

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Performance evaluation of space efficient graph

algorithms

공간 효율적인 그래프 알고리즘의 성능 분석

FEBRUARY 2019

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Yeonil Yoo

M.S. THESIS

Performance evaluation of space efficient graph

algorithms

공간 효율적인 그래프 알고리즘의 성능 분석

FEBRUARY 2019

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Yeonil Yoo

Performance evaluation of space efficient graph

algorithms

공간 효율적인 그래프 알고리즘의 성능 분석

지도교수 Srinivasa Rao Satti

이 논문을 공학석사학위논문으로 제출함

2018 년 10 월

서울대학교 대학원

컴퓨터 공학부

유 연 일

유연일의 석사학위논문을 인준함

2018 년 12 월

위 원 장 김 선 (인)

부위원장 Srinivasa Rao Satti (인)

위 원 Bernhard Egger (인)

Abstract

Performance evaluation of space efficient

graph algorithms

Yeonil Yoo

Department of Computer Science and Engineering

Collage of Engineering

The Graduate School

Seoul National University

Various graphs from social networks or big data may contain gigantic data.

Searching such graph requires memory scaling with graph. Asano et al. ISAAC

(2014) initiated the study of space efficient graph algorithms, and proposed

algorithms for DFS and some applications using sub-linear space which take

slightly more than linear time. Banerjee et al. ToCS 62(8), 1736-1762 (2018)

proposed space efficient graph algorithms based on read-only memory(ROM)

model. Given a graph G with n vertices and m edges, their BFS algorithm

spends O(m + n) time using 2n + o(n) bits. The space usage is further im-

proved to n lg 3 + o(n) bits with O(m lg nf(n)) time, where f(n) is extremely

slow growing function of n. For DFS, their algorithm takes O(m+ n) time us-

ing O(m lg m
n). Chakraborty et al. ESA (2018) introduced in-place model. The

notion of in-place model is to relax the read-only restriction of ROM model to

improve the space usage of ROM model. Algorithms based on in-place model

improve space usage exponentially, to O(lg n) bits, at the expense of slower

runtime. In this thesis, we focus on exploring proposed space efficient graph al-

gorithms of ROM model and in-place model in detail and evaluate performance

of those algorithms. We implemented almost all the best-known space-efficient

i

algorithms for BFS and DFS, and evaluated their performance. Along the way,

we also implemented several space-efficient data structures for representing bit

vectors, strings, dictionaries etc.

Keywords: Depth first search, Breadth first search, space efficient graph algo-

rithms

Student Number: 2015-22905

ii

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vi

Chapter 1 Introduction 1

1.1 Related Work . 2

1.2 Organization of the Paper . 2

Chapter 2 Preliminaries 4

2.1 ROM Model . 4

2.2 In-place Model . 5

2.3 Succinct Data Structure . 6

2.4 Changing Base Without Losing Space 6

2.5 Dictionaries With Findany Operation 7

Chapter 3 Breadth First Search 9

3.1 ROM model . 9

3.2 Rotate model . 11

3.3 Implicit model . 12

iii

Chapter 4 Depth First Search 14

4.1 ROM model . 14

4.2 Rotate model . 16

4.3 Implicit model . 20

Chapter 5 Experimental Results 22

5.1 BFS . 23

5.2 DFS . 31

Chapter 6 Conclusion 40

요약 46

Acknowledgements 47

iv

List of Figures

Figure 2.1 (a) An undirected graph G. (b) A circular adjacency

list representation of G. (c) Result of single rotation on

vertex 3. 5

Figure 4.1 Bit sequences of E and O 15

Figure 4.2 Adjacency list property of rotate model 18

Figure 4.3 Possible scenarios to consider when vertex i checking

vertex j. (a) j is gray (b) j is black and path does not

contain i (c) j is black path contains i (d) j is white and

path does not contains i 19

Figure 5.1 Time ratio of undirected BFS with synthetic graph (n

= 10000). 25

Figure 5.2 Time ratio of undirected DFS with synthetic graph (n =

10000.) . 34

Figure 5.3 Time ratio of undirected DFS with synthetic graph (m =

10n). 34

v

List of Tables

Table 2.1 Notations used in this paper 4

Table 2.2 Comparison of existing dictionary representations. CV is

characteristic vector, and BBST is balanced binary search

tree. W and E denotes worst case and expected. 7

Table 5.1 Attributes of real world data sets. 23

Table 5.2 Undirected BFS time with synthetic graph (n = 10000). . 24

Table 5.3 Undirected BFS time with synthetic graph (n = 20000). . 24

Table 5.4 Undirected BFS time with synthetic graph (n = 50000). . 25

Table 5.5 Undirected BFS result of Facebook. 26

Table 5.6 Undirected BFS result of FacebookA. 26

Table 5.7 Undirected BFS result of Brightkite. 27

Table 5.8 Directed BFS time with synthetic graph (n = 10000). . . 28

Table 5.9 Directed BFS time with synthetic graph (n = 20000). . . 28

Table 5.10 Directed BFS time with synthetic graph (n = 50000). . . 29

Table 5.11 BFS space usage for synthetic graphs. 30

Table 5.12 Directed BFS result of Slashdot. 30

Table 5.13 Directed BFS result of EmailEU. 31

Table 5.14 Directed BFS result of Flickr. 31

Table 5.15 Undirected DFS result with synthetic graph (n = 10000). 32

vi

Table 5.16 Undirected DFS result with synthetic graph (n = 20000). 33

Table 5.17 Undirected DFS result with synthetic graph (n = 50000). 33

Table 5.18 Undirected DFS result of Facebook. 35

Table 5.19 Undirected DFS result of FacebookA. 35

Table 5.20 Undirected DFS result of Brightkite. 36

Table 5.21 Directed DFS result with synthetic graph (n = 10000). . . 37

Table 5.22 Directed DFS result with synthetic graph (n = 20000). . . 37

Table 5.23 Directed DFS result with synthetic graph (n = 50000). . . 37

Table 5.24 Directed DFS result of Slashdot. 38

Table 5.25 Directed DFS result of EmailEU. 38

Table 5.26 Directed DFS result of Flickr. 39

vii

Chapter 1

Introduction

With massive growth of a data interaction of modern days, the data has grown

large enough to be called as a “big data” [22, 24, 31]. 2.5 quintillion bytes of

the data are created everyday, and past two years of data forms 90 percent

of data in the world [31]. Studying such massive data comes with the issue of

space efficiency since space usage increases as algorithms are relative to size of

data but memories are limited. With such limited memories, interest of improv-

ing space efficient graph algorithm has been raised. General graph algorithms

known to be linear time bound with O(n lg n) bits. Asano et al. [2] proposed a

graph algorithm performing O(m lg n) time using O(n) bits and another algo-

rithm using n+ o(n) bits while running in polynomial time. Elmasry et al. [13]

further improved algorithm to O(m lg lgn) time using O(n) bits.

