

0 ≤ ζ < 1 is given as

F (x) = exp
(
− (1 + ζx)−1/ζ

)
Then, its inverse is

F−1(y) =
[ln(1/y)]−ζ − 1

ζ
≤ [1− y]−ζ − 1

ζ
,

where ln(x) ≤ x− 1 is used. Then,

[
F−1

(
1− c2

TΔ2
a

)]2
≤

⎡
⎢⎣
[
TΔ2

a
c2

]ζ
− 1

ζ

⎤
⎥⎦
2

.

275



Appendix E. Proofs of Chapter 5.1.

We compute the suph can be obtained as follows,

suph = sup
x∈[0,∞]

(1 + ζx)−1/ζ−1 exp
(
− (1 + ζx)−1/ζ

)
1− exp

(
− (1 + ζx)−1/ζ

) = sup
t∈[0,1]

tζ+1 exp(−t)
1− exp(−t)

≤ sup
t∈[0,1]

t exp(−t)
1− exp(−t) = 1.

M1 can be obtained,∫ ∞

0

exp
(
− c2z2

2σ2

)
1− F (z)

dz =

∫ ∞

0

exp
(
− c2z2

2σ2

)
1− exp

(
− (1 + ζz)−1/ζ

)dz
≤
∫ ∞

0

(
1 + (1 + ζz)1/ζ

)
exp

(
−c

2z2

2σ2

)
dz

=

√
πσ2

2c2
+

∫ ∞

0

(1 + ζz)1/ζ exp

(
−c

2z2

2σ2

)
dz =M1

≤
√
πσ2

2c2
+

∫ ∞

0

exp

(
−c

2z2

2σ2
+

ln(1 + ζz)

ζ

)
dz

≤
√
πσ2

2c2
+

∫ ∞

0

exp

(
−c

2z2

2σ2
+ z

)
dz

=

√
πσ2

2c2
+

√
πσ2

2c2
exp

(
2c2

σ2

)(
1 + erf

(√
σ2

2c2

))

≤
√
πσ2

2c2

(
1 + 2 exp

(
σ2

2c2

))
=:M1

For
∑T

k=1ΔaF
(
−Δa

√
k

6c

)
, we decompose the summation into two parts. The one

is the case when −Δa

√
k

6c is placed on the support and the other is the case when

−Δa

√
k

6c is placed on the outside of the support which is (−1/ζ,∞),

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
≤

�36c2/(ζΔa)2�∑
k=1

ΔaF

(
−Δa

√
k

6c

)

+
T∑

k=�36c2/(ζΔa)2�+1

ΔaF

(
−Δa

√
k

6c

)
.

Then, the second term will be zero since it is outside of the support and, by using

the fact that F (x) ≤ exp (− exp (−x)) and F (x) is increasing, the first term can

276



Appendix E. Proofs of Chapter 5.1.

be bounded as follows,

�36c2/(ζΔa)2�∑
k=1

ΔaF

(
−Δa

√
k

6c

)
≤
∫ 36c2/(ζΔa)2

0
ΔaF

(
−Δa

√
x

6c

)
dx

≤ 72c2

Δa

∫ − 1
ζ

0
yF (y)dy ≤ 72c2

Δa

∫ −∞

0
ye−e

−y
dy

Note that
∫ −∞
0 ye−e−y

dy ≤ 0.098 ≤ 1. Then, the problem dependent regret bound

becomes,

E [RT ] ≤
∑
a �=a�

[
‖h‖∞M1 +

F (0)

1− F (0)

]
18σ2

Δa
+ 2

T∑
k=1

ΔaF

(
−Δa

√
k

6c

)
(E.83)

+
9c2

Δa

[
F−1

(
1− c2

TΔ2
a

)]2
+
c2 + 162σ2

Δa
+Δa (E.84)

≤
∑
a �=a�

[
M1 +

1

e− 1

]
18σ2

Δa
+

144c2

Δa
(E.85)

+
9c2

Δa

[(
TΔ2

a

c2

)ζ
− 1

]2
/ζ2 +

c2 + 162σ2

Δa
+Δa (E.86)

≤C

⎛
⎝∑
a �=a�

Δa +
9c2

ζ2Δa

[(
TΔ2

a

c2

)ζ
− 1

]2⎞⎠ . (E.87)

The problem independent regret bound can be obtained by choosing the threshold

of the minimum gap as Δ = c
√
K/T lnζ(K) where lnζ(x) := xζ−1

ζ . Note that

limζ→0
xζ−1
ζ = ln(x)

E [RT ] ≤
∑
a �=a�

[
M1 +

1

e− 1

]
18σ2

Δa
+

9c2

ζ2Δa

[(
TΔ2

a

c2

)ζ
− 1

]2
(E.88)

+
145c2 + 162σ2

Δa
+Δa (E.89)

≤K
[ [
M1 +

1

e− 1

]
18σ2

Δ
+

9c2

ζ2Δ

[(
TΔ2

c2

)ζ
− 1

]2
+

145c2 + 162σ2

Δ

]

(E.90)

+ ΔT (E.91)

277



Appendix E. Proofs of Chapter 5.1.

≤
√
KT

[ [
M1 +

1

e− 1

]
18σ2

c lnζ(K)
+

9c

lnζ(K)

[
lnζ(K lnζ(K)2)

]2
(E.92)

+
145c2 + 162σ2

c lnζ(K)
+ c lnζ(K)

]
(E.93)

≤
√
KT

[ [
M1 +

1

e− 1

]
18σ2

c lnζ(K)
+

9c

lnζ(K)

[
lnζ(K

2+ζ)
]2

(E.94)

+
145c2 + 162σ2

c lnζ(K)
+ c lnζ(K)

]
(E.95)

∵ lnζ(x lnζ(x)
2+ζ) ≤ lnζ(x

2) for x > 2 (E.96)

≤O
(
√
KT

lnζ
(
K2+ζ

)2
lnζ(K)

)
. (E.97)

The lower bound is simply obtained by plugging F−1 into the general lower

bound. The corollary is proved.

278



Appendix F

Proofs of Chapter 5.2.

F.1 Regret Lower Bound for Robust Upper Confi-

dence Bound

In this section, we prove the lower bound of the expected cumulative regret of

robust UCB [26]. First, we recall Assumption 5 in the main paper.

Assumption 7. Let {Yk}∞k=1 be i.i.d. random variables with the finite p-th mo-

ment for p ∈ (1, 2]. Let νp be a bound of the p-th moment and y be the mean of

Yk. Assume that, for all δ ∈ (0, 1) and n number of observations, there exists an

estimator Ŷn(η, νp, δ) with a parameter η such that

P

(
Ŷn > y + ν1/pp

(
η ln(1/δ)

n

)1−1/p
)
≤ δ

P

(
y > Ŷn + ν1/pp

(
η ln(1/δ)

n

)1−1/p
)
≤ δ.

Assumption 7 provides the confidence bound of the estimator Ŷn. Note that

Ŷn = Ŷn(η, νp, δ) requires νp and δ. By using this confidence bound, at round t,

279



Appendix F. Proofs of Chapter 5.2.

robust UCB selects an action based on the following strategy,

at := argmax
a∈A

{
r̂t−1,a + ν1/pp

(
η ln(t2)/nt−1,a

)1−1/p
}

(F.1)

where r̂t−1,a is an estimator which satisfies Assumption 7 with δ = t−2 and nt−1,a

denotes the number of times a ∈ A have been selected. Under the strategy (F.1),

we prove Theorem 1 in the main paper.

Proof of Theorem 28. The proof is done by constructing a counter example. We

construct a K-armed bandit problem with deterministic rewards. Let the optimal

arm a� give the reward of Δ = ν
1
p

(
η(K−1) ln(T )

T

) p−1
p

whereas the other arms

provide zero rewards. Note that Δ ≤ ν
1
p

(
η(K−1)

T
1
2

) p−1
p
< 1 and the estimator we

used satisfies r̂a ≤ ΔI[a = a�] for all a since rewards are Δ or 0 in this MAB

problem. Let Et be the set of events which satisfy

∑
a �=a�

nt−1,a ≤
ν

1
p−1 η(K − 1)

2
((

1 + 5
p−1
p

)
Δ
) p

p−1

ln(T 2) =
T(

1 + 5
p−1
p

) p
p−1

.

If P(Et) ≤ 1/2 for some t ∈ [1, · · · , T ], then, the regret bound is computed as

follows,

E [RT ] ≥
1

2
E [Rt|Ect ] ≥

1

2
ΔE

⎡
⎣∑
a �=a�

nt,a

∣∣∣∣∣∣Ect
⎤
⎦ ≥ 1

2
ΔE

⎡
⎣∑
a �=a�

nt−1,a

∣∣∣∣∣∣Ect
⎤
⎦ (F.2)

≥ Δ

2

T(
1 + 5

p−1
p

) p
p−1

=
ν

1
p

2
(
1 + 5

p−1
p

) p
p−1

(η(K − 1) ln(T ))
p−1
p T

1
p . (F.3)

Hence, if P(Et) ≤ 1/2 for some t ∈ [1, · · · , T ], then, the lower bound holds. On

the contrary, if P(Et) > 1/2 for all t ∈ [1, · · · , T ], then, the proof is done by

showing P(at �= a�) ≥ 1
2 for t ≥ t0 where

t0 := max

⎛
⎜⎝1 +

2T

5(K − 1)
+

2T(
1 + 5

p−1
p

) p
p−1

, T
1
2

⎞
⎟⎠ .

280



Appendix F. Proofs of Chapter 5.2.

Note that T > t0 holds since T > 4T
5 + 1 > 1 + 2T

5(K−1) +
2T(

1+5
p−1
p

) p
p−1

holds for

T > 10 and T >
√
T holds. In other words, {t ∈ [1, . . . , T ] : t ≥ t0} is not empty.

Before showing that P(at �= a�) ≥ 1
2 holds, we first check the lower bound.

When P(Et) > 1/2 holds for all t ∈ [1, · · · , T ], if P(at �= a�) ≥ 1
2 holds for t ≥ t0,

then, the lower bound of the regret can be obtained as follows,

E [RT ] ≥ Δ

T∑
t=t0

P (at �= a�) ≥ Δ(T − t0)
2

(F.4)

=
Δ

2
min

⎛
⎜⎝
⎛
⎜⎝1− 2

5(K − 1)
− 2(

1 + 5
p−1
p

) p
p−1

⎞
⎟⎠T − 1, T (1− T− 1

2 )

⎞
⎟⎠
(F.5)

≥ Δ

2
min

((
1− 2

5
− 2

5

)
T − 1, T (1− T− 1

2 )

)
(F.6)

where the last inequality holds since K − 1 > 1 and
(
1 + 5

p−1
p

) p
p−1

> 5. Then,

by T > 10,

Δ

2
min

((
1− 2

5
− 2

5

)
T − 1, T (1− T− 1

2 )

)
(F.7)

≥ ΔT

2
min

(
1

5
− T−1, 1− T− 1

2

)
(F.8)

= ν
1
p (η(K − 1) ln(T ))

p−1
p T

1
p min

(
1

5
− T−1, 1− T− 1

2

)
(F.9)

=
1

10
ν

1
p (η(K − 1) ln(T ))

p−1
p T

1
p . (F.10)

Note that 1
10 < 1 − 1√

10
. Thus, we obtain E [RT ] ≥ Ω

(
(K ln(T ))

p−1
p T

1
p

)
, if

P(at �= a�) ≥ 1
2 holds for t ≥ t0.

The remaining part is to prove that P(at �= a�) ≥ 1
2 holds for t > t0 when

P(Et) ≥ 1/2 for all t > 0. We mainly prove that, if Et occurs, at = a� never

occurs since the confidence bound cannot overcome the estimation error between

sub-optimal arms and optimal arm under the condition of Et. In other words,

281



Appendix F. Proofs of Chapter 5.2.

P (at �= a�|Et) = 1. If P (at �= a�|Et) = 1 holds, then, we can simply show that

P(at �= a�) ≥ 1

2
P (at �= a�|Et) =

1

2
. (F.11)

Now, we analyze the set of event, {at �= a�}, as follows,

{at �= a�} =
⋃

a �=a�

⎧⎨
⎩r̂a� + ν

1
p

(
η ln(t2)

nt−1,a�

) p−1
p

≤ r̂a + ν
1
p

(
η ln(t2)

nt−1,a

) p−1
p

⎫⎬
⎭ (F.12)

⊃
⋃

a �=a�

⎧⎨
⎩Δ+ ν

1
p

(
η ln(t2)

nt−1,a�

) p−1
p

≤ ν
1
p

(
η ln(t2)

nt−1,a

) p−1
p

⎫⎬
⎭ (F.13)

∵ r̂a� ≤ Δ and r̂a �=a� = 0 (F.14)

⊃
⋃

a �=a�

⎧⎨
⎩Δ+ ν

1
p

(
η ln(t2)

nt−1,a�

) p−1
p

≤
(
1 + 5

p−1
p

)
Δ ≤ ν

1
p

(
η ln(t2)

nt−1,a

) p−1
p

⎫⎬
⎭ (F.15)

=

⎧⎨
⎩ν

1
p

(
η ln(t2)

nt−1,a�

) p−1
p

≤ 5
p−1
p Δ

⎫⎬
⎭
⋂ ⋃

a �=a�

⎧⎨
⎩
(
1 + 5

p−1
p

)
Δ ≤ ν

1
p

(
η ln(t2)

nt−1,a

) p−1
p

⎫⎬
⎭

(F.16)

=

{
2ν

1
p−1

5Δ
p

p−1

η ln(t) ≤ nt−1,a�

}⋂ ⋃
a �=a�

⎧⎪⎨
⎪⎩nt−1,a ≤ 2ν

1
p−1((

1 + 5
p−1
p

)
Δ
) p

p−1

η ln(t)

⎫⎪⎬
⎪⎭
(F.17)

⊃
{

2ν
1

p−1

5Δ
p

p−1

η ln(T ) ≤ nt−1,a�

}⋂ ⋃
a �=a�

⎧⎪⎨
⎪⎩nt−1,a ≤ 2ν

1
p−1((

1 + 5
p−1
p

)
Δ
) p

p−1

η ln(t0)

⎫⎪⎬
⎪⎭
(F.18)

∵ T > t > t0 (F.19)

⊃
{

2T

5(K − 1)
≤ nt−1,a�

}⋂ ⋃
a �=a�

⎧⎪⎨
⎪⎩nt−1,a ≤ 2T(

1 + 5
p−1
p

) p
p−1

(K − 1)

ln(t0)

ln(T )

⎫⎪⎬
⎪⎭
(F.20)

⊃
{

2T

5(K − 1)
≤ nt−1,a�

}⋂⎧⎪⎨
⎪⎩
∑
a �=a�

nt−1,a ≤ 2T(
1 + 5

p−1
p

) p
p−1

ln(t0)

ln(T )

⎫⎪⎬
⎪⎭ . (F.21)

Let A :=
{

2T
5(K−1) ≤ nt−1,a�

}
and B :=

⎧⎪⎨
⎪⎩
∑

a �=a� nt−1,a ≤ 2T(
1+5

p−1
p

) p
p−1

ln(t0)
ln(T )

⎫⎪⎬
⎪⎭.

282



Appendix F. Proofs of Chapter 5.2.

Now, we check that A ∩B contains Et for t ≥ t0 where

t0 := max

⎛
⎜⎝1 +

2T

5(K − 1)
+

2T(
1 + 5

p−1
p

) p
p−1

, T
1
2

⎞
⎟⎠ .

For the set A, if ω ∈ Et, then,

nt−1,a� = t− 1−
∑
a �=a�

nt−1,a ≥ t− 1− T(
1 + 5

p−1
p

) p
p−1

∵ ω ∈ Et (F.22)

≥ t0 − 1− T(
1 + 5

p−1
p

) p
p−1

≥ 2T

5(K − 1)
+

T(
1 + 5

p−1
p

) p
p−1

(F.23)

≥ 2T

5(K − 1)
, (F.24)

which implies ω ∈ A.

For the set B, we have,

ln(t0)

ln(T )
≥ ln(T

1
2 )

ln(T )
=

1

2
.

By using this fact, we get

2T(
1 + 5

p−1
p

) p
p−1

ln(t0)

ln(T )
≥ T(

1 + 5
p−1
p

) p
p−1

≥
∑
a �=a�

nt−1,a ∵ ω ∈ Et, (F.25)

which implies ω ∈ B. In summary, ω ∈ Et implies ω ∈ A ∩ B. Consequently, we

have,

P(at �= a�) ≥ 1

2
P (at �= a�|Et) (F.26)

≥ 1

2
P (A ∩B|Et) =

1

2
. (F.27)

Thus,

E [RT ] ≥ Ω
(
(K ln(T ))

p−1
p T

1
p

)
.

283



Appendix F. Proofs of Chapter 5.2.

