6 research outputs found

    Spanners of Additively Weighted Point Sets

    Get PDF
    We study the problem of computing geometric spanners for (additively) weighted point sets. A weighted point set is a set of pairs (p,r)(p,r) where pp is a point in the plane and rr is a real number. The distance between two points (pi,ri)(p_i,r_i) and (pj,rj)(p_j,r_j) is defined as ∣pipj∣−ri−rj|p_ip_j|-r_i-r_j. We show that in the case where all rir_i are positive numbers and ∣pipj∣≥ri+rj|p_ip_j|\geq r_i+r_j for all i,ji,j (in which case the points can be seen as non-intersecting disks in the plane), a variant of the Yao graph is a (1+ϵ)(1+\epsilon)-spanner that has a linear number of edges. We also show that the Additively Weighted Delaunay graph (the face-dual of the Additively Weighted Voronoi diagram) has constant spanning ratio. The straight line embedding of the Additively Weighted Delaunay graph may not be a plane graph. We show how to compute a plane embedding that also has a constant spanning ratio

    Spanners of additively weighted point sets

    Get PDF
    AbstractWe study the problem of computing geometric spanners for (additively) weighted point sets. A weighted point set is a set of pairs (p,r) where p is a point in the plane and r is a real number. The distance between two points (pi,ri) and (pj,rj) is defined as |pipj|−ri−rj. We show that in the case where all ri are positive numbers and |pipj|⩾ri+rj for all i, j (in which case the points can be seen as non-intersecting disks in the plane), a variant of the Yao graph is a (1+ϵ)-spanner that has a linear number of edges. We also show that the Additively Weighted Delaunay graph (the face-dual of the Additively Weighted Voronoi diagram) has a spanning ratio bounded by a constant. The straight-line embedding of the Additively Weighted Delaunay graph may not be a plane graph. Given the Additively Weighted Delaunay graph, we show how to compute a plane straight-line embedding that also has a spanning ratio bounded by a constant in O(nlogn) time

    Fault-tolerant additive weighted geometric spanners

    Full text link
    Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance d_w(p, q) between two points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance between p and q. A graph G(S, E) is called a t-spanner for the additive weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.d_w(p, q) for a real number t > 1. Here, d_w(p,q) is the additive weighted distance between p and q. For some integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S' \subset S with cardinality at most k, the graph G \ S' is a t-spanner for the points in S \ S'. For any given real number \epsilon > 0, we obtain the following results: - When the points in S belong to Euclidean space R^d, an algorithm to compute a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w). Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between p and q in R^d. - When the points in S belong to a simple polygon P, for the metric space (S, d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here, for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along the shortest path between p and q in P. - When the points in SS lie on a terrain T, an algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges.Comment: a few update

    Spanners of Additively Weighted Point Sets

    No full text
    corecore