In this paper, we introduce space efficient graph algorithms studied by

Banerjee et al. [3] and Chakraborty et al. [6, 7], and we implement and evalu-

ate performance of those algorithms. Several models of computations have been

purposed to design space efficient algorithms. Among those models, we focus

on read-only memory(ROM) model and in-place model, which will be discuss

in detail later.

1

For the DFS problem, two versions of DFS have been studied. lexicographically

smallest DFS(lex−DFS) produces unique DFS tree by traveling unvisited ver-

tex appearance order in the adjacency list. Another version is general−DFS,

where DFS travels regardless of adjacency list order.

1.1 Related Work

In the early ages, Munro and Paterson [27] suggested multi-pass streaming

model, where input data has given in one-way read-only sequence of streaming

data, so that no random access is available. Several streaming graph algorithms

in the multi-pass streaming model were studied [11].

Other than ROM model and in-place model, other semi-streaming models

are considered for space efficient algorithms [1, 15, 27]. Restore model is one

of models that introduced by Chan et al. [8], where input may be altered in

promise to be restored to original in the end. Kammer and Sajenko [21] devised

space efficient BFS and DFS algorithms working in the restore model, where

both traversals can be done in O(m+ n) time using linear words.

Additionally, Buhrman et al. [4, 5] introduced catalytic-space model, where

a workspace memory consists of small amount of clean space and large occupied

space. With large space being arbitrary and incompressible, large space may

be used with promise to be return to original state. There is no well-known

space efficient graph algorithm designed in the catalytic-space model in our

knowledge.

1.2 Organization of the Paper

The rest of this thesis is organized as follows. Preliminary information on input

models and succinct data structures will be introduced in Chapter 2. In Chap-

ter 3 and Chapter 4, we elaborate on the theoretical details of space efficient

algorithms. Afterwards, experiments and empirical results are given in Chapter

2

5. Finally, conclusion is discussed in Chapter 6.

3

Chapter 2

Preliminaries

In this chapter, preliminaries works upon this thesis are introduced. We start

with overview of symbols that will be used through out the thesis in Table 2.1.

G A graph G = {V, E} where V and E are sets of vertices and edges

n, m The numbers of vertices and edges in G

dv A degree of vertex v

depth Depth of the current level

l Depth of a tree

Table 2.1 Notations used in this paper

2.1 ROM Model

In the ROM model, the input is given in a read-only memory, where any modi-

fication is not possible. In order to produce any result of algorithms, the result

must be written in a write-only memory. Other than read-only memory and

write-only memory, workspace memory is available for limited random access

memory[3, 6, 16].

4

2.2 In-place Model

To achieve space efficient graph algorithm, in-place model is introduced by

Chakraborty et al.[6] to achieve beyond inherent space bound barrier while

maintaining reasonable time bound by relaxing the limitations of ROM model.

In-place model considers two input graph representations: array representation

and linked list representation. Unlike ROM model, where computation may not

be modified, in-place model assumes that modification is possible in limited

manner. In-place model introduces rotate model and implicit model.

Figure 2.1 (a) An undirected graph G. (b) A circular adjacency list represen-

tation of G. (c) Result of single rotation on vertex 3.

In rotate model, we assume that only pointer points to adjacency list may

be modified while maintaining adjacency list unmodified. The adjacency list is

circular linked that last element is connected with first element as illustrated

in Figure 2.1.

In implicit model, any two elements in the adjacency list may be swapped.

5

Further more, we can simulate rotate model algorithm with implicit model using

Lemma 1.

Lemma 1 [6] Let D be the maximum degree of a graph G. Then any algo-

rithm running in t(m, n) time in the rotate model can be simulated in the

implicit model in (i) O(D · t(m,n)) time when G is given in an adjacency list,

and (ii) O(lgD · t(m,n)) time when G is given in an adjacency array. Fur-

thermore, let rv(m,n) denote the number of rotations made in v’s list, and

f(m,n) be the remaining number of operations. Then any algorithm running in

t(m,n) =
∑
v∈V rv(m,n)+f(m,n) time in the rotate model can be simulated in

the implicit model in (i) O(
∑
v∈V rv(m,n) · dv + f(m,n)) time when G is given

in an adjacency list, and (ii) O(
∑
v∈V rv(m,n) lg dv + f(m,n)) time when G is

given in an adjacency array.

2.3 Succinct Data Structure

Data structure with capability to answer select query is required for theorems

that will be introduced. Given a bitstring O, selectα(O, i) queries the position

of the i-th α in O.

Lemma 2 [3, 9, 18, 26] We can store a bitstring O of length n with additional

o(n) bits such that select operation can be supported in O(1) time. Such a

structure can also be constructed from the given bitstring in O(n) time.

2.4 Changing Base Without Losing Space

Suppose we want to represent a vector A[1..n] with each element to be some

finite alphabet Σ, then optimal space for this vector is dn lg Σe. However this

representation has limitation of (i) stream of symbols can not be encoded with

low memory and (ii) reading or writing a single element involves reading whole

vector. Dodis et al. [12] introduces solution to this problem.

6

Lemma 3 [3, 12] On a Word RAM, one can represent a vector A[1..n] of

elements from a finite alphabet Σ using n lg |Σ|+O(lg2 n) bits, such that element

of the vector can be read or written in constant time.

2.5 Dictionaries With Findany Operation

We consider problem where the data structure needs to maintain a set S while

supporting following operations:

• insert Insert the element into the set.

• search Determine whether the element is in the set.

• delete Delete the element from the set.

• findany Find any element in the set.

Table 2.2 shows list of existing dictionaries that supports above operations

along with operation time and required space. In this paper, we will be using

findany structure which introduced by Banerjee et al. [3].

