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Abstract

A subgraph of an edge-coloured complete graph is called rainbow if all its edges
have different colours. The study of rainbow decompositions has a long history,
going back to the work of Euler on Latin squares. We discuss three problems
about decomposing complete graphs into rainbow trees: the Brualdi-Hollingsworth
Conjecture, Constantine’s Conjecture, and the Kaneko-Kano-Suzuki Conjecture.
The main result which we discuss is that in every proper edge-colouring of Kn there
are 10−6n edge-disjoint isomorphic spanning rainbow trees. This simultaneously
improves the best known bounds on all these conjectures. Using our method it is also
possible to show that every properly (n−1)-edge-coloured Kn has n/9 edge-disjoint
spanning rainbow trees, giving a further improvement on the Brualdi-Hollingsworth
Conjecture.

1 Introduction

We consider the following question: Can the edges of every properly edge-
coloured complete graph be decomposed into edge-disjoint rainbow spanning



trees. Here a properly edge-coloured complete graph Kn means an assignment
of colours to the edges of Kn so that no two edges at a vertex receive the same
colour. A rainbow spanning tree in Kn is a tree containing every vertes of Kn,
all of whose edges have different colours.

The study of rainbow decompositions dates back to the 18th century when
Euler studied the question “for which n does there exist a properly n-edge-
coloured Kn,n which can be decomposed into n edge-disjoint rainbow perfect
matchings 1 .” Euler constructed such proper n-edge-colourings of Kn,n when-
ever n 6≡ 2 (mod 4), and conjectured that these are the only values of n for
which they can exist. The n = 6 case of this conjecture is Euler’s famous “36
officers problem”, which was eventually proved by Tarry in 1901. For larger
n, Euler’s Conjecture was disproved in 1959 by Parker, Bose, and Shrikhande.
Together these results give a complete description of the values of n for which
there exists a properly n-edge-coloured Kn,n which can be decomposed into n
edge-disjoint rainbow perfect matchings.

Decompositions of properly (2n− 1)-edge-coloured K2n into edge-disjoint
rainbow perfect matchings have also been studied. They were introduced by
Room in 1955 2 , who raised the question of which n they exist for. Wallis
showed that such decompositions of K2n exist if, and only if, n 6= 2 or 4.
Rainbow perfect matching decompositions of both Kn,n and K2n have found
applications in scheduling tournaments and constructing experimental designs
(see eg [9].)

Euler and Room wanted to determine the values of n for which there exist
colourings of Kn,n or Kn with rainbow matching decompositions. However
given an arbitrary proper edge-colouring of Kn,n or Kn it is not the case that
it must have a decomposition into rainbow perfect matchings. A natural way
of getting around this is to consider decompositions into rainbow graphs other
than perfect matchings. In the past decompositions into rainbow subgraphs
such as cycles and triangle factors have been considered [7].

Here we consider decompositions into rainbow trees. In contrast to the
perfect matching case, it is believed that every properly edge coloured Kn

can be decomposed into edge-disjoint rainbow trees. This was conjectured by
three different sets of authors.

1 Euler studied the values of n for which a pair of n × n orthogonal Latin squares exists.
Using a standard argument, it is easy to show that n × n orthogonal Latin squares are
equivalent objects to rainbow perfect matching decompositions of Kn,n.
2 Room actually introduced objects which are now called “Room squares”. It is easy to
show that Room squares are equivalent objects to decompositions of (2n−1)-edge-coloured
K2n into edge-disjoint rainbow perfect matchings.



Conjecture 1.1 (Brualdi and Hollingsworth, [5]) Every properly (2n −
1)-edge-coloured K2n can be decomposed into edge-disjoint spanning rainbow
trees.

Conjecture 1.2 (Kaneko, Kano, and Suzuki, [13]) Every properly edge-
coloured Kn contains bn/2c edge-disjoint isomorphic spanning rainbow trees.

Conjecture 1.3 (Constantine, [8]) Every properly (2n − 1)-edge-coloured
K2n can be decomposed into edge-disjoint isomorphic spanning rainbow trees.

There are many partial results on the above conjectures. It is easy to see
that every properly coloured Kn contains a single rainbow tree—specifically
the star at any vertex will always be rainbow. Strengthening this, various
authors have shown that more disjoint trees exist under assumptions of Con-
jectures 1.1–1.3.