F.2 Bounds on Tail Probability of A p-Robust Esti-

mator

Before deriving the bound of tail probability of a new estimator, we first analyze

the property of the influence function ψ(x). Then, using the property of ψ(x), we

show that the tail probability has an exponential upper bound.

Lemma 25. For p ∈ (1, 2], assume that a positive constant bp satisfies the fol-

lowing inequality,

b
2
p
p

[
2

(
2− p
p− 1

)1− 2
p

+

(
2− p
p− 1

)2− 2
p

]
≥ 1.

Then, the following inequality holds, for all x ∈ R,

ln (1 + x+ bp|x|p) ≥ − ln (1− x+ bp|x|p) .

Proof. Let f(x) := 1+x+bp|x|p. Then, the inequality is represented as ln(f(x)) ≥

− ln(f(−x)). Before starting the proof, first, we show that f(x) > 0 by checking

minx f(x) > 0. For x ≥ 0,

f ′(x) = 1 + bp · pxp−1 > 0.

which is non-zero for all x ≥ 0. Thus, the minimum of f(x) will appear at x < 0.

For x < 0, its derivative is

f ′(x) = 1− bp · p(−x)p−1.

284



Appendix F. Proofs of Chapter 5.2.

Then, f ′(x) become zero at x = − (pbp)
− 1

p−1 . Thus, the minimum of f(x) is

f
(
− (pbp)

− 1
p−1

)
= 1− (pbp)

− 1
p−1 + bp (pbp)

− p
p−1 = 1−

(
p
− 1

p−1 − p−
p

p−1

)
b
− 1

p−1
p

(F.28)

≥ 1−
(
p
− 1

p−1 − p−
p

p−1

)[
2

(
2− p
p− 1

)1− 2
p

+

(
2− p
p− 1

)2− 2
p

] p
2(p−1)

(F.29)

∵
[
2

(
2− p
p− 1

)1− 2
p

+

(
2− p
p− 1

)2− 2
p

] p
2(p−1)

≥ b
− 1

p−1
p (F.30)

= 1− p−
p

p−1

[
2 (p− 1) (2− p)1−

2
p + (2− p)2−

2
p

] p
2(p−1)

(F.31)

= 1− p−
p

p−1 [2 (p− 1) + (2− p)]
p

2(p−1) (2− p)
p−2

2(p−1) (F.32)

= 1− p−
p

2(p−1) (2− p)
p−2

2(p−1) > 0. (F.33)

Note that 1
2 ≤ p

− p
2(p−1) (2− p)

p−2
2(p−1) < 1 holds for p ∈ (1, 2]. Since f(−x) and

f(x) are symmetric to the y-axis, f(−x) is also positive for all x ∈ R.

By noticing that ln(f(x)) ≥ − ln(f(−x)) is equivalent to f(x)f(−x) > 1, We

show that the following inequality holds,

(1 + x+ bp|x|p)(1− x+ bp|x|p) ≥ 1 (F.34)

b2p|x|2p + 2bp|x|p + 1− x2 ≥ 1 (F.35)

b2p|x|2p−2 + 2bp|x|p−2 − 1 ≥ 0 (∵ x2 ≥ 0). (F.36)

Let us define g(z) := b2pz
2p−2 + 2bpz

p−2 for z > 0. Now, we show that g(z) > 1

holds for z > 0. First, we analyze the derivative of g(z) computed as follows,

g′(z) = 2bpz
p−3 (bp(p− 1)zp + (p− 2)) .

Since bp > 0 and zp−3 > 0, the sign of g′(z) is determined by the term:

(bp(p− 1)zp + (p− 2)) ,

285



Appendix F. Proofs of Chapter 5.2.

which is an increasing function and, hence, has a unique root at z0 :=
(
(2−p)
(p−1)

) 1
p
b
− 1

p
p .

In other words, since (bp(p− 1)zp + (p− 2)) has the unique root at z0 for z > 0,

g′(z) also has a unique root at z0 which is the minimum point. Finally,

g (z0)− 1 = b
2
p
p

[
2

(
2− p
p− 1

)1− 2
p

+

(
2− p
p− 1

)2− 2
p

]
− 1 ≥ 0.

where the last inequality holds by the assumption. Consequently, g(z) − 1 ≥

g (z0)− 1 ≥ 0 holds and, hence, f(x)f(−x) ≥ 1 holds. The lemma is proved.

Corollary 13. Let bp :=

[
2
(
2−p
p−1

)1− 2
p
+
(
2−p
p−1

)2− 2
p

]− p
2

. For all x ∈ R, the fol-

lowing inequality holds

ln (1 + x+ bp|x|p) ≥ − ln (1− x+ bp|x|p) .

Proof. The proof is done by directly applying the Lemma 25 with

bp =

[
2

(
2− p
p− 1

)1− 2
p

+

(
2− p
p− 1

)2− 2
p

]− p
2

.

Proof of Theorem 29. From the Markov’s inequality,

P

(
n
1− 1

p

c
Ŷn >

n
1− 1

p

c
(y + δ)

)
≤ exp

(
−n

1− 1
p

c
(y + δ)

)
E

[
exp

(
n
1− 1

p

c
Ŷn

)]

(F.37)

Since ψ(x) ≤ ln (bp|x|p + x+ 1) holds by its definition, we have

E

[
exp

(
n
1− 1

p

c
Ŷn

)]
≤ E

[
n∏
k=1

(
1 +

Yk

cn
1
p

+ bp
Y p
k

2(cn
1
p )p

)]
(F.38)

=
n∏
k=1

E

[
1 +

Yk

cn
1
p

+ bp
Y p
k

2cpn

]
(F.39)

=

(
1 +

y

cn
1
p

+ bp
vp

2cpn

)n
(F.40)

≤ exp

(
n
1− 1

p

c
y + bp

vp
2cp

)
(F.41)

286



Appendix F. Proofs of Chapter 5.2.

Combining (F.37) and (F.41), we have

P

(
Ŷn − y > δ

)
≤ exp

(
−n

1− 1
p

c
(y + δ)

)
exp

(
n
1− 1

p

c
y +

bpνp
2cp

)

= exp

(
−n

1− 1
p

c
δ +

bpνp
2cp

)

The upper bound of P
(
y − Ŷn > δ

)
can be obtained by the similar way. Hence

we obtain the desired result. The theorem is proved.

F.3 General Regret Upper Bound of APE2

To analyze the regret RT in the view of expectation, we borrow the notion of

filtration {Ht : t = 1, . . . , T} from [7] and [64] where the filtration Ht is defined

as the history of plays until time t as follows

Ht := {a�,Ra� : � = 1, . . . , t}

By definition, H1 ⊂ H2 ⊂ · · · ⊂ HT−1 holds. Finally, we separates the event

{at = a} into three groups based on the threshold xa := ra + Δa/3 and ya :=

ra� −Δa/3. Finally, for a given reward estimator r̂t,a, let us define the following

sets which will be used to partition the event {at = a}:

Et,a := {at = a}, Êt,a := {r̂t,a ≤ xa}, Ẽt,a := {r̂t−1,a + βt−1,aGt,a ≤ ya}

We separate Et,a into three subsets:

Et,a = E
(1)
t,a ∪ E

(2)
t,a ∪ E

(3)
t,a (F.42)

where

E
(1)
t,a = Et,a ∩ Êct,a

E
(2)
t,a = Et,a ∩ Êt,a ∩ Ẽt,a

E
(3)
t,a = Et,a ∩ Êt,a ∩ Ẽct,a

287



Appendix F. Proofs of Chapter 5.2.

In the following sections, we estimate the upper bound of the probability of the

event Et,a based on the decomposition (F.42).

Lemma 26. Assume that the p-th moment of rewards is bounded by a constant

νp < ∞, r̂t,a is a p-robust estimator and F (x) satisfies Assumption 2. Then for

any action a ∈ A, it holds

T∑
t=1

P

(
E

(1)
t,a

)
≤ 1 + exp

(
bpνp
2cp

)(
3c

Δa

) p
p−1

Γ

(
2p− 1

p− 1

)
.

Proof. Fix arm a ∈ A. Let τk denotes the smallest round when the arm a is

sampled for the k-th time i.e. k =
∑τk

t=1 I[Et,a]. We let τ0 := 0 and τk = T for

k > na(T ). Then it is easy to see that for τk < t ≤ τk+1

I[Et,a] =

⎧⎪⎪⎨
⎪⎪⎩
1 : t = τk+1

0 : t �= τk+1

(F.43)

Therefore,

T∑
t=1

P

(
E

(1)
t,a

)
=

T∑
t=1

E

[
I[E

(1)
t,a ]
]
=

T−1∑
k=0

E

⎡
⎣ τk+1∑
t=1+τk

I[E
(1)
t,a ]

⎤
⎦

= E

[
τ1∑
t=1

I

(
Et,a ∩ Êct,a

)]

+

T−1∑
k=1

E

⎡
⎣ τk+1∑
t=1+τk

I[Et,a ∩ Êct,a]

⎤
⎦

≤ 1 +

T−1∑
k=1

P

(
Êcτk+1,a

)

where the last inequality holds by (F.43). Also, by the definition of Êt,a and

288



Appendix F. Proofs of Chapter 5.2.

Theorem 29,

T−1∑
k=1

P

(
Êcτk+1,a

)
≤

T−1∑
k=1

exp

(
−Δak

1− 1
p

3c
+
bpνp
2cp

)

≤ exp

(
bpνp
2cp

)∫ ∞

0
exp

(
−Δax

1− 1
p

3c

)
dx

≤ exp

(
bpνp
2cp

)(
3c

Δa

) p
p−1 p

p− 1

∫ ∞

0
exp (−t) t

1
p−1dt

∵ t =
Δax

1− 1
p

3c

= exp

(
bpνp
2cp

)(
3c

Δa

) p
p−1 p

p− 1
Γ

(
p

p− 1

)

= exp

(
bpνp
2cp

)(
3c

Δa

) p
p−1

Γ

(
2p− 1

p− 1

)
.

where the last equality holds by Γ(x+ 1) = xΓ(x). The lemma is proved.

Next we estimate E
(2)
t,a . From now on, we let ρ stand for the following ratio

ρ(g) :=
F (g)

1− F (g) =
P(G < g)

P(G ≥ g)

where F is a cumulative density function of perturbation G.

Lemma 27. Assume that the p-th moment of rewards is bounded by a constant

νp < ∞, r̂t,a is a p-robust estimator and F (x) satisfies Assumption 2. For any

action a ∈ A, it holds

T∑
t=1

P

(
E

(2)
t,a

)
≤ exp

(
bpνp
2cp

){
C1 +

F (0)

1− F (0) + 2
2p−1
p−1

}
Γ

(
2p− 1

p− 1

)(
3c

Δa

) p
p−1

+ 2

(
6c

Δa

) p
p−1

{
−F−1

(
1

T

(
c

Δa

) p
p−1

)} p
p−1

+

+ 2

(
c

Δa

) p
p−1

Proof. If a = a�, then Δa = 0 so the desired result trivially holds. Threfore,

we take a ∈ A \ {a�}. For the convenience of the notation, we write r̃t,a :=

289



Appendix F. Proofs of Chapter 5.2.

r̂t−1,a + βt−1,aGt,a. Due to the decision rule of the perturbation method, at = a

implies r̃t,a′ ≤ r̃t,a for a′ ∈ A. Therefore, it holds

Et,a ∩ Ẽt,a ⊂
⋂
a′∈A

{r̃t,a′ ≤ ya} = {r̃t,a� ≤ ya} ∩ {r̃t,a′ ≤ ya, ∀a′ �= a�}. (F.44)

This fact implies

P

(
Et,a ∩ Ẽt,a|Ht−1

)
≤ P

( ⋂
a′∈A

{r̃t,a′ ≤ ya}|Ht−1

)
(F.45)

Note that events {r̃t,a� ≤ ya} and {r̃t,a′ ≤ ya, ∀a′ �= a�} are independent if Ht−1

is given. From this fact, (F.45) is equivalent to

P

( ⋂
a′∈A

{r̃t,a′ ≤ ya}|Ht−1

)
= P (r̃t,a� ≤ ya|Ht−1)P

(
r̃t,a′ ≤ ya, ∀a′ �= a�|Ht−1

)
=

P (r̃t,a� ≤ ya|Ht−1)

P (r̃t,a� > ya|Ht−1)

× P
(
{r̃t,a� > ya} ∩ {r̃t,a′ ≤ ya, ∀a′ �= a�}|Ht−1

)
Since r̂t−1,a� , βt−1,a� are already determined under the condition Ht−1, we get

P (r̃t,a� ≤ ya|Ht−1) = F

(
ra� − r̂t−1,a� − Δa

3

βt−1,a�

)

Similarly to (F.44), we can observe that

{r̃t,a� > ya} ∩ {r̃t,a′ ≤ ya, ∀a′ �= a�} ⊂ Et,a� ∩ Ẽt,a (F.46)

and this implies

P
(
{r̃t,a� > ya} ∩ {r̃t,a′ ≤ ya, ∀a′ �= a�}|Ht−1

)
≤ P

(
Et,a� ∩ Ẽt,a|Ht−1

)
(F.47)

Therefore,

P

(
Et,a ∩ Ẽt,a|Ht−1

)
≤ Qt,a�

1−Qt,a�
P

(
Et,a� ∩ Ẽt,a|Ht−1

)
, (F.48)

290



Appendix F. Proofs of Chapter 5.2.

where Qt,a� := F

(
ra�−r̂t−1,a�−Δa

3
βt−1,a�

)
. By taking an expectation on both sides, we

have,

P

(
E

(2)
t,a

)
= P

(
Et,a ∩ Êt,a ∩ Ẽt,a

)
≤ E

[
Qt,a�

1−Qt,a�
I[Et,a� ∩ Êt,a ∩ Ẽt,a]

]
. (F.49)

Now, we set τk to denote the smallest round when the optimal arm a� is sampled

for the k-th time. Then, the summation of the right-hand side of F.49 over t =

1, . . . , T is bounded as follows,

T∑
t=1

E

[
Qt,a�

1−Qt,a�
I[Et,a� ∩ Êt,a ∩ Ẽt,a]

]

=

T−1∑
k=0

E

⎡
⎣ τk+1∑
t=τk+1

Qt,a�

1−Qt,a�
I[Et,a� ∩ Êt,a ∩ Ẽt,a]

⎤
⎦

=
T−1∑
k=0

E

[
Qτk+1,a�

1−Qτk+1,a�
I[Êτk+1,a ∩ Ẽτk+1,a]

]

≤
T∑
k=1

E

[
Qτk,a�

1−Qτk,a�

]
.

We first compute the upper bound of the conditional expectation

E

[
Qτk,a�

1−Qτk,a�
∣∣∣Hτk

]
.

From the definition of τk, we have nτk,a = k and βτk,a =
c

k
1− 1

p
. By using this fact,

we get,

E

[
Qτk,a�

1−Qτk,a�
∣∣∣Hτk

]
= E

[
ρ

(
k
1− 1

p

c

{
ra� − r̂τk,a� −

Δa

3

}) ∣∣∣∣∣Hτk

]

=

∫
R

ρ

(
k
1− 1

p

c

{
ra� − x−

Δa

3

})
P(r̂ ∈ dx) (F.50)

We decompose R = I1 ∪ I2 ∪ I3 into three intervals where I1 := {x ≤ ra� − Δa
3 },

I2 := {ra� − Δa
3 < x ≤ ra� − Δa

6 }, and I3 := {ra� − Δa
6 < x}. We derive the upper

bound of (F.50) on the each interval.

291



Appendix F. Proofs of Chapter 5.2.

By using the change of variable formula,

∫
I1

ρ

(
k
1− 1

p

c

{
ra� − x−

Δa

3

})
P(r̂ ∈ dx)

=

∫ ra�−Δa
3

−∞
ρ

(
k
1− 1

p

c

{
ra� − x−

Δa

3

})
fr̂(x)dx

=
c

k
1− 1

p

∫ ∞

0
ρ(g)fr̂

(
ra� −

c

k
1− 1

p

g − Δa

3

)
dg

where fr̂ is the density function of the measure P(r̂ ∈ dx). Note that the following

equality holds by the fundamental theorem of calculus

ρ(g) =
F (g)

1− F (g) =

∫ g

0

h(u)

1− F (u)du+
F (0)

1− F (0)

Therefore,

c

k
1− 1

p

∫ ∞

0

F (g)

1− F (g)fr̂
(
ra� −

c

k
1− 1

p

g − Δa

3

)
dg

=
c

k
1− 1

p

∫ ∞

0

(∫ g

0

h(u)

1− F (u)du+
F (0)

1− F (0)

)
fr̂

(
ra� −

c

k
1− 1

p

g − Δa

3

)
dg

=
F (0)

1− F (0)P
(
Δa

3
≤ ra� − r̂τk,a�

)

+
c

k
1− 1

p

∫ ∞

0

(∫ g

0

h(u)

1− F (u)du
)
fr̂

(
ra� −

c

k
1− 1

p

g − Δa

3

)
dg. (F.51)

From the tail bound of the proposed estimator, we have,

P

(
Δa

3
≤ ra� − r̂τk,a�

)
≤ exp

(
−Δak

1− 1
p

3c
+
bpνp
2cp

)
(F.52)

Hence we can get the upper bound of the first term in (F.51). Also, by Fubini-

292



Appendix F. Proofs of Chapter 5.2.