Structure Ins/Del Search Findany Space(bits) W/E

CV O(1) O(1) O(n) n W

BBST O(lg n) O(lg n) O(1) O(k lg n) W

DRS [20, 28] lgn
lg lgn O(1) lgn

lg lgn n+ o(n) W

YFT [30] O(lg lg n) O(lg lg n) O(lg lg n) O(k lg n) E

DRR [25] O(lg lg n) O(lg lg lg n) O(lg lg lg n) O(k lg n) E

findany [3] O(1) O(1) O(1) n+ o(n) W

Table 2.2 Comparison of existing dictionary representations. CV is character-

istic vector, and BBST is balanced binary search tree. W and E denotes worst

case and expected.

Using Lemma 3, we can support operations in O(1) time on the data struc-

ture maintaining a collection of c disjoint sets using n lg c+ o(n) bits.

7

Lemma 4 [3] A collection of c disjoint sets that partition the universe of size

n can be maintained using n lg c+o(n) bits to support insert, delete, search and

findany operations in constant time. We can also enumerate all elements of any

given set in O(k+1) time where k is the number of elements in the set. The data

structure can be initialized in O(1) time.

Additionally, similar to findany dictionary, Hagerup and Kammer [19] pro-

posed choice dictionary which supports above operations in O(1) time while

occupying n+O(n/ lg n) space.

8

Chapter 3

Breadth First Search

Breadth first search (BFS) is one of the simplest search algorithms of searching

a graph, and there are many known algorithms based on BFS such as Prim’s

minimum-spanning tree algorithm and Djkstra’s shortest path [10, 3]. We will

introduce space efficient BFS based on ROM model, rotate model and implicit

model.

3.1 ROM model

Theorem 1 [3] Given a directed or undirected graph G, its vertices can be

output in a BFS order starting at a vertex using 2n + o(n) bits in O(m + n)

time.

Assume that vertices have one of four color sets. Consider unvisited vertex

as white, finished vertex as black, and in-progress of exploring as gray1 and

gray2. We start with adding starting vertex into gray1. Every white adjacent

vertices of gray1 vertices are added into gray2, and gray1 vertices are moved

to black. Repeat steps on gray2 set, adding all white adjacent vertices of gray2

vertices to gray1, and moving gray2 vertices to black. This procedure continues

9

until there are no remaining gray1 or gray2 vertex left. With Lemma 4, we can

explore BFS using 2n+ o(n) bits in O(m+ n) time.

Theorem 2 [3] Given a directed or undirected graph G, its vertices can be

output in a BFS order starting at a vertex using n lg 3 + O(lg2 n) bits and in

O(mn) time.

Consider there are three color sets: white for unvisited vertices, and gray1/gray2

for exploring or finished vertices. We start with adding starting vertex into

gray1. We scan each vertices and if vertex is a gray1, add all its white adjacent

vertices to gray2. After first scan is complete, scan for gray2 vertices and add

all white adjacent vertices to gray1. This procedure continues until there is

no vertex added to gray1 or gray2. Since we are using three colors, by using

Lemma 3, we can explore BFS using n lg 3 +O(lg2 n) bits and in O(mn) time.

Theorem 3 [3] Given a directed or undirected graph G, its vertices can be

output in a BFS order starting at a vertex using n lg 3 + o(n) bits of space and

in O(m lg2 n) time.

To improve runtime of Theorem 2, we maintain two queues Q0 and Q1

with size of n/ lg2 n. Whenever we change a white vertex to gray1 or gray2,

we push those vertex into queue Q0 or Q1. When queue successfully maintains

every vertices, we pop each vertex in the queue. However, if queue happens to

be overflow, empty the queue and simply perform Theorem 2 instead. Overflow

occurs when there are least n/ lg2 n vertices in the level, and this cannot oc-

cur more than lg2 n times. Hence, it takes O(m lg2 n) time. Color array takes

n lg 3 +O(lg2 n) and queue takes O(n/ lg n) bits. Overall the space requirement

is n lg 3 + o(n) bits.

Theorem 4 [3] Given a directed or undirected graph G, its vertices can be

output in a BFS order starting at a vertex using n lg 3+O(n/f(n)) bits of space

10

and in O(mf(n) lg n) time where f(n) is any extremely slow-growing function

of n.

We now adjust two queues’ size from Theorem 3 to be n/f(n) lg n, where

function f(n) is any slow growing function, then the space requirement of queues

is O(n/f(n)) bits while running time is O(mf(n) lg n).

3.2 Rotate model

Theorem 5 [6] Given a directed or undirected graph G with depth of the BFS

tree starting at the source vertex s be l, then in rotate model, its vertices can be

output in a BFS order starting at s using n+O(lg n) bits and O(m+nl2) time.

By the property of BFS, if a vertex i is located in level dist in BFS tree,

we know that distance from starting vertex to i is dist. With this property,

we can backtrack visited vertices’ depth level. First, we maintain bit vector of

length n and maintain variable dist initialized to 0. Mark starting vertex and

all adjacent vertices visited and increment dist by 1. When we set the vertices

visited, we rotate their adjacency lists such that parent vertex becomes first

index of adjacency list. Now, we scan visited bit vector, and if a vertex is

marked as visited, we check if that vertex is located in targeted level. This is

checked by traveling first index of adjacency list. If we reach root starting from

that vertex at exactly dist steps, we add all unvisited adjacent vertices of that

vertex to visited. After each scan of visited bit vector, increment dist. We stop

algorithm after there is no vertex added to visited. Time spent on level dist

can by analyzed to be ndist +
∑
i∈V (d) di where V (d) is the set of vertices in

level dist. The runtime of overall level is analyzed to be O(m+ nl2) where l is

the depth of the BFS tree.

Theorem 6 [6] Given a directed or undirected graph G with depth of the BFS

tree starting at the source vertex s be l, and s can reach all other vertices, then

11

in rotate model, its vertices can be output in a BFS order starting at s using

O(lg n) bits and O(ml + nl2) time.

Space usage can be further reduced to O(lg n) bits by not containing visited

bit vector and backtrack to check if vertex is visited. This scarifies runtime but

algorithm achieves BFS without visited bit vector. By the property of BFS,

given dist depth explored BFS, we know that there is no such unvisited vertex

that can reach starting vertex s within dist steps of travel. With this property,

we can check if vertex is visited with O(dist). The total time spent at level dist

is O(ndist+ dist
∑
i∈V (d) deg(i)), and overall runtime is O(ml + nl2) time.

3.3 Implicit model

Theorem 7 [6] Given a directed or undirected graph G with source vertex that

can reach all other vertices by a distance of at most l, then in implicit model,

its vertices can be output in a BFS order using O(lg n) bits and O(m + nl2)

time.

