753 research outputs found

    Active Terminal Identification, Channel Estimation, and Signal Detection for Grant-Free NOMA-OTFS in LEO Satellite Internet-of-Things

    Full text link
    This paper investigates the massive connectivity of low Earth orbit (LEO) satellite-based Internet-of-Things (IoT) for seamless global coverage. We propose to integrate the grant-free non-orthogonal multiple access (GF-NOMA) paradigm with the emerging orthogonal time frequency space (OTFS) modulation to accommodate the massive IoT access, and mitigate the long round-trip latency and severe Doppler effect of terrestrial-satellite links (TSLs). On this basis, we put forward a two-stage successive active terminal identification (ATI) and channel estimation (CE) scheme as well as a low-complexity multi-user signal detection (SD) method. Specifically, at the first stage, the proposed training sequence aided OTFS (TS-OTFS) data frame structure facilitates the joint ATI and coarse CE, whereby both the traffic sparsity of terrestrial IoT terminals and the sparse channel impulse response are leveraged for enhanced performance. Moreover, based on the single Doppler shift property for each TSL and sparsity of delay-Doppler domain channel, we develop a parametric approach to further refine the CE performance. Finally, a least square based parallel time domain SD method is developed to detect the OTFS signals with relatively low complexity. Simulation results demonstrate the superiority of the proposed methods over the state-of-the-art solutions in terms of ATI, CE, and SD performance confronted with the long round-trip latency and severe Doppler effect.Comment: 20 pages, 9 figures, accepted by IEEE Transactions on Wireless Communication

    Filtered OFDM systems, algorithms and performance analysis for 5G and beyond

    Get PDF
    Filtered orthogonal frequency division multiplexing (F-OFDM) system is a promising waveform for 5G and beyond to enable multi-service system and spectrum efficient network slicing. However, the performance for F-OFDM systems has not been systematically analyzed in literature. In this paper, we first establish a mathematical model for F-OFDM system and derive the conditions to achieve the interference-free one-tap channel equalization. In the practical cases (e.g., insufficient guard interval, asynchronous transmission, etc.), the analytical expressions for inter-symbol-interference (ISI), inter-carrier-interference (ICI) and adjacent-carrier-interference (ACI) are derived, where the last term is considered as one of the key factors for asynchronous transmissions. Based on the framework, an optimal power compensation matrix is derived to make all of the subcarriers having the same ergodic performance. Another key contribution of the paper is that we propose a multi-rate F-OFDM system to enable low complexity low cost communication scenarios such as narrow band Internet of Things (IoT), at the cost of generating inter-subband-interference (ISubBI). Low computational complexity algorithms are proposed to cancel the ISubBI. The result shows that the derived analytical expressions match the simulation results, and the proposed ISubBI cancelation algorithms can significantly save the original F-OFDM complexity (up to 100 times) without significant performance los

    Feasibility Study of OFDM-MFSK Modulation Scheme for Smart Metering Technology

    Get PDF
    The Orthogonal Frequency Division Multiplexing based M-ary Frequency Shift Keying (OFDM-MFSK) is a noncoherent modulation scheme which merges MFSK with the OFDM waveform. It is designed to improve the receiver sensitivity in the hard environments where channel estimation is very difficult to perform. In this paper, the OFDM-MFSK is suggested for the smart metering technology and its performance is measured and compared with the ordinary OFDM-BPSK. Our results show that, depending on the MFSK size value (M), the Packet Error Rate (PER) has dramatically improved for OFDM-MFSK. Additionally, the adaptive OFDM-MFSK, which selects the best M value that gives the minimum PER and higher throughput for each Smart Meter (SM), has better coverage than OFDM-BPSK. Although its throughput and capacity are lower than OFDMBPSK, the connected SMs per sector are higher. Based on the smart metering technology requirements which imply the need for high coverage and low amount of data exchanged between the network and the SMs, The OFDM-MFSK can be efficiently used in this technology.Comment: 6 pages, 11 figures, ISGT Europe 201
    corecore