40,714 research outputs found

    Space-time balancing domain decomposition

    Get PDF
    No separate or additional fees are collected for access to or distribution of the work.In this work, we propose two-level space-time domain decomposition preconditioners for parabolic problems discretized using finite elements. They are motivated as an extension to space-time of balancing domain decomposition by constraints preconditioners. The key ingredients to be defined are the subassembled space and operator, the coarse degrees of freedom (DOFs) in which we want to enforce continuity among subdomains at the preconditioner level, and the transfer operator from the subassembled to the original finite element space. With regard to the subassembled operator, a perturbation of the time derivative is needed to end up with a well-posed preconditioner. The set of coarse DOFs includes the time average (at the space-time subdomain) of classical space constraints plus new constraints between consecutive subdomains in time. Numerical experiments show that the proposed schemes are weakly scalable in time, i.e., we can efficiently exploit increasing computational resources to solve more time steps in the same total elapsed time. Further, the scheme is also weakly space-time scalable, since it leads to asymptotically constant iterations when solving larger problems both in space and time. Excellent wall clock time weak scalability is achieved for space-time parallel solvers on some thousands of coresPeer ReviewedPostprint (published version

    Balancing domain decomposition by constraints and perturbation

    Get PDF
    In this paper, we formulate and analyze a perturbed formulation of the balancing domain decomposition by constraints (BDDC) method. We prove that the perturbed BDDC has the same polylogarithmic bound for the condition number as the standard formulation. Two types of properly scaled zero-order perturbations are considered: one uses a mass matrix, and the other uses a Robin-type boundary condition, i.e, a mass matrix on the interface. With perturbation, the wellposedness of the local Neumann problems and the global coarse problem is automatically guaranteed, and coarse degrees of freedom can be defined only for convergence purposes but not well-posedness. This allows a much simpler implementation as no complicated corner selection algorithm is needed. Minimal coarse spaces using only face or edge constraints can also be considered. They are very useful in extreme scale calculations where the coarse problem is usually the bottleneck that can jeopardize scalability. The perturbation also adds extra robustness as the perturbed formulation works even when the constraints fail to eliminate a small number of subdomain rigid body modes from the standard BDDC space. This is extremely important when solving problems on unstructured meshes partitioned by automatic graph partitioners since arbitrary disconnected subdomains are possible. Numerical results are provided to support the theoretical findings.Peer ReviewedPostprint (published version
    • …
    corecore