In implicit model, we can simulate Theorem 5, but without visited bit vector.

A vertex with degree higher than two can be checked if visited in O(1) by

swapping visited vertex’s second and third element of adjacency list. For degree-

1 vertex, there exist only a single adjacent vertex (a parent) that it can not be

visited twice. Therefore, degree-1 vertex does not need to be encoded for visited.

For degree-2 vertex, vertex can be encoded using first and second element of

adjacency list. Degree-2 vertex does not need to store parent vertex information.

If both of the adjacency vertices are already visited, vertex will be a leaf node

and it will not travel any further from the vertex, such that there is no need to

travel back to starting vertex to count the depth level. If only one of the adjacent

vertices is visited, BFS will branch through unvisited adjacency vertex. When

child of degree-2 vertex tries to travel back to the starting vertex, we know

12

the child vertex of the degree-2 vertex, which means we also know the parent

vertex. This results BFS using O(lg n) bits and O(m+ nl2) time.

Theorem 8 [6] Given a directed or undirected graph G with source vertex that

can reach all other vertices by a distance of at most l and if there are no degree

2 vertices, then in implicit model, its vertices can be output in a BFS order

using O(lg n) bits and O(m+ nl) time.

For graph with no such vertex with degree-2, further improvement can be

achieved by implementing Theorem 1. We can implement 4 colors (white, gray1,

gray2, and black) with permutation of three element of adjacency list. For

degree-1 vertex, we need not encode anything since it will be visited only once

from adjacency vertex. Since we do not maintain any queue, we need to scan

whole vertex list for l many times, where l is the height of the BFS tree. This

results BFS using O(lg n) bits and O(m+ nl) time.

13

Chapter 4

Depth First Search

Depth first Search (DFS) is another graph searching algorithm. With DFS,

all the cut vertices and bridges in a graph can be found [3]. Other known

applications of DFS are maze searching[14], web-crawling and AI.

4.1 ROM model

Theorem 9 [3] Given a graph G, its vertices can be output in a DFS order

starting at a vertex in O(m + n) time using 2m + (lg 3 + 2)n + o(m + n) bits

for directed and 4m+ (lg 3 + 2)n+ o(m+ n) bits for undirected.

Given a graph G, we can construct a bit sequence O of length m+ n bits such

that it consists of 0-bit to represent a vertex i and followed by di many 1-bit

representing number of degree at a vertex i. We also construct a bit sequences E

of length m+n bits which initially set to be a sequence of 0-bit as illustrated in

Figure 4.1. During a DFS, we can use select operation from Lemma 2 to find a

position of a vertex and mark on a bit sequence E with a bit 1 at corresponding

edge that we have traveled. We also construct a color array C with three colors:

white, gray and black. Given a starting vertex s, we perform DFS starting

14

with adding vertex s to color gray. Given a current vertex i, DFS searches

any white adjacent vertex. If any such vertex, say j, is found, we set that j

to color gray and mark corresponding bit of eij on E to 1. DFS continues to

travel until no white adjacent vertex is found. When such event occurs, mark

current vertex to black and backtrack to the parent. We can find the parent

by searching the adjacency vertex with an edge between the two vertices on

E. DFS continues until no white adjacent vertex is found. The space of both

bit sequences E and O takes 2m + 2n bits for directed and 4m + 2n bits for

undirected. We can represent color array using Lemma 3 in n lg 3 + o(n). The

bit sequence O supports select operation, taking o(m+n) bits. Overall we need

total 2m+(lg 3+2)n+o(m+n) bits for directed and 4m+(lg 3+2)n+o(m+n)

bits for undirected.

Figure 4.1 Bit sequences of E and O

Theorem 10 [3] Given a graph G, its vertices can be output in a DFS order

starting at a vertex in O(m+n) time using 2m+3n+o(m+n) bits for directed

and 4m+ 3n+ o(m+ n) bits for undirected.

Observed from Theorem 9, DFS requires to know if vertex is visited or

unvisited, however, it does not require if vertex is currently exploring or finished.

We can combine gray and black color together and use bit vector of n bits

instead of color array. This reduces space usage to 2m+ 3n+ o(m+ n) bits for

directed and 4m+ 3n+ o(m+ n) bits for undirected.

15

Theorem 11 [3] Given a directed or undirected graph G, its vertices can be

output in a DFS order starting at a vertex using O(n lg(m/n)) bits in O(m+n)

time.

The space usage of previous DFS theorem can be further reduced toO(n lg(m/n))

bits. We first construct a bit sequence B such that B consists the sequence of

0dlg die−11 for vertices 1 ≤ i ≤ n and supports select operation. The length of

bit sequence B analyzed to be
∑n
i=1 dlg die, which is bound by O(n lg(m/n))

bits. We also construct a bit sequence P with same length as B with initially a

sequence of 0-bit. When DFS takes path from vertex vi to vertex vj , we perform

select operation of vj on bitvector B to find the corresponding location, and

we can save eij using dlg dje bits. This DFS theorem takes O(n lg(m/n)) bits

in O(m+ n) time.

4.2 Rotate model

Theorem 12 [7] Given a directed or undirected graph G, its vertices can be

output in a lex−DFS order starting at vertex using n lg 3 + O(lg2 n) bits in

O(m+ n) time.

We make use of color array containing three colors: white, gray and black.

We start with adding a starting vertex s to color gray and travel DFS order.

At a current vertex i, we scan adjacency list for white adjacent vertex. When

we encounter first white vertex j, we rotate adjacency list of i such that vertex

j becomes the head of adjacency list and set j’s color to gray as we travel to

vertex j. If we did not encounter any white vertex, we change vertex i’s color to

black, and we scan adjacency list for vertex that is gray and head of adjacency

list is i. The only space usage is color array, which costs n lg 3 + O(lg2 n) bits,

and total time of cost is O(m+ n) time.

16

Theorem 13 [7] Given a directed or undirected graph G, its vertices can be

output in a DFS order starting at vertex using n + O(lg n) bits in O(m + n)

time.

The space can be further improved by maintaining visited bit vector instead

of color array. Following Theorem 12, we can backtrack to parent by scanning

adjacency list for vertex marked with visited and head of adjacency list is i.

Theorem 14 [7] Given a G, its vertices can be output in a DFS order start-

ing at vertex with capability to reach all other vertices using O(lg n) bits in

O(m2/n + ml) time for undirected graph and O(m(n + l2)) time for directed

graph, where l is the maximum depth of the DFS tree.