Brualdi and Hollingsworth [5] showed that every properly (2n−1)-coloured
K2n has 2 edge-disjoint spanning rainbow trees. Krussel, Marshall, and Ver-
rall [14] showed that there are 3 spanning rainbow trees under the same as-
sumption. Kaneko, Kano, and Suzuki [13] showed that 3 edge-disjoint span-
ning rainbow trees exist in any proper colouring of Kn (with any number of
colours.) Akbari and Alipour [1] showed that 2 edge-disjoint spanning rainbow
trees exist in any colouring of Kn with ≤ n/2 edges of each colour. Carraher,
Hartke, and Horn [6] showed that under the same assumption, bn/1000 log nc
edge-disjoint spanning rainbow trees exist. In particular this implies that ev-
ery properly coloured Kn has this many edge-disjoint spanning rainbow trees.
Horn [12] showed that there is an ε > 0 such that every (2n− 1)-coloured K2n

has εn edge-disjoint spanning rainbow trees. Subsequently, Fu, Lo, Perry, and
Rodger [11] showed that every (2n− 1)-coloured K2n has b

√
6m+ 9/3c edge-

disjoint spanning rainbow trees. For Conjecture 1.3, Fu and Lo [10] showed
that every (2n−1)-coloured K2n has 3 isomorphic edge-disjoint spannind trees.
In addition to these results, there has been a fair ammount of work showing
that edge-coloured complete graphs with certain specific colourings can be
decomposed into spanning rainbow trees (see eg [2,?]).

To summarize the best known results for these problems for large n: Horn
proved for the Brualdi-Hollingsworth Conjecture that εn edge-disjoint span-
ning rainbow trees exist. For the Kaneko-Kano-Suzuki Conjecture, Carraher,
Hartke, and Horn proved that bn/1000 log nc edge-disjoint spanning rainbow
trees exist. For Constantine’s Conjecture, Fu and Lo proved that 3 edge-
disjoint isomorphic spanning rainbow trees exist.

We are able to substantially improve the best known bounds for all three
conjectures. Define a t-spider to be a radius 2 tree with t degree 2 vertices (or



equivalently a tree obtained from a star by subdividing t of its edges once.)
In [16] we prove the following.

Theorem 1.4 Every properly coloured Kn contains 10−6n edge-disjoint span-
ning rainbow t-spiders for any 0.0007n ≤ t ≤ 0.2n.

Beyond improving the bounds on Conjectures 1.1–1.3, the above theorem
is qualitatively stronger than all of them. Firstly, the isomorphism class of
the spanning trees in Theorem 1.4 is independent of the colouring on Kn

(whereas Constantine’s Conjecture allows for such a dependency.) Addition-
ally Theorem 1.4 produces isomorphic spanning trees under a weaker assump-
tion than Constantine’s Conjecture (namely we do not specify that Kn is
(n− 1)-coloured.)

Balogh, Liu and Montgomery [4] independently proved the existence of
Ω(n) edge-disjoint spanning rainbow trees in every properly edge-colored Kn.

The method used in [16] to prove Theorem 1.4 is quite flexible. For any
one of the three conjectures, it is easy to modify the method to give a further
improvement on the 10−6n bound from Theorem 1.4. For example in [16] we
show that in the case of the Brualdi-Hollingsworth Conjecture one cover over
20% of the edges by spanning rainbow trees.

Theorem 1.5 Every properly (n− 1)-edge-coloured Kn has n/9 edge-disjoint
spanning rainbow trees.

2 Proof ideas

In this section we give a sketch of the proof of Theorem 1.4. Throughout the
section, we fix a properly coloured complete graph Kn and let m = 10−6n be
the number of edge-disjoint spiders we are trying to find.

Recall that a graphD is a t-spider if V (S) = {r, j1, . . . , jt, x1, . . . , xt, y1, . . . ,
y|S|−2t−1} with E(S) = {rj1, . . . , rjt} ∪ {ry1, . . . , ry|S|−2t−1} ∪ {j1x1, . . . , jtxt}.
The vertex r is called the root of the spider D. The vertices y1, . . . , y|S|−2t−1
are called ordinary leaves of the spider.

We say that a family of spiders D = {D1, . . . , Dm} is root-covering if the
root of Di is in V (Dj) for any i, j ∈ {1, . . . ,m}. The basic idea of the proof
of Theorem 1.4 is to first find a root-covering family of non-spanning, non-
isomorphic, spiders D = {D1, . . . , Dm}. Then, for each i, the spider Di is
modified into an spanning, isomorphic rainbow spider. The reason for consid-
ering root-covering families is that the roots are the highest degree vertices in
spiders. Because of this, they are intuitively the most difficult vertices to cover



in the spiders we are looking for. Thus in the proof we first find a family of
spiders which is root-covering, and then worry about making them spanning
and isomorphic.

