384 research outputs found

    Enhancing representation learning with tensor decompositions for knowledge graphs and high dimensional sequence modeling

    Get PDF
    The capability of processing and digesting raw data is one of the key features of a human-like artificial intelligence system. For instance, real-time machine translation should be able to process and understand spoken natural language, and autonomous driving relies on the comprehension of visual inputs. Representation learning is a class of machine learning techniques that autonomously learn to derive latent features from raw data. These new features are expected to represent the data instances in a vector space that facilitates the machine learning task. This thesis studies two specific data situations that require efficient representation learning: knowledge graph data and high dimensional sequences. In the first part of this thesis, we first review multiple relational learning models based on tensor decomposition for knowledge graphs. We point out that relational learning is in fact a means of learning representations through one-hot mapping of entities. Furthermore, we generalize this mapping function to consume a feature vector that encodes all known facts about each entity. It enables the relational model to derive the latent representation instantly for a new entity, without having to re-train the tensor decomposition. In the second part, we focus on learning representations from high dimensional sequential data. Sequential data often pose the challenge that they are of variable lengths. Electronic health records, for instance, could consist of clinical event data that have been collected at subsequent time steps. But each patient may have a medical history of variable length. We apply recurrent neural networks to produce fixed-size latent representations from the raw feature sequences of various lengths. By exposing a prediction model to these learned representations instead of the raw features, we can predict the therapy prescriptions more accurately as a means of clinical decision support. We further propose Tensor-Train recurrent neural networks. We give a detailed introduction to the technique of tensorizing and decomposing large weight matrices into a few smaller tensors. We demonstrate the specific algorithms to perform the forward-pass and the back-propagation in this setting. Then we apply this approach to the input-to-hidden weight matrix in recurrent neural networks. This novel architecture can process extremely high dimensional sequential features such as video data. The model also provides a promising solution to processing sequential features with high sparsity. This is, for instance, the case with electronic health records, since they are often of categorical nature and have to be binary-coded. We incorporate a statistical survival model with this representation learning model, which shows superior prediction quality

    PANTHER: Pathway Augmented Nonnegative Tensor factorization for HighER-order feature learning

    Full text link
    Genetic pathways usually encode molecular mechanisms that can inform targeted interventions. It is often challenging for existing machine learning approaches to jointly model genetic pathways (higher-order features) and variants (atomic features), and present to clinicians interpretable models. In order to build more accurate and better interpretable machine learning models for genetic medicine, we introduce Pathway Augmented Nonnegative Tensor factorization for HighER-order feature learning (PANTHER). PANTHER selects informative genetic pathways that directly encode molecular mechanisms. We apply genetically motivated constrained tensor factorization to group pathways in a way that reflects molecular mechanism interactions. We then train a softmax classifier for disease types using the identified pathway groups. We evaluated PANTHER against multiple state-of-the-art constrained tensor/matrix factorization models, as well as group guided and Bayesian hierarchical models. PANTHER outperforms all state-of-the-art comparison models significantly (p<0.05). Our experiments on large scale Next Generation Sequencing (NGS) and whole-genome genotyping datasets also demonstrated wide applicability of PANTHER. We performed feature analysis in predicting disease types, which suggested insights and benefits of the identified pathway groups.Comment: Accepted by 35th AAAI Conference on Artificial Intelligence (AAAI 2021

    Bayesian Methods in Tensor Analysis

    Full text link
    Tensors, also known as multidimensional arrays, are useful data structures in machine learning and statistics. In recent years, Bayesian methods have emerged as a popular direction for analyzing tensor-valued data since they provide a convenient way to introduce sparsity into the model and conduct uncertainty quantification. In this article, we provide an overview of frequentist and Bayesian methods for solving tensor completion and regression problems, with a focus on Bayesian methods. We review common Bayesian tensor approaches including model formulation, prior assignment, posterior computation, and theoretical properties. We also discuss potential future directions in this field.Comment: 32 pages, 8 figures, 2 table
    • …
    corecore