Undirected graph

To further improve space usage to O(lg n), we do not maintain any color nor

visited bit array. We maintain two variables, current depth level depth and

maximum depth level max. depth maintains current depth level, increments

by 1 whenever we travel to white vertex and decrements by 1 whenever we

backtrack to its parent. max maintains maximum depth depth has achieve. We

start with starting vertex s with both depth and max to be 1. Whenever we

travel to white vertex j from current vertex i, we rotate i’s head to be j, and

we also rotate j’s head to be i. When we backtrack to i from j, we rotate j’s

head to be i again. With this design, as shown in Figure 4.2, any adjacency

vertex after the parent vertex in adjacency list may be considered as visited

vertices. We can recover the parent vertex by traveling depth steps from the

root. Any vertex between head and parent vertex is candidate for white vertex

but requires test to verify.

white vertex can be identified by checking if a vertex is neither gray nor

black. A vertex is a gray if we can travel within depth steps from root following

head in the adjacency list. To identify if a vertex is black, we first check whether

17

a path exist such that we can travel from vertex j to vertex i at most (max−

depth) steps by following head of each vertex. If there exists such a path, let z

be the vertex before i in path, then vertex j is black if z appears after parent

vertex.

Identifying gray vertex takes at most depth steps. Identifying black vertex

takes at most (max− depth) for path, and di steps to check if z appears after

parent vertex. Together, we spend max + di at vertex i. Overall runtime is∑
v∈V di (di + l) = O(m2/n+ml) where l is maximum depth.

Directed graph

Undirected graph’s adjacency list uses parent vertex to split processed vertices

and pending vertices. Since directed out-adjacency list does not guarantee to

have a parent vertex, we spend O(m) time during preprocessing step to rotate

the out-adjacency list to bring minimum vertex front for every vertex. The

minimum adjacent vertex will be used to split processed vertices and pending

vertices among adjacency list. We maintain two variables depth and max as

before. At vertex i, when we travel to white vertex j, vertex i’s out-adjacency

list rotates such that j becomes head, and vertex j’s in-adjacency list rotates

such that i becomes head.

To determine vertex j as white vertex, we need to test possible scenarios as

shown in Figure 4.3. Vertex j is gray if we can travel to j from starting vertex

following head of the out-adjacency list in depth steps. If there is a path from j

to i traveling head of the in-adjacency list in max−depth steps, then let vertex

Figure 4.2 Adjacency list property of rotate model

18

c be the vertex appearing in path before i. If c appears after minimum vertex

in i’s out-adjacency list, then j is a black vertex. If there is a path from j to

starting vertex in max steps, then let z be the first gray vertex appearing in

path and c be the vertex before z. If c appears after minimum vertex in z’s

out-adjacency list, then j is a black vertex. If vertex j is neither gray or black,

then vertex j is white.

Identifying gray vertex takes at most depth steps. Identifying black vertex

takes at most max steps for finding path, and at each vertex in the path, we take

depth steps to identify whether the vertex is gray. Once a gray vertex is reached,

we spend dz to determine whether c appears after or before the minimum vertex.

At vertex i, we spend depth+ depth ·max+ dz time. Since z can have at most

degree of n, overall runtime of algorithm is
∑
v∈V dv(depth+ depth · l + n) =

O(m(n+ (1 + l)l) = O(m(n+ l2)).

Figure 4.3 Possible scenarios to consider when vertex i checking vertex j. (a) j

is gray (b) j is black and path does not contain i (c) j is black path contains i

(d) j is white and path does not contains i

19

4.3 Implicit model

Theorem 15 [7] Given a graph G, its vertices can be output in a lex−DFS

order using O(lg n) bits in O(m3/n2+lm2/n) time if G is given in an adjacency

linked list and O(m2 lg n/n) time if G is given in adjacency array for undirected

graph, where l is the maximum depth of the DFS tree. For directed graph, algo-

rithm takes O(m2(n+ l2)/n) time if G is given in an adjacency linked list and

O(m lg n(n+ l2)) time if G is given in an adjacency array.

lex−DFS order using O(lg n) bits can be achieved by implementing Theo-

rem 14 with slight modification. Whenever we need to bring parent to front, we

simulate rotation without changing the order of the adjacency list. By Lemma

1, this takes O(
∑
v∈V dv lg dv + n) = O(m3/n2 + lm2/n) time for adjacency

linked list and O(
∑
v∈V dv(dv + l) · lg dv) = O(m2(lg n)/n + ml lg n)) time for

adjacency array of undirected graph. Directed also follows similar manner, re-

sulting time bound showed in Theorem 15.

Theorem 16 [7] Given a directed or undirected graph G, its vertices can output

in a general-DFS order using O(lg n) bits in O(m2/n) time if G is given in an

adjacency list and in O(m2(lg n)/n+ml lg n)) time if G is given in an adjacency

array.

DFS traversal can achieve more optimized run time while maintainingO(lg n).

Instead of explicitly storing visited bit vector, we can encode visited informa-

tion by switching second and third vertices in adjacency list such that second

vertex value is greater than third vertex. This requires a preprocessing to guar-

antee that unvisited vertex has lesser value of second vertex than third vertex

initially. We reserve first vertex of adjacency list to be the parent vertex such

that whenever we have finished visiting current vertex, we can backtrack to

the parent with O(1) time. This covers only vertex with degree of 3 or higher.

Degree-1 vertex has only one vertex that is capable of being parent and such

20

vertex will not be visited again. Thus, degree-1 vertex does not require to be

encoded for visited information. For degree-2 case, by the property of DFS, such

vertex always have 1 parent and 1 child. When we encounter such case, we travel

through such vertex until we encounter non-degree-2 vertex. If we encountered

a degree-1 vertex, we simply output vertex and return to the parent of the first

degree-2 vertex. If we encounter a degree-3 or higher vertex, we set that vertex

as visited and continue to DFS from that vertex. If we need to backtrack, we

know which vertex is a child vertex such that other vertex must be a parent.

The total runtime of this algorithm is bounded by
∑
v∈V d

2
v = O(m2/n). We

can improve further by implementing DFS algorithm in adjacency array and

initially sorted. Since adjacency list is sorted, we can use binary search. The

total runtime would be
∑
v∈V dv lg dv = O(m lgm+ n).