Tonelli theorem, we can transform the second term of (F.51) as follows

c

k
1− 1

p

∫ ∞

0

(∫ g

0

h(u)

1− F (u)du
)
fr̂

(
ra� −

c

k
1− 1

p

g − Δa

3

)
dg

=

∫ ∞

0

(∫ ∞

u
fr̂

(
ra� −

c

k
1− 1

p

g − Δa

3

)
c

k
1− 1

p

dg

)
h(u)

1− F (u)du

=

∫ ∞

0

(∫ ra�− c

k
1− 1

p
u−Δa

3

−∞
fr̂ (g) dg

)
h(u)

1− F (u)du

=

∫ ∞

0
P

(
ra� − r̂τk,a� ≥

c

k
1− 1

p

u+
Δa

3

)
h(u)

1− F (u)du (F.53)

Similar to (F.52), we have

P

(
ra� − r̂τk,a� ≥

c

k
1− 1

p

u+
Δa

3

)
≤ exp

(
−u− Δak

1− 1
p

3c
+
bpνp
2cp

)

Thus, we obtain the upper bound of (F.53) as follows∫ ∞

0
P

(
ra� − r̂τk,a� ≥

c

k
1− 1

p

u+
Δa

3

)
h(u)

1− F (u)du

≤
∫ ∞

0
exp

(
−u− Δak

1− 1
p

3c
+
bpνp
2cp

)
h(u)

1− F (u)du

≤ exp

(
−Δak

1− 1
p

3c
+
bpνp
2cp

)∫ ∞

0

exp (−u)h(u)
1− F (u) du

≤ C exp

(
−Δak

1− 1
p

3c
+
bpνp
2cp

)
,

where the last inequality holds due to the assumption on F (x). Therefore,∫
I1

ρ

(
k
1− 1

p

c

{
ra� − x−

Δa

3

})
P(r̂ ∈ dx) ≤ C exp

(
−Δak

1− 1
p

3c
+
bpνp
2cp

)
(F.54)

+
F (0)

1− F (0) exp
(
−Δak

1− 1
p

3c
+
bpνp
2cp

)

(F.55)

Now we derive the upper bound of the second interval I2 = {ra� − Δa
3 < x ≤

ra� − Δa
6 }. Since F (0) ≤ 1/2, it is easy to see that

ρ

(
k
1− 1

p

c

{
ra� − x−

Δa

3

})
≤ 2F

(
k
1− 1

p

c

{
ra� − x−

Δa

3

})
(F.56)

293



Appendix F. Proofs of Chapter 5.2.

for x ∈ I2 ∪ I3. Hence, for x ∈ I2,∫
I2

ρ

(
k
1− 1

p

c

{
ra� − x−

Δa

3

})
P(r̂ ∈ dx)

≤
∫ ra�−Δa

6

ra�−Δa
3

2F

(
k
1− 1

p

c

{
ra� − x−

Δa

3

})
P(r̂ ∈ dx)

≤ 2P

(
Δa

6
≤ ra� − r̂τk,a�

)
.

Similar to (F.52), we have

2P

(
Δa

6
≤ ra� − r̂τk,a�

)
≤ 2 exp

(
−Δak

1− 1
p

6c
+
bpνp
2cp

)
. (F.57)

Hence, we get the upper bound of the integral on I2 as follows,

T∑
k=1

2 exp

(
−Δak

1− 1
p

6c
+
bpνp
2cp

)
≤ 2 exp

(
bpνp
2cp

)
Γ

(
2p− 1

p− 1

)
.

Finally, due to (F.56) again,

∫
I3

ρ

(
k
1− 1

p

c

{
ra� − x−

Δa

3

})
P(r̂ ∈ dx)

≤ 2

∫ ∞

ra�−Δa
6

F

(
k
1− 1

p

c

{
ra� − x−

Δa

3

})
P(r̂ ∈ dx) ≤ 2F

(
−Δak

1− 1
p

6c

)
.

(F.58)

By combining (F.55), (F.57), and (F.58),

T∑
k=1

E

[
Qτk,a�

1−Qτk,a�
∣∣∣Hτk

]
≤

T∑
k=1

{
C exp

(
−Δak

1− 1
p

3c
+
bpνp
2cp

)

+
F (0)

1− F (0) exp
(
−Δak

1− 1
p

3c
+
bpνp
2cp

)}

+
T∑
k=1

2 exp

(
−Δak

1− 1
p

6c
+
bpνp
2cp

)

+

T∑
k=1

2F

(
−k

1− 1
pΔa

6c

)

294



Appendix F. Proofs of Chapter 5.2.

≤ exp

(
bpνp
2cp

){
C +

F (0)

1− F (0)

}
Γ

(
2p− 1

p− 1

)(
3c

Δa

) p
p−1

+ 2 exp

(
bpνp
2cp

)
Γ

(
2p− 1

p− 1

)(
6c

Δa

) p
p−1

+
T∑
k=1

2F

(
−k

1− 1
pΔa

6c

)

≤ exp

(
bpνp
2cp

){
C +

F (0)

1− F (0) + 2
2p−1
p−1

}
Γ

(
2p− 1

p− 1

)(
3c

Δa

) p
p−1

+

T∑
k=1

2F

(
−k

1− 1
pΔa

6c

)
.

The remaining part is to derive the upper bound of the last term. For T >

2
(

c
Δa

) p
p−1

, let �− be the maximal time such that

F

⎛
⎝−�1−

1
p

− Δa

6c

⎞
⎠ ≥ 1

T

(
c

Δa

) p
p−1

.

Then, we have �− as follows,

�− =

(
6c

Δa

) p
p−1

{
−F−1

(
1

T

(
c

Δa

) p
p−1

)} p
p−1

.

For k > �−, the following inequality holds,

F

⎛
⎝−�1−

1
p

− Δa

6c

⎞
⎠ <

1

T

(
c

Δa

) p
p−1

.

Note that 1
T

(
c
Δa

) p
p−1 ≤ 1

2 for T >
(

c
Δa

) p
p−1

and F−1

(
1
2T

(
c
Δa

) p
p−1

)
< 0 from

the assumption F (0) < 1
2 .

295



Appendix F. Proofs of Chapter 5.2.

Therefore,

T∑
k=1

2F

(
−k

1− 1
pΔa

6c

)
≤ 2�− +

T∑
k=�−+1

2F

(
−k

1− 1
pΔa

6c

)

≤ 2�− +

T∑
k=�−+1

2

T

(
c

Δa

) p
p−1

≤ 2

(
6c

Δa

) p
p−1

{
−F−1

(
1

2T

(
c

Δa

) p
p−1

)} p
p−1

+ 2

(
c

Δa

) p
p−1

≤ 2

(
6c

Δa

) p
p−1

{
−F−1

(
1

2T

(
c

Δa

) p
p−1

)} p
p−1

+

+ 2

(
c

Δa

) p
p−1

.

For T ≤ 2
(

c
Δa

) p
p−1

,

T∑
t=1

P

(
E

(2)
t,a

)
≤ T ≤ 2

(
c

Δa

) p
p−1

+ 2

(
6c

Δa

) p
p−1

{
−F−1

(
1

T

(
c

Δa

) p
p−1

)} p
p−1

+

.

Thus, the upper bound also holds. By combining this upper bound, the Lemma

is proved.

Lastly, we estimate the upper bound of E
(3)
t,a .

Lemma 28. Assume that the p-th moment of rewards is bounded by a constant

νp < ∞, r̂t,a is a p-robust estimator and F (x) satisfies Assumption 2. For any

action a ∈ A, it holds

T∑
t=1

P

(
E

(3)
t,a

)
≤
(

3c

Δa

) p
p−1

{
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)} p
p−1

+

+ 2

(
c

Δa

) p
p−1

Proof. Recall τk from Lemma 26. Obviously,

T∑
t=1

P

(
E

(3)
t,a

)
≤

T∑
k=1

P

(
Êτk,a ∩ Ẽcτk,a

)

296



Appendix F. Proofs of Chapter 5.2.

Due to the decision rule of the perturbation method and the definition of τk,

observe that nτk,a = k and βτk,a =
c

k
1− 1

p
. By the conditioning on Hτk ,

P

(
Êτk,a ∩ Ẽcτk,a

∣∣∣Hτk

)
≤ P

(
r̂τk ≤ xa, Gτk,a >

ya − r̂τk,a
βτk,a

∣∣∣Hτk

)

≤ P

(
Gτk,a >

ya − xa
βτk,a

∣∣∣Hτk

)

= P

(
Gτk,a >

Δak
1− 1

p

3c

∣∣∣Hτk

)
= 1− F

(
Δak

1− 1
p

3c

)
.

(F.59)

We first show that the bound holds for T >
(

c
Δa

) p
p−1

and check the case of

T ≤
(

c
Δa

) p
p−1

.

For T > 2
(

c
Δa

) p
p−1

, let �+ be the maximal time such as

F

(
Δa�

1− 1
p

3c

)
≤ 1− 1

T

(
c

Δa

) p
p−1

.

There exists a positive �+ since 1− 1
T

(
c
Δa

) p
p−1

> 1
2 and the assumption F (0) < 1

2 .

Note that

�+ ≤
(

3c

Δa

) p
p−1

{
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)} p
p−1

. (F.60)

and for k > �+

1− F
(
Δak

1− 1
p

3c

)
≤ 1

T

(
c

Δa

) p
p−1

. (F.61)

297



Appendix F. Proofs of Chapter 5.2.

Therefore, by (F.59), (F.60), and (F.61),

T∑
k=1

P

(
Êτk,a ∩ Ẽcτk,a

)
≤

T∑
k=1

(
1− F

(
Δak

1− 1
p

3c

))

≤ �+ +
T∑

k=�++1

(
1− F

(
Δak

1− 1
p

3c

))

≤
(

3c

Δa

) p
p−1

{
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)} p
p−1

+

T∑
k=�+1

1

T

(
c

Δa

) p
p−1

≤
(

3c

Δa

) p
p−1

{
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)} p
p−1

+

+ 2

(
c

Δa

) p
p−1

.

For T ≤ 2
(

c
Δa

) p
p−1

,

T∑
t=1

P

(
E

(3)
t,a

)
≤ T ≤ 2

(
c

Δa

) p
p−1

+

(
3c

Δa

) p
p−1

{
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)} p
p−1

+

.

Thus, the bound also holds. Consequently, the lemma is proved.

Proof of Theorem 30. Recall the definition of regret RT , and the fact P(at =

a) = P(Et,a) =
∑3

i=1 P(E
(i)
t,a). Hence

E[RT ] :=
∑
a∈A

T∑
t=1

ΔaP (at = a) =
∑
a �=a�

3∑
i=1

T∑
t=1

ΔaP

(
E

(i)
t,a

)
(F.62)

By Lemmas 26, 27, and 28,

T∑
t=1

ΔaP

(
E

(1)
t,a

)
≤ Δa + exp

(
bpνp
2cp

)(
(3c)p

Δa

) 1
p−1

Γ

(
2p− 1

p− 1

)
.

T∑
t=1

ΔaP

(
E

(2)
t,a

)
≤ exp

(
bpνp
2cp

){
C +

F (0)

1− F (0) + 2
2p−1
p−1

}
Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

+ 2

(
(6c)p

Δa

) 1
p−1

{
−F−1

(
1

T

(
c

Δa

) p
p−1

)} p
p−1

+

+ 2

(
cp

Δa

) 1
p−1

298



Appendix F. Proofs of Chapter 5.2.

T∑
t=1

ΔaP

(
E

(3)
t,a

)
≤
(
(3c)p

Δa

) 1
p−1

{
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)} p
p−1

+

+ 2

(
cp

Δa

) 1
p−1

Therefore, we can estimate the upper bound of (F.62) by combining the above

results as follows

E[RT ] ≤
∑
a �=a�

[
exp

(
bpνp
2cp

){
C +

F (0)

1− F (0) + 2
2p−1
p−1 + 1

}
Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

+ 2

(
(6c)p

Δa

) 1
p−1

{
−F−1

(
1

T

(
c

Δa

) p
p−1

)} p
p−1

+

+

(
(3c)p

Δa

) 1
p−1

{
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)} p
p−1

+

+ 4

(
cp

Δa

) 1
p−1

+Δa

]

≤O
( ∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+
(6c)

p
p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

+
(3c)

p
p−1

Δ
1

p−1
a

[
F−1

(
1− c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

+Δa

)

The theorem is proved.

F.4 General Regret Lower Bound of APE2

Proof of Theorem 31. We construct aK-armed multi-armed bandit problem with

deterministic rewards to prove the regret lower bound of APE2. Let the optimal

arm a� give the reward of Δ = 1
2c

1
p

(
(K−1)
T

)1− 1
p
F−1

(
1− 1

K

)
whereas the other

arms provide zero rewards. Note that Δ ∈ [0, 1] for

T ≥ c
1

p−1 (K − 1)

2
p

p−1

∣∣∣∣F−1

(
1− 1

K

)∣∣∣∣
p

p−1

299



Appendix F. Proofs of Chapter 5.2.

and the estimator becomes r̂a = ΔI[a = a�] since there is no noise. Let Et be the

set of events which satisfy ∑
a �=a�

nt,a ≤ cT

If P(Et) ≤ 1/2 holds for some t ∈ [1, · · · , T ], then the regret bound is computed

as follows

E[RT ] ≥
1

2
E[Rt|Ect ] ≥

cT

2
Δ =

c
1+ 1

p

4
(K − 1)

1− 1
pT

1
pF−1

(
1− 1

K

)

hence it satisfies the lower bound. Otherwise, if P(Et) > 1/2 holds for all t ∈

[1, · · · , T ], it is sufficient to prove P(at �= a�) ≥ 1/8. Then, it holds

E[RT ] =

T∑
t=1

ΔP(at = a�) ≥ T

8
Δ =

c
1
p

16
(K − 1)

1− 1
pT

1
pF−1

(
1− 1

K

)

and we get the desired result since 0 < c < K−1

K−1+2
p

p−1
.

Now, the remaining part is to prove that P(at �= a�) ≥ 1/8 holds. First, we

observe that

P(at �= a�) = P

⎛
⎝ ⋃
a �=a�

{r̂a� + βt,a�Gt,a� ≤ r̂a + βt,aGt,a}

⎞
⎠

≥ P (Et−1)P

⎛
⎝ ⋃
a �=a�

{r̂a� + βt,a�Gt,a� ≤ 2Δ ≤ r̂a + βt,aGt,a}
∣∣∣Et−1

⎞
⎠

≥ 1

2
E

[
P

(
Gt,a� ≤

Δ

βt,a�

∣∣∣Ht−1, Et−1

)

× P

⎛
⎝ ⋃
a �=a�

{2Δ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

⎞
⎠∣∣∣∣∣Et−1

]

≥ 1

2
E

[
P

(
Gt,a� ≤

Δ((1− c)T )1−
1
p

c

∣∣∣Ht−1, Et−1

)

× P

⎛
⎝ ⋃
a �=a�

{2Δ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

⎞
⎠∣∣∣∣∣Et−1

]

300



Appendix F. Proofs of Chapter 5.2.

where the last inequality holds due to nt−1,a� ≥ (1 − c)T provided Et−1. Since

c < K−1

K−1+2
p

p−1
, we have,

Δ ((1− c)T )1−
1
p

c
=

(
(1− c)(K − 1)

2
p

p−1 c

)1− 1
p

F−1

(
1− 1

K

)
> F−1

(
1− 1

K

)
.

Hence, P

(
Gt,a� ≤ Δ((1−c)T )1−

1
p

c

∣∣∣Ht−1, Et−1

)
≥ 1− 1

K so that

P(at �= a�) ≥ 1

2

(
1− 1

K

)
E

⎡
⎣P
⎛
⎝ ⋃
a �=a�

{2Δ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

⎞
⎠∣∣∣∣∣Et−1

⎤
⎦ .

