6 research outputs found

    Pushdown automata and constant height: Decidability and bounds: Extended abstract

    Get PDF
    It cannot be decided whether a pushdown automaton accepts using constant pushdown height, with respect to the input length, or not. Furthermore, in the case of acceptance in constant height, the height cannot be bounded by any recursive function in the size of the description of the machine. In contrast, in the restricted case of pushdown automata over a one-letter input alphabet, i.e., unary pushdown automata, the above property becomes decidable. Moreover, if the height is bounded by a constant in the input length, then it is at most exponential with respect to the size of the description of the pushdown automaton. This bound cannot be reduced. Finally, if a unary pushdown automaton uses nonconstant height to accept, then the height should grow at least as the logarithm of the input length. This bound is optimal

    One-Tape Turing Machine Variants and Language Recognition

    Full text link
    We present two restricted versions of one-tape Turing machines. Both characterize the class of context-free languages. In the first version, proposed by Hibbard in 1967 and called limited automata, each tape cell can be rewritten only in the first dd visits, for a fixed constant d≥2d\geq 2. Furthermore, for d=2d=2 deterministic limited automata are equivalent to deterministic pushdown automata, namely they characterize deterministic context-free languages. Further restricting the possible operations, we consider strongly limited automata. These models still characterize context-free languages. However, the deterministic version is less powerful than the deterministic version of limited automata. In fact, there exist deterministic context-free languages that are not accepted by any deterministic strongly limited automaton.Comment: 20 pages. This article will appear in the Complexity Theory Column of the September 2015 issue of SIGACT New

    Nondeterministic one-tape off-line Turing machines and their time complexity

    Full text link
    In this paper we consider the time and the crossing sequence complexities of one-tape off-line Turing machines. We show that the running time of each nondeterministic machine accepting a nonregular language must grow at least as n\log n, in the case all accepting computations are considered (accept measure). We also prove that the maximal length of the crossing sequences used in accepting computations must grow at least as \log n. On the other hand, it is known that if the time is measured considering, for each accepted string, only the faster accepting computation (weak measure), then there exist nonregular languages accepted in linear time. We prove that under this measure, each accepting computation should exhibit a crossing sequence of length at least \log\log n. We also present efficient implementations of algorithms accepting some unary nonregular languages.Comment: 18 pages. The paper will appear on the Journal of Automata, Languages and Combinatoric

    Passively mobile communicating machines that use restricted space

    Get PDF
    We propose a new theoretical model for passively mobile Wireless Sensor Networks, called PM, standing for Passively mobile Machines. The main modification w.r.t. the Population Protocol model [Angluin et al. 2006] is that the agents now, instead of being automata, are Turing Machines. We provide general definitions for unbounded memories, but we are mainly interested in computations upper-bounded by plausible space limitations. However, we prove that our results hold for more general cases. We focus on complete interaction graphs and define the complexity classes PM-SPACE(f(n)) parametrically, consisting of all predicates that are stably computable by some PM protocol that uses O(f(n)) memory in each agent. We provide a protocol that generates unique identifiers from scratch only by using O(log n) memory, and use it to provide an exact characterization of the classes PMSPACE(f(n)) when f(n) = Ω(log n): they are precisely the classes of all symmetric predicates in NSPACE(nf(n)). As a consequence, we obtain a space hierarchy of the PM model when the memory bounds are Ω(log n). Finally, we establish that the minimal space requirement for the computation of non-semilinear predicates is O(log log n). © 2011 ACM.FOM

    Sublogarithmic bounds on space and reversals

    Get PDF
    The complexity measure under consideration is SPACE x REVERSALS for Turing machines that are able to branch both existentially and universally. We show that, for any function h(n) between log log n and log n, Pi(1) SPACE x REVERSALS(h(n)) is separated from Sigma(1)SPACE x REVERSALS(h(n)) as well as from co Sigma(1)SPACE x REVERSALS(h(n)), for middle, accept, and weak modes of this complexity measure. This also separates determinism from the higher levels of the alternating hierarchy. For "well-behaved" functions h(n) between log log n and log n, almost all of the above separations can be obtained by using unary witness languages. In addition, the construction of separating languages contributes to the research on minimal resource requirements for computational devices capable of recognizing nonregular languages. For any (arbitrarily slow growing) unbounded monotone recursive function f(n), a nonregular unary language is presented that can be accepted by a middle Pi(1) alternating Turing machine in s(n) space and i(n) input head reversals, with s(n) . i(n) is an element of O(log log n . f(n)). Thus, there is no exponential gap for the optimal lower bound on the product s(n) . i(n) between unary and general nonregular language acceptance-in sharp contrast with the one-way case

    REGULAR LANGUAGES: TO FINITE AUTOMATA AND BEYOND - SUCCINCT DESCRIPTIONS AND OPTIMAL SIMULATIONS

    Get PDF
    \uc8 noto che i linguaggi regolari \u2014 o di tipo 3 \u2014 sono equivalenti agli automi a stati finiti. Tuttavia, in letteratura sono presenti altre caratterizzazioni di questa classe di linguaggi, in termini di modelli riconoscitori e grammatiche. Per esempio, limitando le risorse computazionali di modelli pi\uf9 generali, quali grammatiche context-free, automi a pila e macchine di Turing, che caratterizzano classi di linguaggi pi\uf9 ampie, \ue8 possibile ottenere modelli che generano o riconoscono solamente i linguaggi regolari. I dispositivi risultanti forniscono delle rappresentazioni alternative dei linguaggi di tipo 3, che, in alcuni casi, risultano significativamente pi\uf9 compatte rispetto a quelle dei modelli che caratterizzano la stessa classe di linguaggi. Il presente lavoro ha l\u2019obiettivo di studiare questi modelli formali dal punto di vista della complessit\ue0 descrizionale, o, in altre parole, di analizzare le relazioni tra le loro dimensioni, ossia il numero di simboli utilizzati per specificare la loro descrizione. Sono presentati, inoltre, alcuni risultati connessi allo studio della famosa domanda tuttora aperta posta da Sakoda e Sipser nel 1978, inerente al costo, in termini di numero di stati, per l\u2019eliminazione del nondeterminismo dagli automi stati finiti sfruttando la capacit\ue0 degli automi two-way deterministici di muovere la testina avanti e indietro sul nastro di input.It is well known that regular \u2014 or type 3 \u2014 languages are equivalent to finite automata. Nevertheless, many other characterizations of this class of languages in terms of computational devices and generative models are present in the literature. For example, by suitably restricting more general models such as context-free grammars, pushdown automata, and Turing machines, that characterize wider classes of languages, it is possible to obtain formal models that generate or recognize regular languages only. The resulting formalisms provide alternative representations of type 3 languages that may be significantly more concise than other models that share the same expressing power. The goal of this work is to investigate these formal systems from a descriptional complexity perspective, or, in other words, to study the relationships between their sizes, namely the number of symbols used to write down their descriptions. We also present some results related to the investigation of the famous question posed by Sakoda and Sipser in 1978, concerning the size blowups from nondeterministic finite automata to two-way deterministic finite automata
    corecore