11 research outputs found

    Sparse Bayesian Registration

    Get PDF
    International audienceWe propose a Sparse Bayesian framework for non-rigid registration. Our principled approach is flexible, in that it efficiently finds an optimal, sparse model to represent deformations among any preset, widely over-complete range of basis functions. It addresses open challenges in state-of-the-art registration, such as the automatic joint estimate of model parameters (e.g. noise and regularization levels). We demonstrate the feasibility and performance of our approach on cine MR, tagged MR and 33D US cardiac images, and show state-of-the-art results on benchmark data sets evaluating accuracy of motion and strain

    Apprentissage statistique pour la personnalisation de modèles cardiaques à partir de données d’imagerie

    Get PDF
    This thesis focuses on the calibration of an electromechanical model of the heart from patient-specific, image-based data; and on the related task of extracting the cardiac motion from 4D images. Long-term perspectives for personalized computer simulation of the cardiac function include aid to the diagnosis, aid to the planning of therapy and prevention of risks. To this end, we explore tools and possibilities offered by statistical learning. To personalize cardiac mechanics, we introduce an efficient framework coupling machine learning and an original statistical representation of shape & motion based on 3D+t currents. The method relies on a reduced mapping between the space of mechanical parameters and the space of cardiac motion. The second focus of the thesis is on cardiac motion tracking, a key processing step in the calibration pipeline, with an emphasis on quantification of uncertainty. We develop a generic sparse Bayesian model of image registration with three main contributions: an extended image similarity term, the automated tuning of registration parameters and uncertainty quantification. We propose an approximate inference scheme that is tractable on 4D clinical data. Finally, we wish to evaluate the quality of uncertainty estimates returned by the approximate inference scheme. We compare the predictions of the approximate scheme with those of an inference scheme developed on the grounds of reversible jump MCMC. We provide more insight into the theoretical properties of the sparse structured Bayesian model and into the empirical behaviour of both inference schemesCette thèse porte sur un problème de calibration d'un modèle électromécanique de cœur, personnalisé à partir de données d'imagerie médicale 3D+t ; et sur celui - en amont - de suivi du mouvement cardiaque. A cette fin, nous adoptons une méthodologie fondée sur l'apprentissage statistique. Pour la calibration du modèle mécanique, nous introduisons une méthode efficace mêlant apprentissage automatique et une description statistique originale du mouvement cardiaque utilisant la représentation des courants 3D+t. Notre approche repose sur la construction d'un modèle statistique réduit reliant l'espace des paramètres mécaniques à celui du mouvement cardiaque. L'extraction du mouvement à partir d'images médicales avec quantification d'incertitude apparaît essentielle pour cette calibration, et constitue l'objet de la seconde partie de cette thèse. Plus généralement, nous développons un modèle bayésien parcimonieux pour le problème de recalage d'images médicales. Notre contribution est triple et porte sur un modèle étendu de similarité entre images, sur l'ajustement automatique des paramètres du recalage et sur la quantification de l'incertitude. Nous proposons une technique rapide d'inférence gloutonne, applicable à des données cliniques 4D. Enfin, nous nous intéressons de plus près à la qualité des estimations d'incertitude fournies par le modèle. Nous comparons les prédictions du schéma d'inférence gloutonne avec celles données par une procédure d'inférence fidèle au modèle, que nous développons sur la base de techniques MCMC. Nous approfondissons les propriétés théoriques et empiriques du modèle bayésien parcimonieux et des deux schémas d'inférenc

    Segmentation and registration coupling from short-axis Cine MRI: application to infarct diagnosis

    Get PDF
    In pressInternational audienceEstimating regional deformation of the myocardium from Cine MRI has the potential to locate abnormal tissue. Regional deformation of the left ventricle is commonly estimated using either segmentation or 3D+t registration. Segmentation is often performed at each instant separately from the others. It can be tedious and does not guarantee temporal causality. On the other hand, extracting regional parameters through image registration is highly dependent on the initial segmenta-tion chosen to propagate the deformation fields and may not be consistent with the myocardial contours. In this paper, we propose an intermediate approach that couples segmentation and registration in order to improve temporal causality while removing the influence of the chosen initial segmentation. We propose to apply the deformation fields from image registration (sparse Bayesian registration) to every segmentation of the cardiac cycle and combine them for more robust regional measurements. As an illustration, we describe local deformation through the measurement of AHA regional volumes. Maximum regional volume change is extracted and compared across scar and non-scar regions defined from delayed enhancement MRI on 20 ST-elevation myocardial infarction patients. The proposed approach shows (i) more robustness in extracting regional volumes than direct segmentation or standard registration and (ii) better performance in detecting scar