Observe that

P

⎛
⎝ ⋃
a �=a�

{2Δ ≤ βt,aGt,a}
∣∣∣Ht−1, Et−1

⎞
⎠

≥ 1− P

⎛
⎝ ⋂
a �=a�

{
Gt,a ≤

2Δ

βt,a

} ∣∣∣Ht−1, Et−1

⎞
⎠

≥ 1−
∏
a �=a�

F

(
2Δ (nt−1,a)

1− 1
p

c

)

≥ 1−

∣∣∣∣∣∣F
⎛
⎝2Δ

∑
a �=a� (nt−1,a)

1− 1
p

c(K − 1)

⎞
⎠
∣∣∣∣∣∣
K−1

,

where the last inequality holds by the log-concavity of F . Under Et−1, note that

∑
a �=a�

(nt−1,a)
1− 1

p ≤

⎛
⎝∑
a �=a�

1p

⎞
⎠

1
p
⎛
⎝∑
a �=a�

nt−1,a

⎞
⎠1− 1

p

≤ (K − 1)
1
p (cT )

1− 1
p

which implies

F

⎛
⎝2Δ

∑
a �=a� (nt−1,a)

1− 1
p

c(K − 1)

⎞
⎠ ≤ F

(
2Δc

− 1
p

(
T

(K − 1)

)1− 1
p

)
= 1− 1

K

Therefore, we get

P(at �= a�) ≥ 1

2

(
1− 1

K

)(
1−
(
1− 1

K

)K−1
)
≥ 1

8

since 1 − 1
K ≥ 1

2 and 1 −
(
1− 1

K

)K−1 ≥ 1
2 hold for K ≥ 2 and the theorem is

proved.

301



Appendix F. Proofs of Chapter 5.2.

F.5 Proofs of Corollaries

Proof of Corollary 6. The CDF of a Weibull distribution with k ≤ 1 is given as

F (x) = 1− exp

(
−
(x
λ

)k)

Then, its inverse is

F−1(y) = λ

[
ln

(
1

1− y

)] 1
k

,

Then,

F−1

(
1− c

p
p−1

TΔ
p

p−1
a

) p
p−1

= λ
p

p−1

⎡
⎣ln
⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠
⎤
⎦

p
k(p−1)

.

Thus, we compute C as follows,

∫ ∞

0

h(z) exp (−z)
1− F (z)

dz =

∫ ∞

0

k

λ

( z
λ

)k−1 exp
(
−
(
z
λ

)k)
exp (−z)

exp
(
−2
(
z
λ

)k) dz

=

∫ ∞

0

k

λ

( z
λ

)k−1
exp

(
−z +

( z
λ

)k)
dz

≤
∫ ∞

0

k

λ

( z
λ

)k−1
exp

(
−λ− 1

λ
z

)
dz

=
k

(λ− 1)k

∫ ∞

0

zk−1 exp (−z) dz

=
kΓ (k)

(λ− 1)k
=

Γ (k + 1)

(λ− 1)k

≤ Γ (2)

(λ− 1)k
= (λ− 1)−k.

For (6c)
p

p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

, we have,

(6c)
p

p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

= 0

302



Appendix F. Proofs of Chapter 5.2.

since the support of x is (0,∞). Then, the problem dependent regret bound

becomes,

E [RT ] ≤
∑
a �=a�

[
exp

(
bpνp
2cp

){
C1 +

F (0)

1− F (0) + 2
2p−1
p−1 + 1

}
(F.63)

× Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.64)

+
(6c)

p
p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

(F.65)

+

(
(3c)p

Δa

) 1
p−1

{
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)} p
p−1

(F.66)

+

(
cp

Δa

) 1
p−1

+Δa

]
(F.67)

≤
∑
a �=a�

[
exp

(
bpνp
2cp

)[
(λ− 1)−k + 2

2p−1
p−1 + 1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.68)

+

(
(3cλ)p

Δa

) 1
p−1

⎡
⎣ln
⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠
⎤
⎦

p
k(p−1)

+

(
cp

Δa

) 1
p−1

+Δa

]
(F.69)

≤O

⎛
⎜⎝∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+

(
(3cλ)p

Δa

) 1
p−1

⎡
⎣ln
⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠
⎤
⎦

p
k(p−1)

+Δa

⎞
⎟⎠ .

(F.70)

The problem independent regret bound can be obtained by choosing the threshold

of the minimum gap as Δ = c (K/T )
1− 1

p ln(K)
1
k .

E [RT ] ≤
∑

a �=a�,Δa>Δ

Cc,p,νp,F

Δ
1

p−1
a

+

(
(3cλ)p

Δa

) 1
p−1

⎡
⎣ln
⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠
⎤
⎦

p
k(p−1)

+ΔT

(F.71)

≤K

⎛
⎝Cc,p,νp,F

Δ
1

p−1

+

(
(3cλ)p

Δ

) 1
p−1

[
ln

(
TΔ

p
p−1

c
p

p−1

)] p
k(p−1)

⎞
⎠+ΔT (F.72)

303



Appendix F. Proofs of Chapter 5.2.

≤K Cc,p,νp,F · T
1
p

K
1
p ln (K)

1
k(p−1)

+K

(
(3λ)

p
p−1 cT

1
p

K
1
p ln(K)

1
k(p−1)

)[
ln
(
K ln (K)

p
k(p−1)

)] p
k(p−1)

(F.73)

+ cK
1− 1

pT
1
p ln(K)

1
k (F.74)

≤Cc,p,νp,F ·K
1− 1

pT
1
p

ln (K)
1

k(p−1)

+ c(3λ)
p

p−1K
1− 1

pT
1
p

⎛
⎜⎝
[(

1 + p
k(p−1)

)
ln (K)

] p
k(p−1)

ln(K)
1

k(p−1)

⎞
⎟⎠

(F.75)

+ cK
1− 1

pT
1
p ln(K)

1
k (F.76)

≤O
(
(cλ)

p
p−1K

1− 1
pT

1
p

(
ln (K)

p
k(p−1)

ln(K)
1

k(p−1)

))
= O

(
(cλ)

p
p−1K

1− 1
pT

1
p ln (K)

1
k

)
.

(F.77)

Consequently, the lower bound is simply obtained by the general lower bound,

so we can conclude that regret bound is tight. The corollary is proved.

Proof of Corollary 7. The CDF of a generalized extreme value distribution with

0 ≤ ζ < 1 is given as

F (x) = exp

(
−
(
1 + ζ

x

λ

)−1/ζ
)
.

Then, its inverse is

F−1(y) = λ
[ln(1/y)]−ζ − 1

ζ
≤ λ

[1− y]−ζ − 1

ζ
,

and

λ
[ln(1/y)]−ζ − 1

ζ
≥ λ

[
y

1−y
]ζ
− 1

ζ

where ln(x) ≤ x− 1 is used. Then,

[
F−1

(
1− c

p
p−1

TΔ
p

p−1
a

)] p
p−1

≤ λ
p

p−1

⎡
⎢⎢⎢⎣
(
TΔ

p
p−1
a /c

p
p−1

)ζ
− 1

ζ

⎤
⎥⎥⎥⎦

p
p−1

.

304



Appendix F. Proofs of Chapter 5.2.

We compute the suph can be obtained as follows,

suph = sup
x∈[0,∞]

(
1 + ζ xλ

)−1/ζ−1
exp
(
−
(
1 + ζ xλ

)−1/ζ
)

λ
(
1− exp

(
−
(
1 + ζ xλ

)−1/ζ
))

= sup
t∈[0,1]

tζ+1 exp(−t)
λ(1− exp(−t)) ≤ sup

t∈[0,1]

t exp(−t)
λ(1− exp(−t)) =

1

λ
.

M can be obtained as,

∫ ∞

0

exp (−z)
1− F (z)

dz =

∫ ∞

0

exp (−z)
1− exp

(
−
(
1 + ζ zλ

)−1/ζ
)dz

≤
∫ ∞

0

(
1 +
(
1 + ζ

z

λ

)1/ζ)
exp (−z) dz

=1 +

∫ ∞

0

(
1 + ζ

z

λ

)1/ζ
exp (−z) dz

≤1 +
∫ ∞

0

exp

(
−z + ln(1 + ζ zλ)

ζ

)
dz

≤1 +
∫ ∞

0

exp
(
−z + z

λ

)
dz

=1 +
λ

λ− 1
∵ λ > 1

=
2λ− 1

λ− 1
=:M1.

Hence, suph ·M1 ≤ 2λ−1
λ(λ−1) ≤ 2

λ−1 .

305



Appendix F. Proofs of Chapter 5.2.

For (6c)
p

p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

, we have,

(6c)
p

p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

=
(6cλ)

p
p−1

Δ
1

p−1
a

⎡
⎢⎢⎢⎣
1− ln

(
TΔ

p
p−1
a

c
p

p−1

)−ζ

ζ

⎤
⎥⎥⎥⎦

p
p−1

≤ (6cλ)
p

p−1

Δ
1

p−1
a

⎡
⎢⎢⎢⎣
ln

(
TΔ

p
p−1
a

c
p

p−1

)ζ
− 1

ζ

⎤
⎥⎥⎥⎦

p
p−1

≤ (6cλ)
p

p−1

Δ
1

p−1
a

⎡
⎢⎢⎢⎣
(
TΔ

p
p−1
a

c
p

p−1

)ζ
− 1

ζ

⎤
⎥⎥⎥⎦

p
p−1

≤ (6cλ)
p

p−1

Δ
1

p−1
a

lnζ

⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

,

where − lnζ(1/ ln(x)) ≤ lnζ(ln(x)) ≤ lnζ(x) is used.

Then, the problem dependent regret bound becomes,

E [RT ] ≤
∑
a �=a�

[
exp

(
bpνp
2cp

){
‖h‖∞M +

F (0)

1− F (0) + 2
2p−1
p−1 + 1

}
(F.78)

× Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.79)

+
(6c)

p
p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

(F.80)

+

(
(3c)p

Δa

) 1
p−1

[
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)] p
p−1

+

(F.81)

+

(
cp

Δa

) 1
p−1

+Δa

]
(F.82)

≤
∑
a �=a�

[
exp

(
bpνp
2cp

)[
2

λ− 1
+

e

e− 1
+ 2

2p−1
p−1 + 1

]
(F.83)

306



Appendix F. Proofs of Chapter 5.2.

× Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.84)

+
(6cλ)

p
p−1

Δ
1

p−1
a

lnζ

⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

+

(
(3cλ)p

Δa

) 1
p−1

lnζ

⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

(F.85)

+

(
cp

Δa

) 1
p−1

+Δa

]
(F.86)

≤O

⎛
⎜⎝∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+ 2

(
(6cλ)p

Δa

) 1
p−1

lnζ

⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

+Δa

⎞
⎟⎠ , (F.87)

where lnζ(x) :=
xζ−1
ζ .

The problem independent regret bound can be obtained by choosing the thresh-

old of the minimum gap as Δ = c
(
K
T

)1− 1
p lnζ(K) Note that limζ→0

xζ−1
ζ = ln(x)

E [RT ] ≤
∑

Δa>Δ

[
exp

(
bpνp
2cp

)[
λ+ 1

λ− 1
+

e

e− 1
+ 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.88)

+ 2

(
(6cλ)p

Δa

) 1
p−1

lnζ

⎛
⎝TΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

(F.89)

+

(
cp

Δa

) 1
p−1

]
+ΔT (F.90)

≤K
[
exp

(
bpνp
2cp

)[
λ+ 1

λ− 1
+

e

e− 1
+ 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δ

) 1
p−1

(F.91)

+ 2

(
(6cλ)p

Δ

) 1
p−1

lnζ

(
TΔ

p
p−1

c
p

p−1

) p
p−1

(F.92)

+

(
cp

Δ

) 1
p−1

]
+ΔT (F.93)

307



Appendix F. Proofs of Chapter 5.2.

≤ exp

(
bpνp
2cp

)[
λ+ 1

λ− 1
+

e

e− 1
+ 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)
(3λ)

p
p−1

cK
1− 1

pT
1
p

lnζ(K)
1

p−1

(F.94)

+ 2(6λ)
p

p−1 cK
1− 1

pT
1
p

⎛
⎜⎝ lnζ

(
K lnζ(K)

p
p−1

) p
p−1

lnζ(K)
1

p−1

⎞
⎟⎠ (F.95)

+ c
K

1− 1
pT

1
p

lnζ(K)
1

p−1

+ cK
1− 1

pT
1
p lnζ(K) (F.96)

≤ exp

(
bpνp
2cp

)[
λ+ 1

λ− 1
+

e

e− 1
+ 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)
(3λ)

p
p−1

cK
1− 1

pT
1
p

lnζ(K)
1

p−1

(F.97)

+ 2(6λ)
p

p−1 cK
1− 1

pT
1
p

⎛
⎜⎜⎜⎝
lnζ

(
K

2p−1
p−1

) p
p−1

lnζ(K)
1

p−1

⎞
⎟⎟⎟⎠ (F.98)

+ c
K

1− 1
pT

1
p

lnζ(K)
1

p−1

+ cK
1− 1

pT
1
p lnζ(K) (F.99)

∵ lnζ(x lnζ(x)
p

p−1 ) ≤ lnζ

(
x
1+ p

p−1

)
for x > 2 (F.100)

≤O

⎛
⎜⎝K1− 1

pT
1
p

lnζ

(
K

2p−1
p−1

) p
p−1

lnζ(K)
1

p−1

⎞
⎟⎠ . (F.101)

For the lower bound,

λ

[
ln
(

1
1− 1

K

)]−ζ
− 1

ζ
≥ λ

[K − 1]ζ − 1

ζ
= λ lnζ (K − 1) .

Consequently, the lower bound is simply obtained by the general lower bound.

The corollary is proved.

Proof of Corollary 8. The CDF of a Gamma distribution is given as

F (x) =
γ(x;α, λ)

Γ(α)
,

308



Appendix F. Proofs of Chapter 5.2.

where Γ(α) is a (complete) Gamma function and γ(x;α, λ) is an incomplete

Gamma function defined as

γ(x;α, λ) :=

∫ x

0

zα−1 exp
(
− z
λ

)
λα

dz.

Before finding a lower and upper bound of F−1, we introduce a lower and upper

bound of a Gamma distribution. In [8], the bounds of F (x) is provided as follows,

for α > 1 (
1− exp

(
− x

λΓ(1 + α)
1
α

))α
≤ F (x) ≤

(
1− exp

(
−x
λ

))α
.

From these bounds, we have,

λ ln

(
1

1− y 1
α

)
≤ F−1(y) ≤ λΓ(1 + α)

1
α ln

(
1

1− y 1
α

)
.

Note that the following inequality holds: for α > 1,

Γ(α+ 1) = α(α− 1) · · · (α− �α�+ 1)Γ (α− �α�+ 1) ≤ α�α�Γ (1) ≤ αα.

We have a simpler upper bound as

F−1(y) ≤ λΓ(1 + α)
1
α ln

(
1

1− y 1
α

)
≤ λα ln

(
α

1− y

)
.

Then, [
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)] p
p−1

≤ λ
p

p−1α
p

p−1 ln

⎛
⎝αTΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

.

C can be obtained as,∫ ∞

0

h(z) exp (−z)
1− F (z)

dz =

∫ ∞

0

zα−1 exp
(
− z
λ − z

)
λαΓ(α)

(
1−
(
1− exp

(
− z
λ

))α)2dz
≤
∫ ∞

0

zα−1 exp
(
− z
λ − z

)
λαΓ(α) exp

(
−2 zλ

) dz
=

∫ ∞

0

zα−1 exp
(
−z + z

λ

)
λαΓ(α)

dz =

∫ ∞

0

tα−1 exp (−t)
(λ− 1)αΓ(α)

dt

=
1

(λ− 1)α
.

309



Appendix F. Proofs of Chapter 5.2.

For (6c)
p

p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

, we have,

(6c)
p

p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

= 0.

since x ∈ (0,∞). Then, the problem dependent regret bound becomes,

E [RT ] ≤
∑
a �=a�

[
exp

(
bpνp
2cp

){
C +

F (0)

1− F (0) + 2
2p−1
p−1 + 1

}
(F.102)

× Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.103)

+
(6c)

p
p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

(F.104)

+

(
(3c)p

Δa

) 1
p−1

[
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)] p
p−1

+

(F.105)

+

(
cp

Δa

) 1
p−1

+Δa

]
(F.106)

≤
∑
a �=a�

[
exp

(
bpνp
2cp

)[
(λ− 1)−α + 2

2p−1
p−1 + 1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.107)

+

(
(3λαc)p

Δa

) 1
p−1

ln

⎛
⎝αTΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

+

(
cp

Δa

) 1
p−1

+Δa

]
(F.108)

≤O

⎛
⎜⎝∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+

(
(3λαc)p

Δa

) 1
p−1

ln

⎛
⎝αTΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

+Δa

⎞
⎟⎠ .

(F.109)

The problem independent regret bound can be obtained by choosing the threshold

310



Appendix F. Proofs of Chapter 5.2.

of the minimum gap as Δ = c (K/T )
1− 1

p ln(K).

