6 research outputs found

    Space Efficient Algorithms for Breadth-Depth Search

    Full text link
    Continuing the recent trend, in this article we design several space-efficient algorithms for two well-known graph search methods. Both these search methods share the same name {\it breadth-depth search} (henceforth {\sf BDS}), although they work entirely in different fashion. The classical implementation for these graph search methods takes O(m+n)O(m+n) time and O(nlgโกn)O(n \lg n) bits of space in the standard word RAM model (with word size being ฮ˜(lgโกn)\Theta(\lg n) bits), where mm and nn denotes the number of edges and vertices of the input graph respectively. Our goal here is to beat the space bound of the classical implementations, and design o(nlgโกn)o(n \lg n) space algorithms for these search methods by paying little to no penalty in the running time. Note that our space bounds (i.e., with o(nlgโกn)o(n \lg n) bits of space) do not even allow us to explicitly store the required information to implement the classical algorithms, yet our algorithms visits and reports all the vertices of the input graph in correct order.Comment: 12 pages, This work will appear in FCT 201

    Fast Breadth-First Search in Still Less Space

    Full text link
    It is shown that a breadth-first search in a directed or undirected graph with nn vertices and mm edges can be carried out in O(n+m)O(n+m) time with nlogโก23+O((logโกn)2)n\log_2 3+O((\log n)^2) bits of working memory

    Succinct Data Structures for Families of Interval Graphs

    Full text link
    We consider the problem of designing succinct data structures for interval graphs with nn vertices while supporting degree, adjacency, neighborhood and shortest path queries in optimal time in the ฮ˜(logโกn)\Theta(\log n)-bit word RAM model. The degree query reports the number of incident edges to a given vertex in constant time, the adjacency query returns true if there is an edge between two vertices in constant time, the neighborhood query reports the set of all adjacent vertices in time proportional to the degree of the queried vertex, and the shortest path query returns a shortest path in time proportional to its length, thus the running times of these queries are optimal. Towards showing succinctness, we first show that at least nlogโกnโˆ’2nlogโกlogโกnโˆ’O(n)n\log{n} - 2n\log\log n - O(n) bits are necessary to represent any unlabeled interval graph GG with nn vertices, answering an open problem of Yang and Pippenger [Proc. Amer. Math. Soc. 2017]. This is augmented by a data structure of size nlogโกn+O(n)n\log{n} +O(n) bits while supporting not only the aforementioned queries optimally but also capable of executing various combinatorial algorithms (like proper coloring, maximum independent set etc.) on the input interval graph efficiently. Finally, we extend our ideas to other variants of interval graphs, for example, proper/unit interval graphs, k-proper and k-improper interval graphs, and circular-arc graphs, and design succinct/compact data structures for these graph classes as well along with supporting queries on them efficiently

