2 research outputs found

    Defect Prognostics Models for Spall Growth in Railroad Bearing Rolling Elements

    Get PDF
    Prevention of railroad bearing failures, which may lead to catastrophic derailments, is a central safety concern. Early detection of railway component defects, specifically bearing spalls, will improve overall system reliability by allowing proactive maintenance cycles rather than costly reactive replacement of failing components. A bearing health monitoring system will provide timely detection of flaws. However, absent a well verified model for defect propagation, detection can only be used to trigger an immediate component replacement. The development of such a model requires that the spall growth process be mapped out by accumulating associated signals generated by various size spalls. The addition of this information to an integrated health monitoring system will minimize operation disruption and maintain maximum accident prevention standards enabling timely and economical replacements of failing components. An earlier study done by the authors focused on bearing outer ring (cup) raceway defects. The developed model predicts that any cup raceway surface defect (i.e. spall) once reaching a critical size (spall area) will grow according to a linear correlation with mileage. The work presented here investigates spall growth within the inner rings (cones) of railroad bearings as a function of mileage. The data for this study were acquired from defective bearings that were run under various load and speed conditions utilizing specialized railroad bearing dynamic test rigs owned by the University Transportation Center for Railway Safety (UTCRS) at the University of Texas Rio Grande Valley (UTRGV). The experimental process is based on a testing cycle that allows continuous growth of railroad bearing defects until one of two conditions are met; either the defect is allowed to grow to a size that does not jeopardize the safe operation of the test rig, or the change in area of the spall is less than 10% of its previous size prior to the start of testing. The initial spall size is randomly distributed as it depends on the originating defect depth, size, and location on the rolling raceway. Periodic removal and disassembly of the railroad bearings was carried out for inspection and defect size measurement along with detailed documentation. Spalls were measured using optical techniques coupled with digital image analysis, as well as, with a manual coordinate measuring instrument with the resulting field of points manipulated in MatLabâ„¢. Castings were made of spalls using low-melting, zero-shrinkage bismuth-based alloys, so that a permanent record of the spall geometry and its growth history can be retained. The main result of this study is a preliminary model for spall growth, which can be coupled with bearing condition monitoring tools that will allow economical and effective scheduling of proactive maintenance cycles that aim to mitigate derailments, and reduce unnecessary train stoppages and associated costly delays on busy railways

    Prognostics Models for Railroad Tapered Roller Bearings with Spall Defects on Inner or Outer Rings

    Get PDF
    Rolling contact fatigue (RCF) is one of the major causes of failure in railroad bearings used in freight service. Subsurface inclusions resulting from impurities in the steel used to fabricate the bearings initiate subsurface fatigue cracks, which propagate upwards and cause spalling of the rolling surfaces. These spalls start small and propagate as continued operation induces additional crack formation and spalling. Studies have shown that the bearing temperature is not a good indicator of spall initiation. In many instances, the temperature of the bearing increases markedly only when the spall has spread across major portions of the raceway. In contrast, vibration signatures can be used to accurately detect spall initiation within a bearing and can track spall deterioration. No monitoring technique can indicate the growth rate of a spall or determine residual useful life. Hence, the main objective of this study is to develop reliable prognostic models for spall growth within railroad bearings that are based on actual service life testing rather than theoretical simulations. The data used to devise the models presented here were acquired from laboratory and field testing that started in 2010. Growth models are provided for spalls initiating on the bearing inner (cone) and outer (cup) rings. Coupling these prognostic models with a previously developed vibration-based bearing condition monitoring algorithm will provide the rail industry with an efficient tool that can be used to plan proactive maintenance schedules that will mitigate unnecessary and costly train stoppages and delays and will prevent catastrophic derailments
    corecore