21

Chapter 5

Experimental Results

The algorithms have been implemented in the C++ programming language and

compiled with g++ 8.2.1. The environment in which the tests were executed

features a Intel Core i7-7700k 4.20GHz CPU, 64GB DDR4 RAM. The SDSL

[17] library was used to aid our implementation with bitvector and its related

operations.

Throughout the experiments, both synthetic and real data sets were consid-

ered. Synthetic graphs consist of n = 10000, 20000 and 50000 with m = n− 1,

3n, 5n, 10n, 20n and complete graph. Directed graphs have average degrees

equal to m
n . For undirected graph, there is no difference between in-edge and

out-edge that average degrees equal to 2m
n .

For real world graphs, data sets were obtained from [23] and [29] with at-

tributes shown in Table 5.1. Facebook and FacebookA are undirected graphs

containing circles from Facebook. Brightkite is an undirected graph derived

from a geo-location based social networking service. EmailEU is a directed graph

generated from the e-mail network in a large European research institution,

Slashdot is a directed graph of a network containing links between users of a

forum and Flickr is a directed graph generated from a crawl process of Flickr

22

social network service. Those graphs are modified such that root can reach every

vertices.

name n m dmax davg dstdev

Undirected

Facebook[23] 4039 88234 1045 43.7 0.546

Brightkite[23] 58228 214624 1134 7.37 0.0264

FacebookA[29] 3097165 23667394 4915 15.3 0.00812

Directed

EmailEU[23] 1005 24969 333 24.8 0.784

Slashdot[23] 77360 834623 2507 10.8 0.0316

Flickr[29] 820878 10109620 272410 12.3 0.0125

Table 5.1 Attributes of real world data sets.

For following experiment, time is measured in milliseconds, and space is

measured in kilobytes.

5.1 BFS

In this section, we refer Theorems 1, 2, 3, and 4 as ROM1, ROM2, ROM3 and

ROM4, Theorems 5 and 6 as ROT1 and ROT2, and Theorems 7 and 8 as IMP1

and IMP2. For the following BFS experiments, ROM4 has been implemented

with queue size to be n
lg2 n

elements. Because IMP2 has requirement for degree

of every vertex, experiments of IMP2 performed with only some graphs that

satisfy the requirement.

Undirected BFS

Tables 5.2 to 5.4 show runtime result of undirected BFS for synthetic graphs.

Among the algorithms in ROM model, ROM2 shows the slowest runtime when

number of edges is low. This is due to scanning m time for each level of the BFS

tree. As number of edges increases, queues used in ROM3 and ROM4 would

overflow, resulting similar runtime to that of ROM2.

23

9999 30000 50000 100000 200000 Complete

STD 1.9 2.4 2 1.6 3 652

ROM1 1.9 1.8 1.8 1.9 2.1 104

ROM2 22.5 11.4 12.7 13.4 24.7 4300

ROM3 13.7 8 8.6 12.8 20.9 4322

ROM4 13.7 7.9 8.5 12.6 20.8 4302

ROT1 47.5 2.34 3.62 7.05 21.4 0.766

ROT2 53.3 3.14 5.45 8.8 23.6 0.746

IMP1 96 4.18 3.33 3.92 5.95 6375

IMP2 3.31 4.58 5772

Table 5.2 Undirected BFS time with synthetic graph (n = 10000).

19999 60000 100000 200000 400000 Complete

STD 1.6 1.4 2.5 3 6.1 2607

ROM1 3.7 3.6 3.7 4 4.6 414.2

ROM2 4.83 25.1 23.4 35.9 50.4 18537

ROM3 30.1 16.4 21 26.6 49.1 18623

ROM4 30 16.2 20.9 26.4 48.5 18554

ROT1 132 9.3 9.45 19 41.4 1.5

ROT2 143 10.4 14.5 26 53 1.5

IMP1 469 12.8 9 10.4 15.8 38054

IMP2 8.4 12.5 26731

Table 5.3 Undirected BFS time with synthetic graph (n = 20000).

24

49999 100000 2500000 500000 1000000 Complete

STD 2.1 11 7 9.7 17 15894

ROM1 9.4 9.4 9.9 11.3 13.3 2571

ROM2 129 66.2 75.8 83.8 123.6 115776

ROM3 83 47.6 49.3 80.6 120.4 116217

ROM4 82.5 47.3 48.8 79.3 119.1 115865

ROT1 463 29.2 34.2 54.5 95 3.9

ROT2 457 36.1 48.1 79 122 4

IMP1 773 62 48.2 47 73.5 358145

IMP2 43.8 64.5 313489

Table 5.4 Undirected BFS time with synthetic graph (n = 50000).

Figure 5.1 shows relative time ratio of the undirected BFS algorithms on

n = 10000. We set the datum point as m = n − 1. Algorithms in the in-place

model depend on the depth of the result BFS tree. When m = n− 1, depth of

tree tends to be very deep, giving high l.

Figure 5.1 Time ratio of undirected BFS with synthetic graph (n = 10000).

Tables 5.5 to 5.7 show result of time and space cost of undirected BFS in

the real data graphs. For runtime, standard BFS and ROM1 show the fastest

runtime. For Facebook, it has average degree of 43.7 while queue size for both

25

ROM3 and ROM4 is 29. Having higher average degree than n
lg2 n

results similar

runtime compared to ROM2. For space, ROM1 takes the most space, followed

by standard BFS. Except ROM1, algorithms in ROM model take much lesser

space than standard BFS. ROT1 takes significantly less space and other in-

place model algorithms do not take any extra space except some variables.

Time(ms) Space(KB)

STD 1.17 23

ROM1 0.824 37

ROM2 19.6 7.9

ROM3 19.8 8.4

ROM4 19.7 8.4

ROT1 20.2 0.5

ROT2 20.4 0

IMP1 9.8 0

Table 5.5 Undirected BFS result of Facebook.

Time(ms) Space(KB)

STD 550.6 15332.6

ROM1 789.1 25569.4

ROM2 12930.5 3456.7

ROM3 8661.1 3560.8

ROM4 8600.9 3560.8

ROT1 9300 378.1

ROT2 6059 0

IMP1 3645 0

Table 5.6 Undirected BFS result of FacebookA.

26

Time(ms) Space(KB)

STD 3.85 235.3

ROM1 10.1 492.3

ROM2 133.9 91

ROM3 78.1 94.6

ROM4 76.2 94.6

ROT1 55.5 7.11

ROT2 21.8 0

IMP1 10.4 0

Table 5.7 Undirected BFS result of Brightkite.

