7 research outputs found

    Unsupervised Emergence of Egocentric Spatial Structure from Sensorimotor Prediction

    Get PDF
    Despite its omnipresence in robotics application, the nature of spatial knowledgeand the mechanisms that underlie its emergence in autonomous agents are stillpoorly understood. Recent theoretical works suggest that the Euclidean structure ofspace induces invariants in an agent’s raw sensorimotor experience. We hypothesizethat capturing these invariants is beneficial for sensorimotor prediction and that,under certain exploratory conditions, a motor representation capturing the structureof the external space should emerge as a byproduct of learning to predict futuresensory experiences. We propose a simple sensorimotor predictive scheme, applyit to different agents and types of exploration, and evaluate the pertinence of thesehypotheses. We show that a naive agent can capture the topology and metricregularity of its sensor’s position in an egocentric spatial frame without any a prioriknowledge, nor extraneous supervision

    Body models in humans, animals, and robots: mechanisms and plasticity

    Full text link
    Humans and animals excel in combining information from multiple sensory modalities, controlling their complex bodies, adapting to growth, failures, or using tools. These capabilities are also highly desirable in robots. They are displayed by machines to some extent - yet, as is so often the case, the artificial creatures are lagging behind. The key foundation is an internal representation of the body that the agent - human, animal, or robot - has developed. In the biological realm, evidence has been accumulated by diverse disciplines giving rise to the concepts of body image, body schema, and others. In robotics, a model of the robot is an indispensable component that enables to control the machine. In this article I compare the character of body representations in biology with their robotic counterparts and relate that to the differences in performance that we observe. I put forth a number of axes regarding the nature of such body models: fixed vs. plastic, amodal vs. modal, explicit vs. implicit, serial vs. parallel, modular vs. holistic, and centralized vs. distributed. An interesting trend emerges: on many of the axes, there is a sequence from robot body models, over body image, body schema, to the body representation in lower animals like the octopus. In some sense, robots have a lot in common with Ian Waterman - "the man who lost his body" - in that they rely on an explicit, veridical body model (body image taken to the extreme) and lack any implicit, multimodal representation (like the body schema) of their bodies. I will then detail how robots can inform the biological sciences dealing with body representations and finally, I will study which of the features of the "body in the brain" should be transferred to robots, giving rise to more adaptive and resilient, self-calibrating machines.Comment: 27 pages, 8 figure

    Space as an invention of active agents

    Get PDF
    The question of the nature of space around us has occupied thinkers since the dawn of humanity, with scientists and philosophers today implicitly assuming that space is something that exists objectively. Here we show that this does not have to be the case: the notion of space could emerge when biological organisms seek an economic representation of their sensorimotor flow. The emergence of spatial notions does not necessitate the existence of real physical space, but only requires the presence of sensorimotor invariants called 'compensable' sensory changes. We show mathematically and then in simulations that naive agents making no assumptions about the existence of space are able to learn these invariants and to build the abstract notion that physicists call rigid displacement, independent of what is being displaced. Rigid displacements may underly perception of space as an unchanging medium within which objects are described by their relative positions. Our findings suggest that the question of the nature of space, currently exclusive to philosophy and physics, should also be addressed from the standpoint of neuroscience and artificial intelligence
    corecore