E [RT ] ≤
∑

Δa>Δ

[
exp

(
bpνp
2cp

)[
(λ− 1)−α + 2

2p−1
p−1 + 1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.110)

+

(
(3λαc)p

Δa

) 1
p−1

ln

⎛
⎝αTΔ p

p−1
a

c
p

p−1

⎞
⎠

p
p−1

+

(
cp

Δa

) 1
p−1

]
+ΔT (F.111)

≤K
[
exp

(
bpνp
2cp

)[
(λ− 1)−α + 2

2p−1
p−1 + 1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δ

) 1
p−1

(F.112)

+

(
(3λαc)p

Δ

) 1
p−1

ln

(
αTΔ

p
p−1

c
p

p−1

) p
p−1

+

(
cp

Δ

) 1
p−1

]
+ΔT (F.113)

≤ exp

(
bpνp
2cp

)[
(λ− 1)−α + 2

2p−1
p−1 + 1

]
(F.114)

× Γ

(
2p− 1

p− 1

)
3

p
p−1 cK

1− 1
pT

1
p ln(K)

− 1
p−1 (F.115)

+ (3λα)
1

p−1 cK
1− 1

pT
1
p

ln
(
αK ln(K)

p
p−1

) p
p−1

ln(K)
1

p−1

(F.116)

+ cK
1− 1

pT
1
p ln(K)

− 1
p−1 + cK

1− 1
pT

1
p ln(K) (F.117)

≤ exp

(
bpνp
2cp

)[
(λ− 1)−α + 2

2p−1
p−1 + 1

]
(F.118)

× Γ

(
2p− 1

p− 1

)
3

p
p−1 cK

1− 1
pT

1
p ln(K)

− 1
p−1 (F.119)

+ (3λα)
1

p−1 cK
1− 1

pT
1
p

ln
(
αK

1+ p
p−1

) p
p−1

ln(K)
1

p−1

(F.120)

+ cK
1− 1

pT
1
p ln(K)

− 1
p−1 + cK

1− 1
pT

1
p ln(K) (F.121)

≤O

⎛
⎜⎝(λα)

1
p−1 cK

1− 1
pT

1
p

ln
(
αK

1+ p
p−1

) p
p−1

ln(K)
1

p−1

⎞
⎟⎠ (F.122)

311



Appendix F. Proofs of Chapter 5.2.

For the lower bound, we use,

F−1(y) ≥ λ ln

(
1

1− y 1
α

)
≥ λ ln

(
y

1− y

)
.

Thus, the lower bound becomes

Ω
(
λK

1− 1
pT

1
p ln(K)

)
.

Proof of Corollary 9. The CDF of a Pareto distribution is given as

F (x) = 1− 1

(x/λ)α

Then, its inverse is

F−1(y) = λ (1− y)−
1
α ,

Then, [
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)] p
p−1

= λ
p

p−1

⎡
⎣TΔ p

p−1
a

c
p

p−1

⎤
⎦

p
α(p−1)

.

C can be obtained as,∫ ∞

0

h(z) exp (−z)
1− F (z)

dz =

∫ ∞

0

αλαz−α−1 exp (−z)
(z/λ)−2α

dz

=

∫ ∞

0

αzα−1 exp (−z)
λα

dz

=
αΓ(α)

λα
=

Γ(α+ 1)

λα

≤ 1 ∵ λ ≥ α.

For (6c)
p

p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

, we have,

(6c)
p

p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

= 0

312



Appendix F. Proofs of Chapter 5.2.

where −F−1(y) is always negative since the support of x is (λ,∞). Then, the

problem dependent regret bound becomes,

E [RT ] ≤
∑
a �=a�

[
exp

(
bpνp
2cp

){
C +

F (0)

1− F (0) + 2
2p−1
p−1 + 1

}
(F.123)

× Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

+
(6c)

p
p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

(F.124)

+

(
(3c)p

Δa

) 1
p−1

[
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)] p
p−1

+

(F.125)

+

(
cp

Δa

) 1
p−1

+Δa

]
(F.126)

≤
∑
a �=a�

[
exp

(
bpνp
2cp

)[
2

2p−1
p−1 + 2

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.127)

+

(
(3λc)p

Δa

) 1
p−1

⎡
⎣TΔ p

p−1
a

c
p

p−1

⎤
⎦

p
α(p−1)

+

(
cp

Δa

) 1
p−1

+Δa

]
(F.128)

≤O

⎛
⎜⎝∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+

(
(3λc)p

Δa

) 1
p−1

⎡
⎣TΔ p

p−1
a

c
p

p−1

⎤
⎦

p
α(p−1)

+Δa

⎞
⎟⎠ . (F.129)

The problem independent regret bound can be obtained by choosing the threshold

of the minimum gap as Δ = c (K/T )
1− 1

p α.

E [RT ] ≤
∑

Δa>Δ

[
exp

(
bpνp
2cp

)[
2

2p−1
p−1 + 2

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.130)

+

(
(3λc)p

Δa

) 1
p−1

⎡
⎣TΔ p

p−1
a

c
p

p−1

⎤
⎦

p
α(p−1)

+

(
cp

Δa

) 1
p−1

]
+ΔT (F.131)

≤K
[
exp

(
bpνp
2cp

)[
2

2p−1
p−1 + 2

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δ

) 1
p−1

(F.132)

+

(
(3λc)p

Δ

) 1
p−1

[
TΔ

p
p−1

c
p

p−1

] p
α(p−1)

+

(
cp

Δ

) 1
p−1

]
+ΔT (F.133)

∵ x
p2

α(p−1)2
− 1

p−1 is decreasing for α >
p2

p− 1
(F.134)

313



Appendix F. Proofs of Chapter 5.2.

≤ exp

(
bpνp
2cp

)[
2

2p−1
p−1 + 2

]
Γ

(
2p− 1

p− 1

)
3

p
p−1 cK

1− 1
pT

1
pα

− 1
p−1 (F.135)

+ (3λ)
p

p−1 cK
1− 1

p
+ p2

α(p−1)2 T
1
pα

p2

α(p−1)2
− 1

p−1 (F.136)

+ cα
1

p−1K
1− 1

pT
1
p + cαK

1− 1
pT

1
p (F.137)

≤ exp

(
bpνp
2cp

)[
2

2p−1
p−1 + 2

]
Γ

(
2p− 1

p− 1

)
3

p
p−1 cK

1− 1
pT

1
pα

− 1
p−1 (F.138)

+ 3
p

p−1 cK
1− 1

p
+ p2

α(p−1)2 T
1
pα

1+ p2

α(p−1)2 + cα
1

p−1K
1− 1

pT
1
p + cαK

1− 1
pT

1
p

(F.139)

∵ λ = α (F.140)

≤O
(
cα

1+ p2

α(p−1)2K
1− 1

p
+ 2p

α(p−1)T
1
p

)
. (F.141)

For the minimum rate, we set α = ln(K), then,

O

(
ln(K)

1+ p2

ln(K)(p−1)2K
1− 1

p
+ 2p

ln(K)(p−1)T
1
p

)
≤ O

(
K

1− 1
pT

1
p ln(K)

)

where ln(K)
1+ p2

ln(K)(p−1)2 ≤ e
p2

e(p−1)2 ln(K). For the lower bound,

Ω

(
K

1− 1
pT

1
pF−1

(
1− 1

K

))
= Ω

(
λK

1− 1
p
+ 1

αT
1
p

)
≥ Ω

(
αK

1− 1
p
+ 1

αT
1
p

)

The corollary is proved.

Proof of Corollary 10. The CDF of a Fréchet distribution is given as

F (x) = exp

(
−
(x
λ

)−α)

Then, its inverse is

F−1(y) = λ ln(1/y)−1/α ≤ (1− y)−1/α

and

λ ln(1/y)−1/α ≥ λ

(
y

1− y

) 1
α

314



Appendix F. Proofs of Chapter 5.2.

where ln(x) ≤ x− 1 is used. Then,

[
F−1

(
1− c2

TΔ2
a

)]2
≤ λ2

[
TΔ2

a

c2

]2/α
.

In [5], we have suph ≤ 2αλ ≤ 2 due to λ ≥ α, and M can be obtained,

∫ ∞

0

exp (−z)(
1− exp

(
−
(
z
λ

)−α))dz ≤
∫ ∞

0

(
1 +
( z
λ

)α)
exp (−z) dz

∵ 1/(1− exp(−x−1)) ≤ 1 + x

=1 +

∫ ∞

0

( z
λ

)α
exp (−z) dz

=1 +
Γ (α+ 1)

λα

≤1 + Γ (α+ 1)

λα
≤ 2.

Thus,

(suph)M ≤ 4.

For (6c)
p

p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

, the summation is zero,

(6c)
p

p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

= 0,

315



Appendix F. Proofs of Chapter 5.2.

since its support is (0,∞). Then, the problem dependent regret bound becomes,

E [RT ] ≤
∑
a �=a�

[
exp

(
bpνp
2cp

){
‖h‖∞M1 +

F (0)

1− F (0) + 2
2p−1
p−1 + 1

}
(F.142)

× Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

+
(6c)

p
p−1

Δ
1

p−1
a

[
−F−1

(
c

p
p−1

TΔ
p

p−1
a

)] p
p−1

+

(F.143)

+

(
(3c)p

Δa

) 1
p−1

{
F−1

(
1− 1

T

(
c

Δa

) p
p−1

)} p
p−1

(F.144)

+

(
cp

Δa

) 1
p−1

+Δa

]
(F.145)

≤
∑
a �=a�

[
exp

(
bpνp
2cp

){
4 + 2

2p−1
p−1 + 1

}
Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.146)

+

(
(3cλ)p

Δa

) 1
p−1

⎡
⎣TΔ p

p−1
a

c
p

p−1

⎤
⎦

p
α(p−1)

+

(
cp

Δa

) 1
p−1

+Δa

]
(F.147)

≤O

⎛
⎜⎝∑
a �=a�

Cc,p,νp,F

Δ
1

p−1
a

+

(
(3cλ)p

Δa

) 1
p−1

⎡
⎣TΔ p

p−1
a

c
p

p−1

⎤
⎦

p
α(p−1)

+Δa

⎞
⎟⎠ . (F.148)

The problem independent regret bound can be obtained by choosing the threshold

of the minimum gap as Δ = c (K/T )
1− 1

p α.

E [RT ] ≤
∑

Δa>Δ

[
exp

(
bpνp
2cp

)[
5 + 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δa

) 1
p−1

(F.149)

+

(
(3cλ)p

Δa

) 1
p−1

⎡
⎣TΔ p

p−1
a

c
p

p−1

⎤
⎦

p
α(p−1)

+

(
cp

Δa

) 1
p−1

]
+ΔT (F.150)

≤K
[
exp

(
bpνp
2cp

)[
5 + 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)(
(3c)p

Δ

) 1
p−1

(F.151)

+

(
(3cλ)p

Δ

) 1
p−1

[
TΔ

p
p−1

c
p

p−1

] p
α(p−1)

+

(
cp

Δ

) 1
p−1

]
+ΔT (F.152)

≤ exp

(
bpνp
2cp

)[
5 + 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)
3

p
p−1 cK

1− 1
pT

1
pα

− 1
p−1 (F.153)

+ 3
p

p−1 cλ
p

p−1K
1− 1

p
+ p2

α(p−1)2 T
1
pα

p2

α(p−1)2
− 1

p−1 (F.154)

316



Appendix F. Proofs of Chapter 5.2.

+ cα
1

p−1K
1− 1

pT
1
p + cαK

1− 1
pT

1
p (F.155)

≤ exp

(
bpνp
2cp

)[
5 + 2

2p−1
p−1

]
Γ

(
2p− 1

p− 1

)
3

p
p−1 cK

1− 1
pT

1
pα

− 1
p−1 (F.156)

+ 3
p

p−1 cK
1− 1

p
+ p2

α(p−1)2 T
1
pα

1+ p2

α(p−1)2
− 1

p−1 (F.157)

+ cα
1

p−1K
1− 1

pT
1
p + cαK

1− 1
pT

1
p (F.158)

≤O
(
α
1+ p2

α(p−1)2K
1− 1

p
+ p2

α(p−1)2 T
1
p

)
. (F.159)

The optimal rate is obtained by setting α = ln(K),

O

(
ln(K)

1+ p2

ln(K)(p−1)2K
1− 1

p
+ 2p

ln(K)(p−1)T
1
p

)
≤ O

(
K

1− 1
pT

1
p ln(K)

)
,

where ln(K)
p2

ln(K)(p−1)2 ≤ e
p2

e(p−1)2 . Before proving the lower bound, note that

F−1

(
1− 1

K

)
= λ ln

(
1

1− 1
K

)−1/α

≥ α (K − 1)1/α

Consequently, the lower bound is simply obtained by the general lower bound.

The corollary is proved.

317



Appendix F. Proofs of Chapter 5.2.

318



Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the 21st International Conference

of Machine Learning, July 2004.

[2] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous heli-

copter aerobatics through apprenticeship learning. International Journal

of Robotics Research, 29(13):1608–1639, 2010.

[3] Jacob D. Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in

the dark: An efficient algorithm for bandit linear optimization. In 21st

Annual Conference on Learning Theory, pages 263–274, July 2008.

[4] Jacob D. Abernethy, Chansoo Lee, Abhinav Sinha, and Ambuj Tewari.

Online linear optimization via smoothing. In Proceedings of The 27th Con-

ference on Learning Theory, pages 807–823, June 2014.

[5] Jacob D. Abernethy, Chansoo Lee, and Ambuj Tewari. Fighting bandits

with a new kind of smoothness. In Advances in Neural Information Pro-

cessing Systems (NeurIPS), December 2015.

[6] Navid Aghasadeghi and Timothy Bretl. Maximum entropy inverse rein-

319



Bibliography

forcement learning in continuous state spaces with path integrals. In Inter-

national Conference on Intelligent Robots and Systems, September 2011.

[7] Shipra Agrawal and Navin Goyal. Further optimal regret bounds for thomp-

son sampling. In Proc. of the 16th International Conference on Artificial

Intelligence and Statistics (AISTATS), April 2013.

[8] Horst Alzer. On some inequalities for the incomplete gamma function.

Math. Comput., 66(218):771–778, 1997.

[9] Shunichi Amari and Atsumi Ohara. Geometry of q-exponential family of

probability distributions. Entropy, 13(6):1170–1185, 2011.

[10] Brenna Argall, Sonia Chernova, Manuela M. Veloso, and Brett Browning.

A survey of robot learning from demonstration. Robotics and Autonomous

Systems, 57(5):469–483, 2009.

[11] Julien Audiffren, Michal Valko, Alessandro Lazaric, and Mohammad

Ghavamzadeh. Maximum entropy semi-supervised inverse reinforcement

learning. In Proc. of the 24th International Joint Conference on Artificial

Intelligence. AAAI Press, July 2015.

[12] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs.

Journal of Machine Learning Research, 3:397–422, 2002.

[13] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.

The nonstochastic multiarmed bandit problem. SIAM J. Comput., 32(1):

48–77, 2002.

[14] Mohammad Gheshlaghi Azar, Vicenç Gómez, and Hilbert J. Kappen. Dy-

namic policy programming. Journal of Machine Learning Research, 13:

3207–3245, 2012.

320



Bibliography

[15] Andrew R. Barron. Approximation and estimation bounds for artificial

neural networks. In Proceedings of the Fourth Annual Workshop on Com-

putational Learning Theory, COLT 1991, Santa Cruz, California, USA,

August 5-7, 1991, pages 243–249, 1991.

[16] Boris Belousov and Jan Peters. Entropic regularization of markov decision

processes. Entropy, 21(7):674, 2019.

[17] Felix Berkenkamp, Angela P. Schoellig, and Andreas Krause. Safe controller

optimization for quadrotors with gaussian processes. In 2016 IEEE Inter-

national Conference on Robotics and Automation, ICRA 2016, Stockholm,

Sweden, May 16-21, 2016, pages 491–496, 2016.

[18] Lars Berscheid, Thomas Rühr, and Torsten Kröger. Improving data effi-

ciency of self-supervised learning for robotic grasping. In International Con-

ference on Robotics and Automation, ICRA 2019, Montreal, QC, Canada,

May 20-24, 2019, pages 2125–2131, 2019.

[19] Michael Bloem and Nicholas Bambos. Infinite time horizon maximum

causal entropy inverse reinforcement learning. In Proc. of the IEEE Con-

ference on Decision and Control, Dec 2014.

[20] Salomon Bochner. Harmonic analysis and the theory of probability. Courier

Dover Publications, 2012.

[21] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse

reinforcement learning. In Proc. of the 14th International Conference on

Artificial Intelligence and Statistics. JMLR.org, April 2011.

[22] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew

Kelcey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Peter Pastor,

321



Bibliography

Kurt Konolige, Sergey Levine, and Vincent Vanhoucke. Using simulation

and domain adaptation to improve efficiency of deep robotic grasping. In

2018 IEEE International Conference on Robotics and Automation, ICRA

2018, Brisbane, Australia, May 21-25, 2018, pages 4243–4250, 2018.