    ๊ณต๊ฐ„ ํšจ์œจ์ ์ธ ๊ทธ๋ž˜ํ”„ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. Satti, Srinivasa Rao.Various graphs from social networks or big data may contain gigantic data. Searching such graph requires memory scaling with graph. Asano et al. ISAAC (2014) initiated the study of space e๏ฌƒcient graph algorithms, and proposed algorithms for DFS and some applications using sub-linear space which take slightly more than linear time. Banerjee et al. ToCS 62(8), 1736-1762 (2018) proposed space e๏ฌƒcient graph algorithms based on read-only memory(ROM) model. Given a graph G with n vertices and m edges, their BFS algorithm spends O(m + n) time using 2n + o(n) bits. The space usage is further improved to nlg3 + o(n) bits with O(mlgn f(n)) time, where f(n) is extremely slow growing function of n. For DFS, their algorithm takes O(m + n) time using O(mlg(m/n)). Chakraborty et al. ESA (2018) introduced in-place model. The notion of in-place model is to relax the read-only restriction of ROM model to improve the space usage of ROM model. Algorithms based on in-place model improve space usage exponentially, to O(lgn) bits, at the expense of slower runtime. In this thesis, we focus on exploring proposed space e๏ฌƒcient graph algorithms of ROM model and in-place model in detail and evaluate performance of those algorithms. We implemented almost all the best-known space-efficient algorithms for BFS and DFS, and evaluated their performance. Along the way, we also implemented several space-e๏ฌƒcient data structures for representing bit vectors, strings, dictionaries etc.์†Œ์…œ ๋„คํŠธ์›Œํฌ๋‚˜ ๋น… ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ๋œ ๋‹ค์–‘ํ•œ ๊ทธ๋ž˜ํ”„๋“ค์€ ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ๋ฐ์ดํ„ฐ๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ทธ๋ž˜ํ”„๋ฅผ ํƒ์ƒ‰ํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ทธ๋ž˜ํ”„์˜ ํฌ๊ธฐ์— ๋น„๋ก€ํ•˜์—ฌ ํ•„์š”ํ•œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์šฉ๋Ÿ‰์ด ๋Š˜์–ด๋‚œ๋‹ค. Asano ๋“ฑ(ISAAC (2014))์€ ๊ณต๊ฐ„ ํšจ์œจ์  ๊ทธ๋ž˜ํ”„ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์—ฐ๊ตฌ๋ฅผ ๊ฐœ์‹œํ–ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์„ ํ˜•์  ์‹œ๊ฐ„๋ณด๋‹ค ์•ฝ๊ฐ„ ๋” ๊ฑธ๋ฆฌ๋Š” ๋Œ€์‹  ์ €์„ ํ˜•์  ๊ณต๊ฐ„์„ ์‚ฌ์šฉํ•˜๋Š” DFS ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ํ™œ์šฉ ๋ฐฉ์•ˆ๋“ค์ด ์ œ์•ˆ๋๋‹ค. Banerjee ๋“ฑ(ToCS 62(8), 1736-1762 (2018))์€ ROM ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๊ณต๊ฐ„ ํšจ์œจ์ ์ธ ๊ทธ๋ž˜ํ”„ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์„ ์ œ์•ˆํ–ˆ๋‹ค. ๊ทธ๋ž˜ํ”„ G์˜ n๊ฐœ์˜ ์ •์ ๊ณผ m๊ฐœ์˜ ๊ฐ„์„ ์ด ์ฃผ์–ด์กŒ์„ ๋•Œ, O(m + n)์˜ ์‹œ๊ฐ„๊ณผ 2n + o(n) ์˜ ๋น„ํŠธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” BFS๊ฐ€ ์ œ์•ˆ๋๊ณ , f(n)์„ n์— ๋น„๋ก€ํ•ด์„œ ๋งค์šฐ ๋Š๋ฆฌ๊ฒŒ ์ปค์ง€๋Š” ํ•จ์ˆ˜๋ผ๊ณ  ํ–ˆ์„ ๋•Œ, O(mlgnf(n))์˜ ์‹œ๊ฐ„๊ณผ nlg3 + o(n)์˜ ๋น„ํŠธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ œ์•ˆ๋๋‹ค. DFS์˜ ๊ฒฝ์šฐ, O(m + n)์˜ ์‹œ๊ฐ„๊ณผ O(mlg m n )์˜ ๋น„ํŠธ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ œ์•ˆ๋๋‹ค. Chakraborty ๋“ฑ(ESA (2018))์€ ROM ๋ชจ๋ธ์ด ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ํ•œ๊ณ„์ ์„ ๋„˜๊ธฐ ์œ„ํ•ด ROM ๋ชจ๋ธ์˜ ์ œํ•œ์ ์„ ์™„ํ™”์‹œํ‚ค๋Š” in-place ๋ชจ๋ธ์„ ์†Œ๊ฐœํ–ˆ๋‹ค. In-place ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ n + O(lgn)์˜ ๋น„ํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ BFS์™€ DFS๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๊ณ , ์ถ”๊ฐ€์ ์œผ๋กœ ๋” ๊ธด ์‹œ๊ฐ„์„ ์†Œ์š”ํ•˜์—ฌ O(lgn) ๋น„ํŠธ์˜ ๊ณต๊ฐ„๋งŒ์œผ๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ROM ๋ชจ๋ธ๊ณผ in-place ๋ชจ๋ธ์—์„œ ์ œ์•ˆ๋œ ๋‹ค์–‘ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์„ ์—ฐ๊ตฌ ๋ฐ ๊ตฌํ˜„ํ•˜๊ณ  ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์ด๋“ค ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ˆ˜ํ–‰ ๊ฒฐ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•œ๋‹ค.Abstract i Contents iii List of Figures v List of Tables vi Chapter 1 Introduction 1 1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Organization of the Paper . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2 Preliminaries 4 2.1 ROM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 In-place Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Succinct Data Structure . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 Changing Base Without Losing Space . . . . . . . . . . . . . . . 6 2.5 Dictionaries With Findany Operation . . . . . . . . . . . . . . . 7 Chapter 3 Breadth First Search 9 3.1 ROM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Rotate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Implicit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 iii Chapter 4 Depth First Search 14 4.1 ROM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Rotate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Implicit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Chapter 5 Experimental Results 22 5.1 BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 DFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Chapter 6 Conclusion 40 ์š”์•ฝ 46 Acknowledgements 47Maste
    corecore