38 research outputs found

    Quaternionic 1-Factorizations and Complete Sets of Rainbow Spanning Trees

    Get PDF
    A 1-factorization F of a complete graph K2n is said to be G-regular, or regular under G, if G is an automorphism group of F acting sharply transitively on the vertex-set. The problem of determining which groups can realize such a situation dates back to a result by Hartman and Rosa (Eur J Comb 6:45–48, 1985) on cyclic groups and it is still open when n is even, although several classes of groups were tested in the recent past. It has been recently proved, see Rinaldi (Australas J Comb 80(2):178–196, 2021) and Mazzuoccolo et al. (Discret Math 342(4):1006–1016, 2019), that a G-regular 1-factorization, together with a complete set of rainbow spanning trees, exists for each group G of order 2n, n odd. The existence for each even n>2 was proved when either G is cyclic and n is not a power of 2, or when G is a dihedral group. Explicit constructions were given in all these cases. In this paper we extend this result and give explicit constructions when n>2 is even and G is either abelian but not cyclic, dicyclic, or a non cyclic 2-group with a cyclic subgroup of index 2

    Edge-disjoint rainbow trees in properly coloured complete graphs

    Get PDF
    A subgraph of an edge-coloured complete graph is called rainbow if all its edges have different colours. The study of rainbow decompositions has a long history, going back to the work of Euler on Latin squares. We discuss three problems about decomposing complete graphs into rainbow trees: the Brualdi-Hollingsworth Conjecture, Constantine’s Conjecture, and the Kaneko-Kano-Suzuki Conjecture. The main result which we discuss is that in every proper edge-colouring of Kn there are 10−6n edge-disjoint isomorphic spanning rainbow trees. This simultaneously improves the best known bounds on all these conjectures. Using our method it is also possible to show that every properly (n−1)-edge-coloured Kn has n/9 edge-disjoint spanning rainbow trees, giving a further improvement on the Brualdi-Hollingsworth Conjectur

    Linearly many rainbow trees in properly edge-coloured complete graphs

    Get PDF
    A subgraph of an edge-coloured complete graph is called rainbow if all its edges have different colours. The study of rainbow decompositions has a long history, going back to the work of Euler on Latin squares. In this paper we discuss three problems about decomposing complete graphs into rainbow trees: the Brualdi-Hollingsworth Conjecture, Constantine’s Conjecture, and the Kaneko-Kano-Suzuki Conjecture. We show that in every proper edge-colouring of Kn there are 10−6n edge-disjoint spanning isomorphic rainbow trees. This simultaneously improves the best known bounds on all these conjectures. Using our method we also show that every properly (n − 1)-edge-coloured Kn has n/9 − 6 edge-disjoint rainbow trees, giving further improvement on the Brualdi-Hollingsworth Conjectur

    Linearly many rainbow trees in properly edge-coloured complete graphs

    Get PDF
    A subgraph of an edge-coloured complete graph is called rainbow if all its edges have different colours. The study of rainbow decompositions has a long history, going back to the work of Euler on Latin squares. In this paper we discuss three problems about decomposing complete graphs into rainbow trees: the Brualdi-Hollingsworth Conjecture, Constantine’s Conjecture, and the Kaneko-Kano-Suzuki Conjecture. We show that in every proper edge-colouring of Kn there are 10−6n edge-disjoint spanning isomorphic rainbow trees. This simultaneously improves the best known bounds on all these conjectures. Using our method we also show that every properly (n − 1)-edge-coloured Kn has n/9 − 6 edge-disjoint rainbow trees, giving further improvement on the Brualdi-Hollingsworth Conjecture

    Tree Graphs and Orthogonal Spanning Tree Decompositions

    Get PDF
    Given a graph G, we construct T(G), called the tree graph of G. The vertices of T(G) are the spanning trees of G, with edges between vertices when their respective spanning trees differ only by a single edge. In this paper we detail many new results concerning tree graphs, involving topics such as clique decomposition, planarity, and automorphism groups. We also investigate and present a number of new results on orthogonal tree decompositions of complete graphs

    Decompositions into isomorphic rainbow spanning trees

    Get PDF
    A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct colours. Our main result implies that, given any optimal colouring of a sufficiently large complete graph K2nK_{2n}, there exists a decomposition of K2nK_{2n} into isomorphic rainbow spanning trees. This settles conjectures of Brualdi--Hollingsworth (from 1996) and Constantine (from 2002) for large graphs.Comment: Version accepted to appear in JCT
    corecore