    Quantifying Registration Uncertainty with Sparse Bayesian Modelling

    Get PDF
    International audienceWe investigate uncertainty quantification under a sparse Bayesian model of medical image registration. Bayesian modelling has proven powerful to automate the tuning of registration hyperparameters, such as the trade-off between the data and regularization functionals. Sparsity-inducing priors have recently been used to render the parametrization itself adaptive and data-driven. The sparse prior on transformation parameters effectively favors the use of coarse basis functions to capture the global trends in the visible motion while finer, highly localized bases are introduced only in the presence of coherent image information and motion. In earlier work, approximate inference under the sparse Bayesian model was tackled in an efficient Variational Bayes (VB) framework. In this paper we are interested in the theoretical and empirical quality of uncertainty estimates derived under this approximate scheme vs. under the exact model. We implement an (asymptotically) exact inference scheme based on reversible jump Markov Chain Monte Carlo (MCMC) sampling to characterize the posterior distribution of the transformation and compare the predictions of the VB and MCMC based methods. The true posterior distribution under the sparse Bayesian model is found to be meaningful: orders of magnitude for the estimated uncertainty are quantitatively reasonable, the uncertainty is higher in textureless regions and lower in the direction of strong intensity gradients

    Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics

    Get PDF
    International audienceGiven that heart disease can cause abnormal motion dynamics over the cardiac cycle, which can then affect cardiac function, understanding and quantifying cardiac motion can provide insight for clinicians to aid in diagnosis, therapy planning, as well as to determine the prognosis for a given patient. The goal of this paper is to extract population-specific cardiac motion patterns from 3D displacements in order to firstly identify the mean motion behaviour in a population and secondly to describe pathology-specific motion patterns in terms of the spatial and temporal aspects of the motion. Since there are common motion patterns observed in patients suffering from the same condition, extracting these patterns can lead towards a better understanding of a disease. Quantifying cardiac motion at a population level is not a simple task since images can vary widely in terms of image quality, size, resolution and pose. To overcome this, we analyse the parameters obtained from a cardiac-specific Polyaffine motion tracking algorithm, which are aligned both spatially and temporally to a common reference space. Once all parameters are aligned, different subjects and different populations can be compared and analysed in the space of Polyaffine transformations by projecting the transformations to a reduced-order subspace in which dominant motion patterns in each population can be extracted and analysed. Using tensor decomposition allows the spatial and temporal aspects to be decoupled in order to study the different components individually. The proposed method was validated on healthy volunteers and Tetralogy of Fallot patients according to known spatial andtemporal behaviour for each population. A key advantage of the proposed method is the ability to regenerate motion sequences from the respective models, thus the models can be visualised in terms of the full motion, which allows for better understanding of the motion dynamics of different populations

    Impact of Ear Occlusion on In-Ear Sounds Generated by Intra-oral Behaviors

    Get PDF
    We conducted a case study with one volunteer and a recording setup to detect sounds induced by the actions: jaw clenching, tooth grinding, reading, eating, and drinking. The setup consisted of two in-ear microphones, where the left ear was semi-occluded with a commercially available earpiece and the right ear was occluded with a mouldable silicon ear piece. Investigations in the time and frequency domains demonstrated that for behaviors such as eating, tooth grinding, and reading, sounds could be recorded with both sensors. For jaw clenching, however, occluding the ear with a mouldable piece was necessary to enable its detection. This can be attributed to the fact that the mouldable ear piece sealed the ear canal and isolated it from the environment, resulting in a detectable change in pressure. In conclusion, our work suggests that detecting behaviors such as eating, grinding, reading with a semi-occluded ear is possible, whereas, behaviors such as clenching require the complete occlusion of the ear if the activity should be easily detectable. Nevertheless, the latter approach may limit real-world applicability because it hinders the hearing capabilities.</p

    Bayesian generative learning of brain and spinal cord templates from neuroimaging datasets

    Get PDF
    In the field of neuroimaging, Bayesian modelling techniques have been largely adopted and recognised as powerful tools for the purpose of extracting quantitative anatomical and functional information from medical scans. Nevertheless the potential of Bayesian inference has not yet been fully exploited, as many available tools rely on point estimation techniques, such as maximum likelihood estimation, rather than on full Bayesian inference. The aim of this thesis is to explore the value of approximate learning schemes, for instance variational Bayes, to perform inference from brain and spinal cord MRI data. The applications that will be explored in this work mainly concern image segmentation and atlas construction, with a particular emphasis on the problem of shape and intensity prior learning, from large training data sets of structural MR scans. The resulting computational tools are intended to enable integrated brain and spinal cord morphometric analyses, as opposed to the approach that is most commonly adopted in neuroimaging, which consists in optimising separate tools for brain and spine morphometrics

    When Cardiac Biophysics Meets Groupwise Statistics: Complementary Modelling Approaches for Patient-Specific Medicine

    Get PDF
    This habilitation manuscript contains research on biophysical and statistical modeling of the heart, as well as interactions between these two approaches

    When Cardiac Biophysics Meets Groupwise Statistics: Complementary Modelling Approaches for Patient-Specific Medicine

    Get PDF
    This habilitation manuscript contains research on biophysical and statistical modeling of the heart, as well as interactions between these two approaches
    corecore