27,557 research outputs found

    Faster Clustering via Preprocessing

    Full text link
    We examine the efficiency of clustering a set of points, when the encompassing metric space may be preprocessed in advance. In computational problems of this genre, there is a first stage of preprocessing, whose input is a collection of points MM; the next stage receives as input a query set QMQ\subset M, and should report a clustering of QQ according to some objective, such as 1-median, in which case the answer is a point aMa\in M minimizing qQdM(a,q)\sum_{q\in Q} d_M(a,q). We design fast algorithms that approximately solve such problems under standard clustering objectives like pp-center and pp-median, when the metric MM has low doubling dimension. By leveraging the preprocessing stage, our algorithms achieve query time that is near-linear in the query size n=Qn=|Q|, and is (almost) independent of the total number of points m=Mm=|M|.Comment: 24 page

    Distance Oracles for Time-Dependent Networks

    Full text link
    We present the first approximate distance oracle for sparse directed networks with time-dependent arc-travel-times determined by continuous, piecewise linear, positive functions possessing the FIFO property. Our approach precomputes (1+ϵ)(1+\epsilon)-approximate distance summaries from selected landmark vertices to all other vertices in the network. Our oracle uses subquadratic space and time preprocessing, and provides two sublinear-time query algorithms that deliver constant and (1+σ)(1+\sigma)-approximate shortest-travel-times, respectively, for arbitrary origin-destination pairs in the network, for any constant σ>ϵ\sigma > \epsilon. Our oracle is based only on the sparsity of the network, along with two quite natural assumptions about travel-time functions which allow the smooth transition towards asymmetric and time-dependent distance metrics.Comment: A preliminary version appeared as Technical Report ECOMPASS-TR-025 of EU funded research project eCOMPASS (http://www.ecompass-project.eu/). An extended abstract also appeared in the 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014, track-A

    Best of Two Local Models: Local Centralized and Local Distributed Algorithms

    Full text link
    We consider two models of computation: centralized local algorithms and local distributed algorithms. Algorithms in one model are adapted to the other model to obtain improved algorithms. Distributed vertex coloring is employed to design improved centralized local algorithms for: maximal independent set, maximal matching, and an approximation scheme for maximum (weighted) matching over bounded degree graphs. The improvement is threefold: the algorithms are deterministic, stateless, and the number of probes grows polynomially in logn\log^* n, where nn is the number of vertices of the input graph. The recursive centralized local improvement technique by Nguyen and Onak~\cite{onak2008} is employed to obtain an improved distributed approximation scheme for maximum (weighted) matching. The improvement is twofold: we reduce the number of rounds from O(logn)O(\log n) to O(logn)O(\log^*n) for a wide range of instances and, our algorithms are deterministic rather than randomized

    Amorphous Placement and Retrieval of Sensory Data in Sparse Mobile Ad-Hoc Networks

    Full text link
    Abstract—Personal communication devices are increasingly being equipped with sensors that are able to passively collect information from their surroundings – information that could be stored in fairly small local caches. We envision a system in which users of such devices use their collective sensing, storage, and communication resources to query the state of (possibly remote) neighborhoods. The goal of such a system is to achieve the highest query success ratio using the least communication overhead (power). We show that the use of Data Centric Storage (DCS), or directed placement, is a viable approach for achieving this goal, but only when the underlying network is well connected. Alternatively, we propose, amorphous placement, in which sensory samples are cached locally and informed exchanges of cached samples is used to diffuse the sensory data throughout the whole network. In handling queries, the local cache is searched first for potential answers. If unsuccessful, the query is forwarded to one or more direct neighbors for answers. This technique leverages node mobility and caching capabilities to avoid the multi-hop communication overhead of directed placement. Using a simplified mobility model, we provide analytical lower and upper bounds on the ability of amorphous placement to achieve uniform field coverage in one and two dimensions. We show that combining informed shuffling of cached samples upon an encounter between two nodes, with the querying of direct neighbors could lead to significant performance improvements. For instance, under realistic mobility models, our simulation experiments show that amorphous placement achieves 10% to 40% better query answering ratio at a 25% to 35% savings in consumed power over directed placement.National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 0202067

    Planar Visibility: Testing and Counting

    Full text link
    In this paper we consider query versions of visibility testing and visibility counting. Let SS be a set of nn disjoint line segments in R2\R^2 and let ss be an element of SS. Visibility testing is to preprocess SS so that we can quickly determine if ss is visible from a query point qq. Visibility counting involves preprocessing SS so that one can quickly estimate the number of segments in SS visible from a query point qq. We present several data structures for the two query problems. The structures build upon a result by O'Rourke and Suri (1984) who showed that the subset, VS(s)V_S(s), of R2\R^2 that is weakly visible from a segment ss can be represented as the union of a set, CS(s)C_S(s), of O(n2)O(n^2) triangles, even though the complexity of VS(s)V_S(s) can be Ω(n4)\Omega(n^4). We define a variant of their covering, give efficient output-sensitive algorithms for computing it, and prove additional properties needed to obtain approximation bounds. Some of our bounds rely on a new combinatorial result that relates the number of segments of SS visible from a point pp to the number of triangles in sSCS(s)\bigcup_{s\in S} C_S(s) that contain pp.Comment: 22 page

    Hierarchical Time-Dependent Oracles

    Get PDF
    We study networks obeying \emph{time-dependent} min-cost path metrics, and present novel oracles for them which \emph{provably} achieve two unique features: % (i) \emph{subquadratic} preprocessing time and space, \emph{independent} of the metric's amount of disconcavity; % (ii) \emph{sublinear} query time, in either the network size or the actual Dijkstra-Rank of the query at hand

    A Local Computation Approximation Scheme to Maximum Matching

    Full text link
    We present a polylogarithmic local computation matching algorithm which guarantees a (1-\eps)-approximation to the maximum matching in graphs of bounded degree.Comment: Appears in Approx 201
    corecore