The proof of Theorem 1.4 naturally splits into three parts:

(i) Find a root-covering family of large edge-disjoint rainbow spiders D1, . . . ,
Dm in Kn.

(ii) Modify the spiders from (1) into a root-covering family of spanning, edge-
disjoint, rainbow spiders D′1, . . . , D

′
m.

(iii) Modify the spiders from (2) into a root-covering family of spanning, edge-
disjoint, rainbow, isomorphic spiders D′′1 , . . . , D

′′
m.

Part (1) is the easiest part of the proof. To prove it, we first finding a
family of disjoint rainbow stars S1, . . . , Sm rooted at r1, . . . , rm in Kn. Then
by exchanging some edges between these stars, we obtain spiders D1, . . . , Dm

rooted at r1, . . . , rm which is root-covering.

Part (2) is the hardest part of the proof. It involves going through the
spiders D1, . . . , Dm from part (1) one by one and modifying them. For each i,
we modify Di into a spanning spider D′i with D′i edge disjoint from the spiders
D′1, . . . , D

′
i−1, Di+1, . . . , Dm and D′i having the same root as Di. In order to

describe which edges we can use in D′i, we make the following definition.

Definition 2.1 Let D = {D1, . . . , Dm} be a family of edge-disjoint spiders in
a coloured Kn. Let Di = Si∪D̂i where Si is the star consisting of the ordinary
leaves of Di. We let G(Di,D) denote the subgraph of Kn formed by deleting
the following:

• All the roots of the spiders D1, . . . , Di−1, Di+1, . . . , Dm.

• All the edges of the spiders D1, . . . , Di−1, Di+1, . . . , Dm.

• All edges sharing a colour with D̂i.

• All vertices of D̂i except the root.

The intuition behind this definition is that we can freely modify Di us-
ing edges from G(Di,D) without affecting the other spiders D1, . . . , Di−1,
Di+1, . . . , Dm. The following observation makes this precise.

Observation 1 Let D = {D1, . . . , Dm} be a family of rainbow spiders in a
coloured Kn. Let Di = Si ∪ D̂i where Si is the star consisting of the ordinary
leaves of Di. Then for any rainbow spider Ŝi in G(Di,D) with Si and Ŝi

having the same root, we have that Ŝi ∪ D̂i is a rainbow spider in Kn.

In addition if D was edge-disjoint and root-covering, then D\{Di}∪{Ŝi∪



D̂i} is edge-disjoint and root-covering.

A crucial feature of G(Di,D) is that it has high minimum degree.

Observation 2 For a family of spiders D = {D1, . . . , Dm} in a properly
coloured Kn with Di a t-spider we have δ(G(Di,D)) ≥ n− 3m− 4t− 1.

To solve (2) we consider the graph G(Di,D) for D = {D′1, . . . , D′i−1,
Di+1, . . . , Dm}. Using Observation 1 to solve (2) it is enough to find a span-
ning rainbow spider D′i in G(Di,D) having the same root as Di. From Ob-
servation 2 we know that G(Di,D) has high minimum degree. Thus, to solve
(2) it would be sufficient to show that “every properly coloured graph with
high minimum degree and a vertex r has a spanning rainbow spider rooted at
r.” Unfortunately this isn’t true since it is possible to have have a properly
coloured graph G with high minimum degree which has < |G|−1 colours (and
hence has no spanning rainbow tree.)

However, in a sense, “having too few colours” is the only barrier to finding
a spanning rainbow spider in a high minimum degree graph. In [16], we show
that as long as there are enough edges of colours not touching r, then it is
possible to find a spanning rainbow spider rooted at r in a high minimum
degree graph. This turns out to be sufficient to complete the proof of (2) since
it is possible to ensure that the graphs G(Di,D) have a lot of edges of colours
outsideDi. The details of this are somewhat complicated and explained in [16].

Part (3) is similar in spirit to part (2). It consists of going through the
spiders D′1, . . . , D

′
m one by one, and modifying D′i into a spanning spider D′′i

with D′′i edge disjoint from the spiders D′′1 , . . . , D
′′
i−1, D

′
i+1, . . . , D

′
m and D′′i

having the same root as D′i. We once again consider the graph G(D′i,D) for
D = {D′′1 , . . . , D′′i−1, D′i+1, . . . , D

′
m} and notice that it has high degree. Because

of this, to prove (3) it is sufficient to show that “in every properly coloured
graph G with high minimum degree and a spanning rainbow star S, there is a
spanning rainbow t-spider for suitable t.” This turns out to be true for t ≥ 3,
and is proved by replacing edges of D′i for suitable edges outside D′i.
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