[23] Sebastian Brechtel, Tobias Gindele, and Rüdiger Dillmann. Probabilistic

decision-making under uncertainty for autonomous driving using continu-

ous pomdps. In Proc. of the International Conference on Intelligent Trans-

portation Systems, Oct 2014.

[24] Glenn W Brier. Verification of forecasts expressed in terms of probability.

Monthey Weather Review, 78(1):1–3, 1950.

[25] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in

multi-armed bandits problems. In Ricard Gavaldà, Gábor Lugosi, Thomas

Zeugmann, and Sandra Zilles, editors, Proc. of the 20th International Con-

ference on Algorithmic Learning Theory (ALT), October 2009.

[26] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Gábor Lugosi. Bandits with

heavy tail. IEEE Transactions on Information Theory, 59(11):7711–7717,

2013.

[27] Junhao Cai, Hui Cheng, Zhanpeng Zhang, and Jingcheng Su. Metagrasp:

Data efficient grasping by affordance interpreter network. In Interna-

tional Conference on Robotics and Automation, ICRA 2019, Montreal, QC,

Canada, May 20-24, 2019, pages 4960–4966, 2019.

[28] Olivier Catoni. Challenging the empirical mean and empirical variance: a

deviation study. In Annales de l’IHP Probabilités et statistiques, volume 48,

pages 1148–1185, 2012.

322



Bibliography

[29] Nicolò Cesa-Bianchi, Claudio Gentile, Gergely Neu, and Gábor Lugosi.

Boltzmann exploration done right. In Advances in Neural Information Pro-

cessing Systems (NeurIPS), December 2017.

[30] Jaedeug Choi and Kee-Eung Kim. Bayesian nonparametric feature con-

struction for inverse reinforcement learning. In Proceedings of the 23rd

International Joint Conference on Artificial Intelligence. IJCAI/AAAI, Au-

gust 2013.

[31] Jaedeug Choi and Kee-Eung Kim. Hierarchical bayesian inverse reinforce-

ment learning. Cybernetics, IEEE Transactions on, 45(4):793–805, 2015.

[32] Sungjoon Choi, Eunwoo Kim, Kyungjae Lee, and Songhwai Oh. Lever-

aged non-stationary gaussian process regression for autonomous robot nav-

igation. In Proc. of the IEEE International Conference on Robotics and

Automation (ICRA). IEEE, May 2015.

[33] Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning from

demonstration using leveraged gaussian processes and sparse constrained

opimization. In Proc. of the IEEE International Conference on Robotics

and Automation (ICRA). IEEE, May 2016.

[34] Yinlam Chow, Ofir Nachum, and Mohammad Ghavamzadeh. Path consis-

tency learning in tsallis entropy regularized mdps. In Proceedings of the

35th International Conference on Machine Learning, ICML 2018, pages

978–987, Stockholmsmässan, Stockholm, Sweden, 2018.

[35] Bo Dai, Albert Shaw, Lihong Li, Lin Xiao, Niao He, Zhen Liu, Jianshu

Chen, and Le Song. SBEED: convergent reinforcement learning with non-

linear function approximation. In Proceedings of the 35th International

323



Bibliography

Conference on Machine Learning, (ICML 2018), pages 1133–1142, Stock-

holmsmässan, Stockholm, Sweden, 2018.

[36] Guy Van den Broeck, Kurt Driessens, and Jan Ramon. Monte-carlo tree

search in poker using expected reward distributions. In Advances in Ma-

chine Learning, First Asian Conference on Machine Learning, pages 367–

381, November 2009.

[37] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.

Benchmarking deep reinforcement learning for continuous control. In Pro-

ceedings of the 33nd International Conference on Machine Learning, ICML

2016, pages 1329–1338, New York City, NY, USA, 2016. JMLR.org.

[38] Krishnamurthy Dvijotham and Emanuel Todorov. Inverse optimal control

with linearly-solvable mdps. In Proc. of the 27th International Conference

on Machine Learning. Omnipress, June 2010.

[39] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine.

Diversity is all you need: Learning skills without a reward function. In

International Conference on Learning Representations ICLR, 2019. URL

https://openreview.net/forum?id=SJx63jRqFm.

[40] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function

approximation error in actor-critic methods. In Proceedings of the 35th

International Conference on Machine Learning, ICML 2018, pages 1582–

1591, Stockholmsmässan, Stockholm, Sweden, 2018.

[41] Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regular-

ized markov decision processes. arXiv preprint arXiv:1901.11275, 2019.

324



Bibliography

[42] Ghazal Ghazaei, Iro Laina, Christian Rupprecht, Federico Tombari, Nas-

sir Navab, and Kianoush Nazarpour. Dealing with ambiguity in robotic

grasping via multiple predictions. In Computer Vision - ACCV 2018 - 14th

Asian Conference on Computer Vision, Perth, Australia, December 2-6,

2018, Revised Selected Papers, Part IV, pages 38–55, 2018.

[43] John Gittins. Quantitative methods in the planning of pharmaceutical

research. Drug Information Journal, 30(2):479–487, 1996.

[44] Jordi Grau-Moya, Felix Leibfried, and Peter Vrancx. Soft q-learning with

mutual-information regularization. In International Conference on Learn-

ing Representations, 2019. URL https://openreview.net/forum?id=

HyEtjoCqFX.

[45] Peter D Grünwald and A Philip Dawid. Game theory, maximum entropy,

minimum discrepancy and robust Bayesian decision theory. Annals of

Statistics, pages 1367–1433, 2004.

[46] Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever, and Sergey Levine. Con-

tinuous deep q-learning with model-based acceleration. In Proceedings of

the 33nd International Conference on Machine Learning, ICML 2016, pages

2829–2838, New York City, NY, USA, 2016.

[47] Marcus Gualtieri, Andreas ten Pas, Kate Saenko, and Robert Platt Jr.

High precision grasp pose detection in dense clutter. In 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS 2016,

Daejeon, South Korea, October 9-14, 2016, pages 598–605, 2016.

[48] Abhinav Gupta, Adithyavairavan Murali, Dhiraj Gandhi, and Lerrel Pinto.

Robot learning in homes: Improving generalization and reducing dataset

325



Bibliography

bias. In Advances in Neural Information Processing Systems 31: An-

nual Conference on Neural Information Processing Systems 2018, NeurIPS

2018, 3-8 December 2018, Montréal, Canada., pages 9112–9122, 2018.

[49] Tuomas Haarnoja, Aurick Zhou, Sehoon Ha, Jie Tan, George Tucker, and

Sergey Levine. Learning to walk via deep reinforcement learning. In Pro-

ceedings of the 15th Robotics: Science and Systems, RSS 2019.

[50] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Rein-

forcement learning with deep energy-based policies. In Proceedings of the

34th International Conference on Machine Learning, ICML 2017, pages

1352–1361, Sydney, NSW, Australia, 2017.

[51] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning with

a stochastic actor. In Proceedings of the 35th International Conference

on Machine Learning, ICML 2018, pages 1856–1865, Stockholmsmässan,

Stockholm, Sweden, 2018.

[52] Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav S. Sukhatme, and

Joseph J. Lim. Multi-modal imitation learning from unstructured demon-

strations using generative adversarial nets. In Advances in Neural Infor-

mation Processing Systems, pages 1235–1245, December 2017.

[53] Nicolas Heess, David Silver, and Yee Whye Teh. Actor-critic reinforce-

ment learning with energy-based policies. In Proc. of the Tenth European

Workshop on Reinforcement Learning, Jun 2012.

[54] Dave Higdon, J Swall, and J Kern. Non-stationary spatial modeling.

Bayesian statistics, 6(1):761–768, 1999.

326



Bibliography

[55] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning.

In Advances in Neural Information Processing Systems, pages 4565–4573,

December 2016.

[56] Tomas Hodan, Pavel Haluza, Stepán Obdrzálek, Jiri Matas, Manolis I. A.

Lourakis, and Xenophon Zabulis. T-LESS: an RGB-D dataset for 6d pose

estimation of texture-less objects. In 2017 IEEE Winter Conference on

Applications of Computer Vision, WACV 2017, Santa Rosa, CA, USA,

March 24-31, 2017, pages 880–888, 2017.

[57] Jemin Hwangbo, Inkyu Sa, Roland Siegwart, and Marco Hutter. Control of

a quadrotor with reinforcement learning. IEEE Robotics and Automation

Letters, 2(4):2096–2103, Jun 2017.

[58] Stephen James, Andrew J. Davison, and Edward Johns. Transferring end-

to-end visuomotor control from simulation to real world for a multi-stage

task. In 1st Annual Conference on Robot Learning, CoRL 2017, Mountain

View, California, USA, November 13-15, 2017, Proceedings, pages 334–343,

2017.

[59] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov,

Alex Irpan, Julian Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos

Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic grasping via

randomized-to-canonical adaptation networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 12627–

12637, 2019.

[60] Anmol Kagrecha, Jayakrishnan Nair, and Krishna P. Jagannathan. Distri-

bution oblivious, risk-aware algorithms for multi-armed bandits with un-

327



Bibliography

bounded rewards. In Advances in Neural Information Processing Systems

(NeurIPS), December 2019.

[61] Adam Tauman Kalai and Santosh S. Vempala. Efficient algorithms for

online decision problems. Journal of Computer and System Sciences, 71

(3):291–307, 2005.

[62] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Her-

zog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent

Vanhoucke, and Sergey Levine. Scalable deep reinforcement learning for

vision-based robotic manipulation. In 2nd Annual Conference on Robot

Learning, CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceed-

ings, pages 651–673, 2018.

[63] Alexander Kasper, Zhixing Xue, and Rüdiger Dillmann. The kit object

models database: An object model database for object recognition, local-

ization and manipulation in service robotics. The International Journal of

Robotics Research, 31(8):927–934, 2012.

[64] Baekjin Kim and Ambuj Tewari. On the optimality of perturbations in

stochastic and adversarial multi-armed bandit problems. In Advances in

Neural Information Processing Systems (NeurIPS), December 2019.

[65] Beomjoon Kim and Joelle Pineau. Socially adaptive path planning in hu-

man environments using inverse reinforcement learning. International Jour-

nal of Social Robotics, 8(1):51–66, January 2015.

[66] DongWook Kim, Jae In Kim, and Yong-Lae Park. A simple tripod mo-

bile robot using soft membrane vibration actuators. IEEE Robotics and

Automation Letters, 4(3):2289–2295, 2019.

328



Bibliography

[67] Sangbae Kim, Cecilia Laschi, and Barry Trimmer. Soft robotics: a bioin-

spired evolution in robotics. Trends in biotechnology, 31(5):287–294, 2013.

[68] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning

in robotics: A survey. International Journal of Robotics Research, 32(11):

1238–1274, Aug 2013.

[69] N Koenig and J Hsu. The many faces of simulation: Use cases for a general

purpose simulator. In International Conference on Robotics and Automa-

tion, ICRA 2013, volume 13, pages 10–11, 2013.

[70] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, and Andreas Krause.

Learning-based model predictive control for safe exploration. In 57th IEEE

Conference on Decision and Control, CDC 2018, Miami, FL, USA, Decem-

ber 17-19, 2018, pages 6059–6066, 2018.

[71] Jussi Kujala and Tapio Elomaa. On following the perturbed leader in

the bandit setting. In Algorithmic Learning Theory, 16th International

Conference, Singapore, pages 371–385, October 2005.

[72] Sulabh Kumra and Christopher Kanan. Robotic grasp detection using

deep convolutional neural networks. In 2017 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC,

Canada, September 24-28, 2017, pages 769–776, 2017.

[73] Tobias Lang, Christian Plagemann, and Wolfram Burgard. Adaptive non-

stationary kernel regression for terrain modeling. In Robotics: Science and

Systems, 2007.

[74] Kyungjae Lee, Sungjoon Choi, and Songhwai Oh. Sparse Markov decision

329



Bibliography

processes with causal sparse Tsallis entropy regularization for reinforcement

learning. IEEE Robotics and Automation Letters, 3(3):1466–1473, 2018.

[75] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Feature construction

for inverse reinforcement learning. In Advances in Neural Information Pro-

cessing Systems 23, December 2010.

[76] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse re-

inforcement learning with gaussian processes. In Advances in Neural Infor-

mation Processing Systems, pages 19–27, 2011.

[77] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable im-

itation learning from visual demonstrations. In Advances in Neural Infor-

mation Processing Systems, pages 3815–3825, December 2017.

[78] Hongzhuo Liang, Xiaojian Ma, Shuang Li, Michael Görner, Song Tang,

Bin Fang, Fuchun Sun, and Jianwei Zhang. Pointnetgpd: Detecting grasp

configurations from point sets. In International Conference on Robotics and

Automation, ICRA 2019, Montreal, QC, Canada, May 20-24, 2019, pages

3629–3635, 2019.

[79] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,

Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous

control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,

2015.

[80] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,

Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous

control with deep reinforcement learning. CoRR, abs/1509.02971, 2015.

URL http://arxiv.org/abs/1509.02971.

330



Bibliography

[81] Shiyin Lu, Guanghui Wang, Yao Hu, and Lijun Zhang. Optimal algorithms

for lipschitz bandits with heavy-tailed rewards. In Proc. of the 36th Inter-

national Conference on Machine Learning (ICML), July 2019.

[82] Jeffrey Mahler and Ken Goldberg. Learning deep policies for robot bin

picking by simulating robust grasping sequences. In Sergey Levine, Vin-

cent Vanhoucke, and Ken Goldberg, editors, Proceedings of the 1st Annual

Conference on Robot Learning, volume 78 of Proceedings of Machine Learn-

ing Research, pages 515–524. PMLR, 13–15 Nov 2017.

[83] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose Roderick, Michael

Laskey, Mathieu Aubry, Kai Kohlhoff, Torsten Kröger, James Kuffner, and

Ken Goldberg. Dex-net 1.0: A cloud-based network of 3d objects for robust

grasp planning using a multi-armed bandit model with correlated rewards.

In IEEE International Conference on Robotics and Automation (ICRA),

pages 1957–1964. IEEE, 2016.

[84] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan,

Xinyu Liu, Juan Aparicio Ojea, and Ken Goldberg. Dex-net 2.0: Deep learn-

ing to plan robust grasps with synthetic point clouds and analytic grasp

metrics. In Robotics: Science and Systems XIII, Massachusetts Institute of

Technology, Cambridge, Massachusetts, USA, July 12-16, 2017, 2017.

[85] Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse

model of attention and multi-label classification. In Proc. of the Interna-

tional Conference on Machine Learning, Jun 2016.

[86] P Warwick Millar. The minimax principle in asymptotic statistical the-

ory. In Ecole d’Eté de Probabilités de Saint-Flour XI—1981, pages 75–265.

Springer, 1983.

331



Bibliography

[87] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel

Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas

Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik,

Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,

Shane Legg, and Demis Hassabis. Human-level control through deep re-

inforcement learning. Nature, 518(7540):529–533, 2015.

[88] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,

Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.

Asynchronous methods for deep reinforcement learning. In Proceedings of

the 33nd International Conference on Machine Learning, ICML 2016, pages

1928–1937, New York City, NY, USA, 2016.

[89] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof graspnet: Vari-

ational grasp generation for object manipulation. CoRR, abs/1905.10520,

2019. URL http://arxiv.org/abs/1905.10520.

[90] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans.

Bridging the gap between value and policy based reinforcement learning.

In Advances in Neural Information Processing Systems 30 NeurIPS 2017,

pages 2772–2782, Long Beach, CA, USA, 2017.

[91] Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view

of entropy-regularized markov decision processes. arXiv preprint

arXiv:1705.07798, 2017.

[92] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement

learning. In Proc. of the International Conference on Machine Learning,

Jun 2000.

332



Bibliography

[93] Laura Niss and Ambuj Tewari. What you see may not be what you get:

UCB bandit algorithms robust to ε-contamination. CoRR, abs/1910.05625,

2019. URL http://arxiv.org/abs/1910.05625.

[94] Brendan O’Donoghue, Rémi Munos, Koray Kavukcuoglu, and Volodymyr

Mnih. PGQ: combining policy gradient and q-learning. In Proceedings of

the International Conference on Learning Representations (ICLR), 2017.

URL https://openreview.net/forum?id=B1kJ6H9ex.

[95] C Paciorek and M Schervish. Nonstationary covariance functions for Gaus-

sian process regression. In Proc. of the Advances in Neural Information

Processing Systems, volume 16, pages 273–280, 2004.

[96] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne.

Deeploco: dynamic locomotion skills using hierarchical deep reinforcement

learning. ACM Trans. Graph., 36(4):41:1–41:13, 2017.

[97] Daniel J Preston, Haihui Joy Jiang, Vanessa Sanchez, Philipp Rothemund,

Jeff Rawson, Markus P Nemitz, Won-Kyu Lee, Zhigang Suo, Conor J

Walsh, and George M Whitesides. A soft ring oscillator. Science Robotics,

4(31):eaaw5496, 2019.

