2 research outputs found

    Super-Resolution in Phase Space

    Get PDF
    This work considers the problem of super-resolution. The goal is to resolve a Dirac distribution from knowledge of its discrete, low-pass, Fourier measurements. Classically, such problems have been dealt with parameter estimation methods. Recently, it has been shown that convex-optimization based formulations facilitate a continuous time solution to the super-resolution problem. Here we treat super-resolution from low-pass measurements in Phase Space. The Phase Space transformation parametrically generalizes a number of well known unitary mappings such as the Fractional Fourier, Fresnel, Laplace and Fourier transforms. Consequently, our work provides a general super- resolution strategy which is backward compatible with the usual Fourier domain result. We consider low-pass measurements of Dirac distributions in Phase Space and show that the super-resolution problem can be cast as Total Variation minimization. Remarkably, even though are setting is quite general, the bounds on the minimum separation distance of Dirac distributions is comparable to existing methods.Comment: 10 Pages, short paper in part accepted to ICASSP 201

    Sampling and Super-resolution of Sparse Signals Beyond the Fourier Domain

    Full text link
    Recovering a sparse signal from its low-pass projections in the Fourier domain is a problem of broad interest in science and engineering and is commonly referred to as super-resolution. In many cases, however, Fourier domain may not be the natural choice. For example, in holography, low-pass projections of sparse signals are obtained in the Fresnel domain. Similarly, time-varying system identification relies on low-pass projections on the space of linear frequency modulated signals. In this paper, we study the recovery of sparse signals from low-pass projections in the Special Affine Fourier Transform domain (SAFT). The SAFT parametrically generalizes a number of well known unitary transformations that are used in signal processing and optics. In analogy to the Shannon's sampling framework, we specify sampling theorems for recovery of sparse signals considering three specific cases: (1) sampling with arbitrary, bandlimited kernels, (2) sampling with smooth, time-limited kernels and, (3) recovery from Gabor transform measurements linked with the SAFT domain. Our work offers a unifying perspective on the sparse sampling problem which is compatible with the Fourier, Fresnel and Fractional Fourier domain based results. In deriving our results, we introduce the SAFT series (analogous to the Fourier series) and the short time SAFT, and study convolution theorems that establish a convolution--multiplication property in the SAFT domain.Comment: 42 pages, 3 figures, manuscript under revie
    corecore