Directed BFS

Tables 5.8 to 5.10 show the runtime result of directed BFS for synthetic graphs.

The results show arguably similar result to those of undirected BFS. Neverthe-

less, for m = n − 1, IMP1 performs much worse than the undirected version,

though this phenomenon is not derived from algorithmic perspective. This is

because vertices of the original graph have a single path to the source ver-

tex, giving very deep BFS tree (i.e., large l). Note that the minimum spanning

tree, constructed while generating synthetic undirected graphs, allows multiple

neighbors in a vertex, different from the only possible case for directed graphs.

27

9999 30000 50000 100000 200000 Complete

STD 0.883 0.499 0.532 1.4 1.5 650

ROM1 2.4 1.8 1.8 1.9 2 105

ROM2 5273 1.3 10.6 12.6 13.4 4305

ROM3 1.8 8.5 7.6 8.7 12.8 4326

ROM4 1.9 8.5 7.6 8.6 12.6 4308

ROT1 262 3.6 1.9 2.8 4.5 0.67

ROT2 220 3.2 2.6 4.4 6.6 0.65

IMP1 7883300 11.4 4.6 4.3 4.6 6083

IMP2 4 5308

Table 5.8 Directed BFS time with synthetic graph (n = 10000).

19999 60000 100000 200000 400000 Complete

STD 1.7 1.7 1.7 1.8 3.6 2486

ROM1 4.8 3.9 3.7 3.8 4.3 415

ROM2 22718 31.6 28.7 27.3 37.1 18525

ROM3 3.9 20.6 16.3 18.7 26.9 18610

ROM4 3.9 20.4 16.1 18.5 26.7 18537

ROT1 661 10.4 8 7.5 11.8 1.38

ROT1 579 9.3 8.5 11.4 21.4 1.34

IMP1 - 30.2 13.8 13 14 33096

IMP2 12.6 61150

Table 5.9 Directed BFS time with synthetic graph (n = 20000).

28

49999 100000 2500000 500000 1000000 Complete

STD 0.703 4.9 4.9 65.9 10.5 15874

ROM1 12.1 9.6 9.8 11 12.3 514

ROM2 14198 76 64.2 59.8 87.2 23153

ROM3 9.7 47.4 46.9 53.3 83.2 23245

ROM4 9.8 47.1 46.4 53 82.5 23174

ROT1 2278 38 22.4 19.7 31.1 3.57

ROT2 1886 32.6 27.2 35.1 57 3.52

IMP1 - 145 61.5 50.5 56.5 340179

IMP2 52 557214

Table 5.10 Directed BFS time with synthetic graph (n = 50000).

Space usage for space-efficient algorithms does not depend on number of

edges but only on number of vertices. Table 5.11 shows space usage for undi-

rected and directed standard BFS, ROM model algorithms and ROT1. ROM1

shows the highest space usage among all, but since ROM1 does not depend on

number of edges, ROM1 is more space efficient than standard BFS as number

of edges increases.

29

Number of vertices

10000 20000 50000

uSTD(n− 1) 11.9 24.4 54.5

uSTD(20n) 70.4 140.6 350.7

dSTD(n− 1) 1.2 2.5 127.4

dSTD(20n) 63.9 107.3 318.5

ROM1 87.4 172.3 423.2

ROM2 17.4 31.3 78.1

ROM3 18.3 32.8 81.4

ROM4 18.3 32.8 81.4

ROT1 1.22 2.44 6.1

Table 5.11 BFS space usage for synthetic graphs.

Tables 5.12 to 5.14 show result of time and space cost of directed BFS in

the real life graphs. The result follows simliar tendency to the discussion in

undirected BFS.

Time(ms) Space(KB)

STD 8.1 392.2

ROM1 15.6 653

ROM2 1796 109

ROM3 122 114

ROM4 122 114

ROT1 196 0.49

ROT2 512 0

IMP2 234 0

Table 5.12 Directed BFS result of Slashdot.

30

Time(ms) Space(KB)

STD 0.18 5.91

ROM1 0.21 9.99

ROM2 2.19 2.27

ROM3 2.25 2.43

ROM4 2.16 2.43

ROT1 0.37 0.12

ROT2 0.39 0

IMP1 0.13 0

Table 5.13 Directed BFS result of EmailEU.

Time(ms) Space(KB)

STD 110.3 2462.7

ROM1 205.6 6813.5

ROM2 3283.2 986.7

ROM3 1777.2 1019.9

ROM4 1924.8 1019.9

ROT1 1252 7.11

ROT2 906 0

IMP1 588 0

Table 5.14 Directed BFS result of Flickr.

5.2 DFS

In this section, ROM1, ROM2 and ROM3 denote Theorems 9, 10 and 11,

respectively. Also, ROT1, ROT2 and ROT3 denote Theorems 12, 13 and 14,

respectively. Lastly, IMP1 and IMP2 refer to Theorems 15 and 16, respectively.

31

Undirected DFS

Tables 5.15 to 5.17 show runtime result of undirected DFS for synthetic graphs.

As number of edges increases, runtime of ROT3 and IMP1 increased dramat-

ically. This is due to the original theoretical time bound, which contains m2.

Thus, those algorithms could not terminate when m gets significantly large.

ROM1 and ROM2 occupy lesser space compared with standard DFS in small

edges, but occupy more space as number of edges increases. Since space us-

age in ROM3 is proportional to lgm instead of m, it always takes less space.

Space used in ROT1 and ROT2 is proportional to number of vertices so that

they take significantly lesser space. Other in-place model algorithms take only

constant number of variables.

9999 30000 50000 100000 200000 Complete

time space time space time space time space time space time space

STD 0.893 79.4 0.937 58.5 3.5 66.9 3.3 73.7 4.3 76.4 865 79.4

ROM1 7.6 24.7 12.4 34.5 16.8 44.3 30.9 68.7 51.1 117 169717 24432

ROM2 1.9 8.5 3.8 18.3 5.5 28.1 11 52.5 13.2 101 138071 24415

ROM3 1.1 8.1 1.9 13 2 15.1 2.2 17.8 2.7 20.5 165 40

ROT1 5.5 17.3 8 17.4 10.6 17.4 17.6 17.4 31.7 17.4 6763 17.4

ROT2 0.492 1.2 0.703 1.2 0.794 1.2 0.963 1.2 1.4 1.2 139.9 1.2

ROT3 1 0 4468 0 8449 0 17530 0 - - - -

IMP1 1.1 0 4079 0 7761 0 16396 0 - - - -

IMP2 0.202 0 0.72 0 0.905 0 1.6 0 2.6 0 812 0

Table 5.15 Undirected DFS result with synthetic graph (n = 10000).

