10 research outputs found

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    Narrow band digital modulation for land mobile radio.

    Get PDF

    A small terminal for satellite communication systems

    Get PDF
    A small portable, low-cost satellite communications terminal system incorporating a modulator/demodulator and convolutional-Viterbi coder/decoder is described. Advances in signal processing and error-correction techniques in combination with higher power and higher frequencies aboard satellites allow for more efficient use of the space segment. This makes it possible to design small economical earth stations. The Advanced Communications Technology Satellite (ACTS) was chosen to test the system. ACTS, operating at the Ka band incorporates higher power, higher frequency, frequency and spatial reuse using spot beams and polarization

    The 30/20 GHz mixed user architecture development study

    Get PDF
    A mixed-user system is described which provides cost-effective communications services to a wide range of user terminal classes, ranging from one or two voice channel support in a direct-to-user mode, to multiple 500 mbps trunking channel support. Advanced satellite capabilities are utilized to minimize the cost of small terminals. In a system with thousands of small terminals, this approach results in minimum system cost

    Satellite fixed communications service: A forecast of potential domestic demand through the year 2000. Volume 3: Appendices

    Get PDF
    Voice applications, data applications, video applications, impacted baseline forecasts, market distribution model, net long haul forecasts, trunking earth station definition and costs, trunking space segment cost, trunking entrance/exit links, trunking network costs and crossover distances with terrestrial tariffs, net addressable forecasts, capacity requirements, improving spectrum utilization, satellite system market development, and the 30/20 net accessible market are considered

    30 GHz Path Loss Modeling and Performance Evaluation for Noncoherent M-ary Frequency Shift Keying in the 30 GHz Band

    Get PDF
    A candidate millimeter-wave (mmWave) frequency band and modulation scheme that could fit to many present and future applications has been presented in this work. As is being explored by industry, we also suggest the 30 GHz band as a candidate carrier frequency and non-coherent frequency shift keying (NC-FSK) as a potential modulation scheme for future communication applications. The primary applications are aimed at 5th generation (5G) cellular type systems. Propagation measurements were conducted for outdoor and indoor environments using directional horn antennas for both co-polarized and cross-polarized antenna configurations to model the path loss for our candidate band. The measurements were conducted in typical line-of-sight (LOS) and non-LOS (NLOS) environments in a large building on the University of South Carolina campus, specifically at Swearingen Engineering Center. Several propagation path loss (PL) models are presented based upon this collected data. We can use these PL models in link budgets for estimating transmit power, antenna gains, receiver characteristics (e.g., noise figure), and link distances. The measurements also contribute to the body of knowledge on wireless channel propagation path loss for bands near 30 GHz. Another measurement campaign was also conducted at the USC campus to measure a unique and complicated vegetation attenuation that may be considered a large challenge to mmWave systems. Radio wave attenuation and depolarization effects through several broadleaf evergreen shrubs at 31 GHz are reported, based upon measurements. To obtain a comparative reference for this mmWave attenuation, another measurement was also conducted at 5 GHz. From these measurements, we analyzed the proportional relationships between the attenuation and the shrub density (related to species), depth, and measurement geometry. Three different shrub species with different densities and depths, and for different measurement geometries, were employed. Results are in terms of measured specific attenuations at 31 GHz鈥攖he attenuation in dB/m. These will also be useful for link budget design, and outdoor and outdoor-indoor models for future mmWave communication. For our 5G modulation scheme candidate, we evaluate its performance at 31 GHz via an empirical 3-D mmWave channel simulator: the NYUSIM channel model. As with all digital communication systems, performance is measured in terms of error ratios, and we evaluate the bit error rate (BER) performance of NC-FSK for different symbol rates over a variety of wireless mmWave channels. The NC-FSK scheme is known to be energy efficient for large alphabet size, and this is one of its virtues. Another is that since it is a form of FM, nonlinear amplification (far less costly than linear amplification) can be used. The performance evaluations enable us to present enhancements and trade-offs that can be done to improve the system performance by adjustment of the design parameters, i.e., modulation alphabet size and symbol rate, which together determine bandwidth (BW)

    The payload/shuttle-data-communication-link handbook

    Get PDF
    Communication links between the Orbiter, payloads, and ground are described: end-to-end, hardline, S-band, Ku-band, TDRSS relay, waveforms, premodulation, subcarrier modulation, carrier modulation, transmitter power, antennas, the RF channel, system noise, received signal-to-noise spectral density, carrier-tracking loop, carrier demodulation, subcarrier demodulation, digital data detection, digital data decoding, and tandem link considerations

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    Space-time block coding for noncoherently detected CPFSK

    No full text
    In this paper the problem of unitary rate space-time block coding for multiple-input multiple-output communication systems employing continuous phase frequency shift keying is investigated. First, the problem of optimal codeword by codeword noncoherent detection is analysed; then, design criteria for optimal space-time block codes are proposed and some novel coding schemes are devised. Simulation results evidence that the proposed schemes can efficiently exploit spatial diversity and that their use can entail a limited energy loss with respect to other solutions available in the technical literature for coherent systems, with the substantial advantage, however, of a simple detection algorithm
    corecore