[98] Martin L Puterman. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons, 2014.

[99] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

Pointnet: Deep learning on point sets for 3d classification and segmentation.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 77–85, 2017.

333



Bibliography

[100] Deirdre Quillen, Eric Jang, Ofir Nachum, Chelsea Finn, Julian Ibarz, and

Sergey Levine. Deep reinforcement learning for vision-based robotic grasp-

ing: A simulated comparative evaluation of off-policy methods. In 2018

IEEE International Conference on Robotics and Automation, ICRA 2018,

Brisbane, Australia, May 21-25, 2018, pages 6284–6291, 2018.

[101] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. A unifying view

of sparse approximate gaussian process regression. Journal of Machine

Learning Research, 6(13):1939–1959, 2005.

[102] Shankarachary Ragi and Edwin K. P. Chong. UAV path planning in a dy-

namic environment via partially observable markov decision process. IEEE

Trans. Aerospace and Electronic Systems, 49(4):2397–2412, Oct 2013.

[103] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement

learning. In Proceedings of the 20th International Joint Conference on

Artificial Intelligence, January 2007.

[104] C.E. Rasmussen and C.K.I. Williams. Gaussian processes for machine

learning, volume 1. MIT press Cambridge, MA, 2006.

[105] Nathan D. Ratliff, J. Andrew Bagnell, and Martin Zinkevich. Maximum

margin planning. In Proc. of the 23rd International Conference on Machine

learning, June 2006.

[106] Nathan D. Ratliff, David M. Bradley, J. Andrew Bagnell, and Joel E. Chest-

nutt. Boosting structured prediction for imitation learning. In Advances in

Neural Information Processing Systems 19. MIT Press, December 2007.

[107] Nathan D Ratliff, David Silver, and J Andrew Bagnell. Learning to search:

334



Bibliography

Functional gradient techniques for imitation learning. Autonomous Robots,

27(1):25–53, 2009.

[108] Stéphane Ross. Interactive Learning for Sequential Decisions and Predic-

tions. PhD thesis, Carnegie Mellon University, 2013.

[109] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learn-

ing. In Proc. of the 13rd International Conference on Artificial Intelligence

and Statistics. JMLR.org, may 2010.

[110] Vishal Satish, Jeffrey Mahler, and Ken Goldberg. On-policy dataset syn-

thesis for learning robot grasping policies using fully convolutional deep

networks. IEEE Robotics and Automation Letters, 4(2):1357–1364, 2019.

[111] Craig Saunders, Alexander Gammerman, and Volodya Vovk. Ridge regres-

sion learning algorithm in dual variables. In Proc. of the 15th International

Conference on Machine Learning, July 1998.

[112] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized

experience replay. arXiv preprint arXiv:1511.05952, 2015.

[113] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and

Philipp Moritz. Trust region policy optimization. In Proceedings of the

32nd International Conference on Machine Learning, pages 1889–1897, July

2015.

[114] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and

Pieter Abbeel. High-dimensional continuous control using generalized ad-

vantage estimation. CoRR, abs/1506.02438, 2015. URL http://arxiv.

org/abs/1506.02438.

335



Bibliography

[115] John Schulman, Pieter Abbeel, and Xi Chen. Equivalence between policy

gradients and soft q-learning. arXiv preprint arXiv:1704.06440, 2017.

[116] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg

Klimov. Proximal policy optimization algorithms. CoRR, abs/1707.06347,

2017. URL http://arxiv.org/abs/1707.06347.

[117] Han Shao, Xiaotian Yu, Irwin King, and Michael R. Lyu. Almost opti-

mal algorithms for linear stochastic bandits with heavy-tailed payoffs. In

Advances in Neural Information Processing Systems (NeurIPS), December

2018.

[118] Kyriacos Shiarlis, Joao Messias, Maarten van Someren, and Shimon White-

son. Inverse reinforcement learning from failure. In RSS 2015: Proc. of the

2015 Robotics: Science and Systems Conference, Workshop on Learning

from Demonstration, July 2015.

[119] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Ve-

davyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe,

John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,

Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hass-

abis. Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489, 2016.

[120] David Roger Smart. Fixed point theorems, volume 66. CUP Archive, 1980.

[121] Russell Smith et al. Open dynamics engine. 2005.

[122] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an in-

troduction. Adaptive computation and machine learning. MIT Press, 1998.

336



Bibliography

[123] Taiji Suzuki. Fast generalization error bound of deep learning from a ker-

nel perspective. In International Conference on Artificial Intelligence and

Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Ca-

nary Islands, Spain, pages 1397–1406, 2018.

[124] Umar Syed and Robert E Schapire. A game-theoretic approach to appren-

ticeship learning. In Advances in Neural Information Processing Systems,

pages 1449–1456, 2008.

[125] Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learn-

ing using linear programming. In Proceedings of the 25th international

conference on Machine learning, pages 1032–1039. ACM, 2008.

[126] Umar Syed, Michael H. Bowling, and Robert E. Schapire. Apprenticeship

learning using linear programming. In Machine Learning, Proceedings of

the Twenty-Fifth International Conference (ICML 2008), pages 1032–1039,

Helsinki, Finland, 2008.

[127] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lec-

tures on Artificial Intelligence and Machine Learning. Morgan & Claypool

Publishers, 2010.

[128] Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin.

Learning structured prediction models: A large margin approach. In Proc.

of the 22nd International Conference on Machine learning, August 2005.

[129] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt Jr.

Grasp pose detection in point clouds. I. J. Robotics Res., 36(13-14):1455–

1473, 2017.

337



Bibliography

[130] William R Thompson. On the likelihood that one unknown probability

exceeds another in view of the evidence of two samples. Biometrika, 25

(3/4):285–294, 1933.

[131] Thomas George Thuruthel, Egidio Falotico, Federico Renda, and Cecilia

Laschi. Model-based reinforcement learning for closed-loop dynamic control

of soft robotic manipulators. IEEE Transactions on Robotics, 35(1):124–

134, 2018.

[132] Josh Tobin, Lukas Biewald, Rocky Duan, Marcin Andrychowicz, Ankur

Handa, Vikash Kumar, Bob McGrew, Alex Ray, Jonas Schneider, Peter

Welinder, Wojciech Zaremba, and Pieter Abbeel. Domain randomization

and generative models for robotic grasping. In 2018 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, IROS 2018, Madrid,

Spain, October 1-5, 2018, pages 3482–3489, 2018.

[133] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics en-

gine for model-based control. In Proc. of the International Conference on

Intelligent Robots and Systems, Oct 2012.

[134] Michel Tokic and Günther Palm. Value-difference based exploration: Adap-

tive control between epsilon-greedy and softmax. In KI 2011: Advances in

Artificial Intelligence, 34th Annual German Conference on AI, Oct 2011.

[135] Constantino Tsallis. Possible generalization of boltzmann-gibbs statistics.

Journal of statistical physics, 52(1-2):479–487, 1988.

[136] Sattar Vakili, Keqin Liu, and Qing Zhao. Deterministic sequencing of ex-

ploration and exploitation for multi-armed bandit problems. IEEE Journal

of Selected Topics in Signal Processing, 7(5):759–767, 2013.

338



Bibliography

[137] Michal Valko, Mohammad Ghavamzadeh, and Alessandro Lazaric. Semi-

supervised apprenticeship learning. In Proc. of the Tenth European Work-

shop on Reinforcement Learning. JMLR.org, June 2012.

[138] Peter Vamplew, Richard Dazeley, and Cameron Foale. Softmax exploration

strategies for multiobjective reinforcement learning. Neurocomputing, 263:

74–86, Jun 2017.

[139] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement

learning with double q-learning. In Proc. of the Thirtieth AAAI Conference

on Artificial Intelligence, Feb 2016.

[140] Weiran Wang and Miguel A Carreira-Perpinán. Projection onto the prob-

ability simplex: An efficient algorithm with a simple proof, and an applica-

tion. arXiv preprint arXiv:1309.1541, 2013.

[141] Ziyu Wang, Josh S. Merel, Scott E. Reed, Nando de Freitas, Gregory

Wayne, and Nicolas Heess. Robust imitation of diverse behaviors. In Ad-

vances in Neural Information Processing Systems, pages 5326–5335, De-

cember 2017.

[142] Christopher JCHWatkins and Peter Dayan. Q-learning. Machine Learning,

8(3-4):279–292, May 1992.

[143] Linda Wright, G. Muraleedharan, Carlos Guedes Soares, and Cláudia Lu-

cas. Characteristic and Moment Generating Functions of Generalised Ex-

treme Value Distribution (GEV), pages 269–276. 01 2010. ISBN 978-1-

61728-655-1.

[144] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy

deep inverse reinforcement learning. arXiv preprint arXiv:1507.04888, 2015.

339



Bibliography

[145] Xinchen Yan, Mohi Khansari, Jasmine Hsu, Yuanzheng Gong, Yunfei

Bai, Sören Pirk, and Honglak Lee. Data-efficient learning for sim-to-

real robotic grasping using deep point cloud prediction networks. CoRR,

abs/1906.08989, 2019. URL http://arxiv.org/abs/1906.08989.

[146] JJ Ye. Constraint qualifications and necessary optimality conditions for op-

timization problems with variational inequality constraints. SIAM Journal

on Optimization, 10(4):943–962, 2000.

[147] Brayan S. Zapata-Impata. Using geometry to detect grasping points on

3d unknown point cloud. In Proceedings of the 14th International Confer-

ence on Informatics in Control, Automation and Robotics, ICINCO 2017,

Madrid, Spain, July 26-28, 2017, Volume 2., pages 154–161, 2017.

[148] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois Robert

Hogan, Maria Bauzá, Daolin Ma, Orion Taylor, Melody Liu, Eudald Romo,

Nima Fazeli, Ferran Alet, Nikhil Chavan Dafle, Rachel Holladay, Isabella

Morona, Prem Qu Nair, Druck Green, Ian Taylor, Weber Liu, Thomas A.

Funkhouser, and Alberto Rodriguez. Robotic pick-and-place of novel ob-

jects in clutter with multi-affordance grasping and cross-domain image

matching. In 2018 IEEE International Conference on Robotics and Au-

tomation, ICRA 2018, Brisbane, Australia, May 21-25, 2018, pages 1–8,

2018.

[149] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Gold-

berg, and Pieter Abbeel. Deep imitation learning for complex manipulation

tasks from virtual reality teleoperation. In 2018 IEEE International Con-

ference on Robotics and Automation, ICRA 2018, Brisbane, Australia, May

21-25, 2018, pages 1–8, 2018.

340



Bibliography

[150] Jiangchuan Zheng, Siyuan Liu, and Lionel M. Ni. Robust bayesian inverse

reinforcement learning with sparse behavior noise. In Proc. of the 28th

AAAI Conference on Artificial Intelligence. AAAI Press, July 2014.

[151] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle

of maximum causal entropy. PhD thesis, Carnegie Mellon University, 2010.

[152] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey.

Maximum entropy inverse reinforcement learning. In AAAI, volume 8,

pages 1433–1438. Chicago, IL, USA, 2008.

[153] Christoph Zimmer, Mona Meister, and Duy Nguyen-Tuong. Safe active

learning for time-series modeling with gaussian processes. In Advances in

Neural Information Processing Systems 31: Annual Conference on Neural

Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,

Montréal, Canada., pages 2735–2744, 2018.

341



Bibliography

342



초 록

본 학위 논문에서는 시범과 보상함수를 기반으로한 로봇 학습 문제를 다룬다. 로

봇학습방법은불확실하고복잡업무를잘수행할수있는최적의정책함수를찾는

것을 목표로 한다. 로봇 학습 분야의 다양한 문제 중에, 샘플 복잡도를 줄이는 것에

집중한다. 특히, 효율적인 탐색 방법과 혼합 시범으로 부터의 학습 기법을 개발하여

적은 수의 샘플로도 높은 효율을 갖는 정책 함수를 학습하는 것이 목표이다.

효율적인탐색방법을개발하기위해서,우리는일반화된쌀리스엔트로피를사용

한다.쌀리스엔트로피는샤논-깁스엔트로피를일반화한개념으로엔트로픽인덱스

라는새로운파라미터를도입한다.엔트로픽인덱스를조절함에따라다양한형태의

엔트로피를 만들어 낼 수 있고 각 엔트로피는 서로 다른 레귤러라이제이션 효과를

보인다. 이 성질을 기반으로, 스파스 마르코프 결정과정을 제안한다. 스파스 마르

코프 결정과정은 스파스 쌀리스 엔트로피를 이용하여 희소하면서 동시에 다모드의

정책 분포를 표현하는데 효과적이다. 이를 통해서 샤논-깁스 엔트로피를 사용하였

을때에 비해 더 좋은 성능을 갖음을 수학적으로 증명하였다. 또한 스파스 쌀리스

엔트로피로 인한 성능 저하를 이론적으로 계산하였다. 스파스 마르코프 결정과정

을 더욱 일반화시켜 일반화된 쌀리스 엔트로피 결정과정을 제안하였다. 마찬가지로

쌀리스 엔트로피를 마르코프 결정과정에 추가함으로써 생기는 최적 정책함수의 변

화와 성능 저하를 수학적으로 증명하였다. 나아가, 성능저하를 없앨 수 있는 방법인

엔트로픽 인덱스 스케쥴링을 제안하였고 실험적으로 최적의 성능을 갖음을 보였다.

또한, 헤비테일드 잡음이 있는 학습 문제를 해결하기 위해서 외란(Perturbation)

을 이용한 탐색 기법을 개발하였다. 로봇 학습의 많은 문제는 잡음의 영향이 존재

한다. 학습 신호안에 다양한 형태로 잡음이 들어있는 경우가 있고 이러한 경우에

잡음을 제거 하면서 최적의 행동을 찾는 문제는 효율적인 탐사 기법을 필요로 한

다. 기존의 방법론들은 서브 가우시안(sub-Gaussian) 잡음에만 적용 가능했다면,

본 학위 논문에서 제안한 방식은 헤비테일드 잡음을 해결 할 수 있다는 점에서 기

존의 방법론들보다 장점을 갖는다. 먼저, 일반적인 외란에 대해서 리그렛 바운드를

343



증명하였고 외란의 누적분포함수(CDF)와 리그렛 사이의 관계를 증명하였다. 이 관

계를 이용하여 다양한 외란 분포의 리그렛 바운드를 계산 가능하게 하였고 다양한

분포들의 가장 효율적인 탐색 파라미터를 계산하였다.

혼합시범으로 부터의 학습 기법을 개발하기 위해서, 오시범을 다룰 수 있는 새

로운 형태의 가우시안 프로세스 회귀분석 방식을 개발하였고, 이 방식을 확장하여

레버리지 가우시안 프로세스 역강화학습 기법을 개발하였다. 개발된 기법에서는 정

시범으로부터 무엇을 해야 하는지와 오시범으로부터 무엇을 하면 안되는지를 모두

학습할 수 있다. 기존의 방법에서는 쓰일 수 없었던 오시범을 사용 할 수 있게 만

듦으로써 샘플 복잡도를 줄일 수 있었고 정제된 데이터를 수집하지 않아도 된다는

점에서 큰 장점을 갖음을 실험적으로 보였다.

주요어: 로봇 학습, 실시간 학습, 강화 학습, 역강화 학습, 시범 기반 학습, 모방 학습

학 번: 2015-20957

344



감사의 글

6년간의 대학원 생활 끝에 공학박사로 졸업을 하게 되었습니다. 이제 더 이상 학

생의 신분이 아니라는 생각에 설렘도 생기고 두려움도 생기며 관악을 떠날 준비를

하니 지난 대학원 생활을 돌이켜보는 시간을 갖게 되었습니다. 제가 박사 학위를

받기까지 그 동안 많은 분들께 도움을 받았다는 사실을 세삼 깨닫게 되었습니다.

그래서 그 동안 제가 한 사람의 연구자로써 성장 할 수 있도록 도움을 주신 분들께

감사의 말씀을 전하고 싶습니다.

우선지난대학원생활동안저를이끌어주시고지도해주신오성회교수님께깊은

감사의 말씀 드리고 싶습니다. 교수님께 지도 받으면서 한 분야의 박사란 무엇인가,

연구란 무엇인가를 깊이 있게 고민해보고 배울 수 있었던 시간이었습니다. 특히, 주

어진 문제를 해결하는 것이 아닌, 새로운 문제를 제시 할 수있는 능력이 필요하다는

것을 알았고 그러한 능력을 키우기 위해 부단히 노력했던 것 같습니다. 이런 고민

을 함께 해주신 교수님께 감사의 말씀 드립니다. 또한, 영어가 부족하여 고생했던

저에게 충분한 시간을 주시고 기다려주셨던 교수님의 배려에 감사드리고 싶습니다.

