82 research outputs found

    The Bayesian Case Model: A Generative Approach for Case-Based Reasoning and Prototype Classification

    Get PDF
    We present the Bayesian Case Model (BCM), a general framework for Bayesian case-based reasoning (CBR) and prototype classification and clustering. BCM brings the intuitive power of CBR to a Bayesian generative framework. The BCM learns prototypes, the "quintessential" observations that best represent clusters in a dataset, by performing joint inference on cluster labels, prototypes and important features. Simultaneously, BCM pursues sparsity by learning subspaces, the sets of features that play important roles in the characterization of the prototypes. The prototype and subspace representation provides quantitative benefits in interpretability while preserving classification accuracy. Human subject experiments verify statistically significant improvements to participants' understanding when using explanations produced by BCM, compared to those given by prior art.Comment: Published in Neural Information Processing Systems (NIPS) 2014, Neural Information Processing Systems (NIPS) 201

    Understanding Actors and Evaluating Personae with Gaussian Embeddings

    Full text link
    Understanding narrative content has become an increasingly popular topic. Nonetheless, research on identifying common types of narrative characters, or personae, is impeded by the lack of automatic and broad-coverage evaluation methods. We argue that computationally modeling actors provides benefits, including novel evaluation mechanisms for personae. Specifically, we propose two actor-modeling tasks, cast prediction and versatility ranking, which can capture complementary aspects of the relation between actors and the characters they portray. For an actor model, we present a technique for embedding actors, movies, character roles, genres, and descriptive keywords as Gaussian distributions and translation vectors, where the Gaussian variance corresponds to actors' versatility. Empirical results indicate that (1) the technique considerably outperforms TransE (Bordes et al. 2013) and ablation baselines and (2) automatically identified persona topics (Bamman, O'Connor, and Smith 2013) yield statistically significant improvements in both tasks, whereas simplistic persona descriptors including age and gender perform inconsistently, validating prior research.Comment: Accepted at AAAI 201

    Confounds and Consequences in Geotagged Twitter Data

    Full text link
    Twitter is often used in quantitative studies that identify geographically-preferred topics, writing styles, and entities. These studies rely on either GPS coordinates attached to individual messages, or on the user-supplied location field in each profile. In this paper, we compare these data acquisition techniques and quantify the biases that they introduce; we also measure their effects on linguistic analysis and text-based geolocation. GPS-tagging and self-reported locations yield measurably different corpora, and these linguistic differences are partially attributable to differences in dataset composition by age and gender. Using a latent variable model to induce age and gender, we show how these demographic variables interact with geography to affect language use. We also show that the accuracy of text-based geolocation varies with population demographics, giving the best results for men above the age of 40.Comment: final version for EMNLP 201

    Graph-Sparse LDA: A Topic Model with Structured Sparsity

    Full text link
    Originally designed to model text, topic modeling has become a powerful tool for uncovering latent structure in domains including medicine, finance, and vision. The goals for the model vary depending on the application: in some cases, the discovered topics may be used for prediction or some other downstream task. In other cases, the content of the topic itself may be of intrinsic scientific interest. Unfortunately, even using modern sparse techniques, the discovered topics are often difficult to interpret due to the high dimensionality of the underlying space. To improve topic interpretability, we introduce Graph-Sparse LDA, a hierarchical topic model that leverages knowledge of relationships between words (e.g., as encoded by an ontology). In our model, topics are summarized by a few latent concept-words from the underlying graph that explain the observed words. Graph-Sparse LDA recovers sparse, interpretable summaries on two real-world biomedical datasets while matching state-of-the-art prediction performance
    • …
    corecore