덕분에 제가 이렇게 공학박사로써 졸업 할 수 있었습니다. 대학원 생활 동안 함께

세미나를진행하며지속적으로연구발표에대해지도해주셨고뿐만아니라더나은

학위 논문을 위해서 지도해 주셨던 최진영 교수님께도 감사의 말씀 드립니다. 또한

바쁘신 와중에도 학위 논문 지도를 위해 시간을 내주신 심형보 교수님께도 감사의

말씀 드립니다. 교수님들의 지도 덕분에 학위 논문을 잘 마무리 지을 수 있었습니다.

그리고 대학원 생활을 즐겁게 할 수 있도록 도와준 연구실 동료들에게도 감사의

인사를 전합니다. 가장 먼저, 바쁘신 와중에도 저의 박사 학위 논문을 지도해주시고

심사해 주신 성준이형과 은우형께 감사의 말씀 드립니다. 성준이형에게는 대학원에

입학하여 졸업 할 때까지 많은 것을 보고 배운 것 같습니다. 연구를 대하는 자세와

열정은 후배로써 존경스러웠고 제가 공부하고 연구 할 때 좋은 본보기가 되었습니

다. 그리고 항상 차분히 맡은 바를 열심히 해나가신 은우형께도 평정심과 차분한

마음가짐을 배울 수 있었습니다. 앞으로도 잘 부탁드립니다. 또한, 훌륭한 연구를

345



수행하시고 앞서 졸업하신 졸업생 선배님들께 감사합니다. 힘들때 마다 고민을 들

어주시고 버팀목이 되어 주셨던 선배님들, 정훈이형, 정찬이형, 인환이형, 동훈이형,

윤선누나, 준식이형 감사드립니다. 그리고 박사 졸업 직전까지 함께 연구실 생활을

했던 건호형, 혜민누나, 경훈이형 감사드립니다. 힘든 일이나 고민이 있을 때 함께

걸으며 이야기를 들어주었던 동기 승규형 감사합니다. 항상 묵묵히 맡은 역할을 잘

하는 친구 찬호, 연구실의 방장을 도맡아한 누리, 전문연으로써 같은 고민을 나누던

휘연이, 윤호, 디모데, 연구실의 재간둥이 재구를 비롯하여 오빈, 민의, 건민, 민재

까지 연구실 모두에게 감사의 말씀 드립니다.

무뚝뚝한 아들의 선택을 항상 믿고 응원해 주시는 부모님께도 감사의 말씀 드리

고 싶습니다. 부모님의 지원과 믿음 그리고 사랑이 없었다면 힘든 박사과정 생활을

잘 이겨내지 못했을 것 입니다. 세상 물정 모르던 아들이 이제 학교를 떠나 사회로

나갑니다. 앞으로도 잘 할 수 있도록 노력하겠습니다. 지켜봐 주세요.

끝으로학생이었던저를만나결혼까지하게된저의아내은진이에게감사의말씀

을전하고싶습니다.힘들때마다때로는위로를때로는격려를때로는따끔한충고를

해주었던은진이가있었기에오늘의제가있지않나생각해봅니다.은진이는박사과

정동안 제게 평안한 안식처같은 존재 였습니다. 이제는 길었던 공부를 마치고 제가

은진이의 안식처가 되고 싶습니다. 사랑한다.

346


	1 Introduction
	1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . .

	2 Background
	2.1 Learning from Rewards . . . . . . . . . . . . . . . . . . . . . . . .
	2.1.1 Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . .
	2.1.2 Contextual Multi-Armed Bandits . . . . . . . . . . . . . . .
	2.1.3 Markov Decision Processes . . . . . . . . . . . . . . . . . .
	2.1.4 Soft Markov Decision Processes . . . . . . . . . . . . . . . .

	2.2 Learning from Demonstrations . . . . . . . . . . . . . . . . . . . .
	2.2.1 Behavior Cloning . . . . . . . . . . . . . . . . . . . . . . . .
	2.2.2 Inverse Reinforcement Learning . . . . . . . . . . . . . . . .


	3 Sparse Policy Learning
	3.1 Sparse Policy Learning for Reinforcement Learning . . . . . . . . .
	3.1.1 Sparse Markov Decision Processes . . . . . . . . . . . . . .
	3.1.2 Sparse Value Iteration . . . . . . . . . . . . . . . . . . . . .
	3.1.3 Performance Error Bounds for Sparse Value Iteration . . .
	3.1.4 Sparse Exploration and Update Rule for Sparse Deep QLearning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	3.2 Sparse Policy Learning for Imitation Learning . . . . . . . . . . . .
	3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.2.2 Principle of Maximum Causal Tsallis Entropy . . . . . . . .
	3.2.3 Maximum Causal Tsallis Entropy Imitation Learning . . .
	3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . .
	3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .


	4 Entropy-based Exploration
	4.1 Generalized Tsallis Entropy Reinforcement Learning . . . . . . . .
	4.1.1 Maximum Generalized Tsallis Entropy in MDPs . . . . . .
	4.1.2 Dynamic Programming for Tsallis MDPs . . . . . . . . . .
	4.1.3 Tsallis Actor Critic for Model-Free RL . . . . . . . . . . . .
	4.1.4 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . .
	4.1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . .
	4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	4.2 E�cient Exploration for Robotic Grasping . . . . . . . . . . . . . .
	4.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.2.2 Shannon Entropy Regularized Neural Contextual Bandit Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	4.2.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . .
	4.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . .
	4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .


	5 Perturbation-Based Exploration
	5.1 Perturbed Exploration for sub-Gaussian Rewards . . . . . . . . . .
	5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.1.2 Heavy-Tailed Perturbations . . . . . . . . . . . . . . . . . .
	5.1.3 Adaptively Perturbed Exploration . . . . . . . . . . . . . .
	5.1.4 General Regret Bound for Sub-Gaussian Rewards . . . . . .
	5.1.5 Regret Bounds for Speci�c Perturbations with sub-Gaussian Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	5.2 Perturbed Exploration for Heavy-Tailed Rewards . . . . . . . . . .
	5.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.2.2 Sub-Optimality of Robust Upper Con�dence Bounds . . . .
	5.2.3 Adaptively Perturbed Exploration with A p-Robust Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.2.4 General Regret Bound for Heavy-Tailed Rewards . . . . . .
	5.2.5 Regret Bounds for Speci�c Perturbations with Heavy-Tailed Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .


	6 Inverse Reinforcement Learning with Negative Demonstrations
	6.1 Leveraged Gaussian Processes Inverse Reinforcement Learning . .
	6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . .
	6.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . .
	6.1.3 Gaussian Process Regression . . . . . . . . . . . . . . . . .
	6.1.4 Leveraged Gaussian Processes . . . . . . . . . . . . . . . . .
	6.1.5 Gaussian Process Inverse Reinforcement Learning . . . . .
	6.1.6 Inverse Reinforcement Learning with Leveraged Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	6.1.7 Simulations and Experiment . . . . . . . . . . . . . . . . .
	6.1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .


	7 Conclusion
	Appendices
	A Proofs of Chapter 3.1.
	A.1 Useful Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	A.2 Sparse Bellman Optimality Equation . . . . . . . . . . . . . . . . .
	A.3 Sparse Tsallis Entropy . . . . . . . . . . . . . . . . . . . . . . . . .
	A.4 Upper and Lower Bounds for Sparsemax Operation . . . . . . . . .
	A.5 Comparison to Log-Sum-Exp . . . . . . . . . . . . . . . . . . . . .
	A.6 Convergence and Optimality of Sparse Value Iteration . . . . . . .
	A.7 Performance Error Bounds for Sparse Value Iteration . . . . . . . .

	B Proofs of Chapter 3.2.
	B.1 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . .
	B .2 Concavity of Maximum Causal Tsallis Entropy . . . . . . . . . . .
	B. 3 Optimality Condition of Maximum Causal Tsallis Entropy . . . . .
	B.4 Interpretation as Robust Bayes . . . . . . . . . . . . . . . . . . . .
	B .5 Generative Adversarial Setting with Maximum Causal Tsallis Entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	B.6 Tsallis Entropy of a Mixture of Gaussians . . . . . . . . . . . . . .
	B.7 Causal Entropy Approximation . . . . . . . . . . . . . . . . . . . .

	C Proofs of Chapter 4.1.
	C.1 q-Maximum: Bounded Approximation of Maximum . . . . . . . . .
	C.2 Tsallis Bellman Optimality Equation . . . . . . . . . . . . . . . . .
	C.3 Variable Change . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	C.4 Tsallis Bellman Optimality Equation . . . . . . . . . . . . . . . . .
	C.5 Tsallis Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . .
	C.6 Tsallis Bellman Expectation (TBE) Equation . . . . . . . . . . . .
	C.7 Tsallis Bellman Expectation Operator and Tsallis Policy Evaluation
	C.8 Tsallis Policy Improvement . . . . . . . . . . . . . . . . . . . . . .
	C.9 Tsallis Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . .
	C.10 Performance Error Bounds . . . . . . . . . . . . . . . . . . . . . .
	C.11 q-Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	D Proofs of Chapter 4.2.
	D.1 In�nite Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . .
	D.2 Regret Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	E Proofs of Chapter 5.1.
	E.1 General Regret Lower Bound of APE . . . . . . . . . . . . . . . . .
	E.2 General Regret Upper Bound of APE . . . . . . . . . . . . . . . .
	E.3 Proofs of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . .

	F Proofs of Chapter 5.2.
	F.1 Regret Lower Bound for Robust Upper Con�dence Bound . . . . .
	F.2 Bounds on Tail Probability of A p-Robust Estimator . . . . . . . .
	F.3 General Regret Upper Bound of APE2 . . . . . . . . . . . . . . . .
	F.4 General Regret Lower Bound of APE2 . . . . . . . . . . . . . . . .
	F.5 Proofs of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . .




<startpage>20
1 Introduction 1
 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
 1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . 4
2 Background 5
 2.1 Learning from Rewards . . . . . . . . . . . . . . . . . . . . . . . . 6
  2.1.1 Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . . 7
  2.1.2 Contextual Multi-Armed Bandits . . . . . . . . . . . . . . . 7
  2.1.3 Markov Decision Processes . . . . . . . . . . . . . . . . . . 9
  2.1.4 Soft Markov Decision Processes . . . . . . . . . . . . . . . . 10
 2.2 Learning from Demonstrations . . . . . . . . . . . . . . . . . . . . 12
  2.2.1 Behavior Cloning . . . . . . . . . . . . . . . . . . . . . . . . 12
  2.2.2 Inverse Reinforcement Learning . . . . . . . . . . . . . . . . 13
3 Sparse Policy Learning 19
 3.1 Sparse Policy Learning for Reinforcement Learning . . . . . . . . . 19
  3.1.1 Sparse Markov Decision Processes . . . . . . . . . . . . . . 23
  3.1.2 Sparse Value Iteration . . . . . . . . . . . . . . . . . . . . . 29
  3.1.3 Performance Error Bounds for Sparse Value Iteration . . . 30
  3.1.4 Sparse Exploration and Update Rule for Sparse Deep QLearning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
  3.1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 34
  3.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
 3.2 Sparse Policy Learning for Imitation Learning . . . . . . . . . . . . 46
  3.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 48
  3.2.2 Principle of Maximum Causal Tsallis Entropy . . . . . . . . 50
  3.2.3 Maximum Causal Tsallis Entropy Imitation Learning . . . 54
  3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 58
  3.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4 Entropy-based Exploration 65
 4.1 Generalized Tsallis Entropy Reinforcement Learning . . . . . . . . 65
  4.1.1 Maximum Generalized Tsallis Entropy in MDPs . . . . . . 71
  4.1.2 Dynamic Programming for Tsallis MDPs . . . . . . . . . . 74
  4.1.3 Tsallis Actor Critic for Model-Free RL . . . . . . . . . . . . 78
  4.1.4 Experiments Setup . . . . . . . . . . . . . . . . . . . . . . . 79
  4.1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . 84
  4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
 4.2 E�cient Exploration for Robotic Grasping . . . . . . . . . . . . . . 92
  4.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 94
  4.2.2 Shannon Entropy Regularized Neural Contextual Bandit Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
  4.2.3 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . 99
  4.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 104
  4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5 Perturbation-Based Exploration 113
 5.1 Perturbed Exploration for sub-Gaussian Rewards . . . . . . . . . . 115
  5.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 115
  5.1.2 Heavy-Tailed Perturbations . . . . . . . . . . . . . . . . . . 117
  5.1.3 Adaptively Perturbed Exploration . . . . . . . . . . . . . . 119
  5.1.4 General Regret Bound for Sub-Gaussian Rewards . . . . . . 120
  5.1.5 Regret Bounds for Speci�c Perturbations with sub-Gaussian Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
  5.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
 5.2 Perturbed Exploration for Heavy-Tailed Rewards . . . . . . . . . . 128
  5.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 130
  5.2.2 Sub-Optimality of Robust Upper Con�dence Bounds . . . . 132
  5.2.3 Adaptively Perturbed Exploration with A p-Robust Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
  5.2.4 General Regret Bound for Heavy-Tailed Rewards . . . . . . 136
  5.2.5 Regret Bounds for Speci�c Perturbations with Heavy-Tailed Rewards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
  5.2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 144
  5.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6 Inverse Reinforcement Learning with Negative Demonstrations 149
 6.1 Leveraged Gaussian Processes Inverse Reinforcement Learning . . 151
  6.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 152
  6.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
  6.1.3 Gaussian Process Regression . . . . . . . . . . . . . . . . . 156
  6.1.4 Leveraged Gaussian Processes . . . . . . . . . . . . . . . . . 159
  6.1.5 Gaussian Process Inverse Reinforcement Learning . . . . . 164
  6.1.6 Inverse Reinforcement Learning with Leveraged Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
  6.1.7 Simulations and Experiment . . . . . . . . . . . . . . . . . 175
  6.1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7 Conclusion 185
Appendices 189
 A Proofs of Chapter 3.1. 191
  A.1 Useful Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
  A.2 Sparse Bellman Optimality Equation . . . . . . . . . . . . . . . . . 192
  A.3 Sparse Tsallis Entropy . . . . . . . . . . . . . . . . . . . . . . . . . 195
  A.4 Upper and Lower Bounds for Sparsemax Operation . . . . . . . . . 196
  A.5 Comparison to Log-Sum-Exp . . . . . . . . . . . . . . . . . . . . . 200
  A.6 Convergence and Optimality of Sparse Value Iteration . . . . . . . 201
  A.7 Performance Error Bounds for Sparse Value Iteration . . . . . . . . 203
 B Proofs of Chapter 3.2. 209
  B.1 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 209
  B .2 Concavity of Maximum Causal Tsallis Entropy . . . . . . . . . . . 210
  B. 3 Optimality Condition of Maximum Causal Tsallis Entropy . . . . . 212
  B.4 Interpretation as Robust Bayes . . . . . . . . . . . . . . . . . . . . 215
  B .5 Generative Adversarial Setting with Maximum Causal Tsallis Entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
  B.6 Tsallis Entropy of a Mixture of Gaussians . . . . . . . . . . . . . . 217
  B.7 Causal Entropy Approximation . . . . . . . . . . . . . . . . . . . . 218
 C Proofs of Chapter 4.1. 221
  C.1 q-Maximum: Bounded Approximation of Maximum . . . . . . . . . 223
  C.2 Tsallis Bellman Optimality Equation . . . . . . . . . . . . . . . . . 226
  C.3 Variable Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
  C.4 Tsallis Bellman Optimality Equation . . . . . . . . . . . . . . . . . 230
  C.5 Tsallis Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 234
  C.6 Tsallis Bellman Expectation (TBE) Equation . . . . . . . . . . . . 234
  C.7 Tsallis Bellman Expectation Operator and Tsallis Policy Evaluation 235
  C.8 Tsallis Policy Improvement . . . . . . . . . . . . . . . . . . . . . . 237
  C.9 Tsallis Value Iteration . . . . . . . . . . . . . . . . . . . . . . . . . 239
  C.10 Performance Error Bounds . . . . . . . . . . . . . . . . . . . . . . 241
  C.11 q-Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
 D Proofs of Chapter 4.2. 245
  D.1 In�nite Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
  D.2 Regret Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
 E Proofs of Chapter 5.1. 255
  E.1 General Regret Lower Bound of APE . . . . . . . . . . . . . . . . . 255
  E.2 General Regret Upper Bound of APE . . . . . . . . . . . . . . . . 257
  E.3 Proofs of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . 266
 F Proofs of Chapter 5.2. 279
  F.1 Regret Lower Bound for Robust Upper Con�dence Bound . . . . . 279
  F.2 Bounds on Tail Probability of A p-Robust Estimator . . . . . . . . 284
  F.3 General Regret Upper Bound of APE2 . . . . . . . . . . . . . . . . 287
  F.4 General Regret Lower Bound of APE2 . . . . . . . . . . . . . . . . 299
  F.5 Proofs of Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . 302
</body>