32

19999 60000 100000 200000 400000 Complete

time space time space time space time space time space time space

STD 1.1 158.7 3.2 115.9 3.6 133.5 4.4 146.1 8.7 152.6 3463 158

ROM1 16 46 25.2 65.5 36.1 85 67 133 116 231 1282247 97688

ROM2 3.8 17.1 7.7 36.7 11.5 56.2 23.3 104 32.8 202 1048344 97659

ROM3 2.3 16.2 4.1 35.7 3.9 30.1 4.6 35.5 6 41 643 85.5

ROT1 11.8 31.3 16.9 31.3 22.8 31.3 38.2 31 69.5 31.3 29336.5 31.3

ROT2 1.1 2.5 1.5 2.5 1.7 2.5 2.2 2.5 3.7 2.5 555 2.5

ROT3 2.8 0 20200 0 38489 0 76894 0 - - - -

IMP1 2.4 0 18849 0 35624 0 73665 0 - - - -

IMP2 0.43 0 1.5 0 2 0 3.3 0 7 0 4273 0

Table 5.16 Undirected DFS result with synthetic graph (n = 20000).

49999 150000 250000 500000 1000000 Complete

time space time space time space time space time space time space

STD 4.3 396.7 5.5 292 10.4 334.2 14.5 365 23.7 380.9 21283 396.7

ROM1 40 114 70.5 163 100 212 190 334 398 578 - -

ROM2 10 42 22 91 35 140 81.3 262 190 506 - -

ROM3 6.2 40.5 11.9 64.8 12.5 75.3 15.7 89 18.7 102 4013.5 225.9

ROT1 29.9 78.2 48.4 78.7 62.5 78.2 103 78.2 180 78.2 188432 78.2

ROT2 2.7 6.1 4.8 6.1 6.1 6.1 8.7 6.1 11.3 6.1 3737 6.1

ROT3 10.9 0 259966 0 622744 0 684010 0 - - - -

IMP1 13.7 0 126081 0 252075 0 582581 0 - - - -

IMP2 1.3 0 5.6 0 8 0 14.6 0 25.6 0 47185 0

Table 5.17 Undirected DFS result with synthetic graph (n = 50000).

Figure 5.2 shows relative time ratio of the undirected DFS algorithms on

n = 10000. As in the BFS, we set the datum point as m = n− 1. Since growth

of ROT3 and IMP1 increases to units of thousands, they could not be included

into this figure. We can observe that ROM3 has faster runtime compared to

those for ROM1 and ROM2. Since we are storing edge information on the

parent for ROM1 and ROM2, number of scans is relevant to degree of the

visited neighbors. This gets reduced to logarithmic in ROM3 by storing edge

information on its child. Another observation we can make is time difference

between ROT1 and ROT2. This arises from the internal data structures, which

33

are color array and visited bit vector. ROT2 simply reads and writes on a

plain bit vector during operations. On the other hand, ROT1 uses Lemma 3,

where read and write operations involve multiplication, division and modulus

operations.

Figure 5.2 Time ratio of undirected DFS with synthetic graph (n = 10000.)

Figure 5.2 shows time spent ratio for undirected DFS when number of ver-

tices increases while m is fixed to 10n. In this plot, we can observe ROT3 and

IMP1 have the highest time growth. Other than those algorithms, we observe

steady slow growth of runtime.

Figure 5.3 Time ratio of undirected DFS with synthetic graph (m = 10n).

Tables 5.18 to 5.20 show result of time and space cost of undirected DFS

34

for real graphs. For runtime, ROT2 and IMP2 show best results, followed by

standard DFS and ROM3. ROT3 and IMP3 did not terminate while running

on FacebookA. For space usage, ROM3 occupies lesser space than standard

DFS. ROT3, IMP1 and IMP2 have the best space usage since they use only

constant number of variables.

Time(ms) Space(KB)

STD 1.73 15

ROM1 22 540

ROM2 6.4 44.6

ROM3 1 7.4

ROT1 13.5 7.9

ROT2 0.496 0.49

ROT3 300 0

IMP1 2719 0

IMP2 0.754 0

Table 5.18 Undirected DFS result of Facebook.

Time(ms) Space(KB)

STD 2926 777.7

ROM1 38643.7 15769.2

ROM2 8016.4 12690.6

ROM3 1278.9 3239.5

ROT1 30229.24 3456.7

ROT2 867.1 378.1

ROT3 - -

IMP1 - -

IMP2 1017.6 0

Table 5.19 Undirected DFS result of FacebookA.

35

Time(ms) Space(KB)

STD 13.2 102.1

ROM1 148.7 210

ROM2 26.6 126.1

ROM3 10.8 61

ROT1 118.1 91

ROT2 5.31 7.1

ROT3 57151.6 0

IMP1 53167.6 0

IMP2 3.43 0

Table 5.20 Undirected DFS result of Brightkite.

Directed DFS

Tables 5.21 to 5.23 show runtime and space usage result of directed DFS for

synthetic graphs. The results show arguably similar result to that of undirected

DFS, except directed ROT3 and IMP1. Those consume significantly more time

than the undirected version. As mentioned in the discussion of directed BFS,

directed graphs have lesser average degree, resulting larger depth. ROM3 and

IMP1 have theoretical time bound containing l2 that they are much slower on

directed graphs.

36

9999 30000 50000 100000 200000 Complete

time space time space time space time space time space time space

STD 1.6 79.4 2.4 47.8 1.8 57 1.7 66.9 2.1 72.7 858 79.4

ROM1 5.1 22.3 8.3 27.2 10.7 32.1 17.2 44.3 32.6 68.7 169274 24431

ROM2 1 6.1 2.4 11 3.4 15.9 5.7 28.1 12.4 52.5 136324 24415

ROM3 0.622 6.1 1.7 10.1 2.1 12.3 2.2 15.125 2.7 17.8 165 40.3

ROT1 3.5 17.4 5.7 17.4 7.4 17.4 10.7 17.4 18.6 17.4 6817.6 17.4

ROT2 0.261 1.2 0.662 1.2 0.8 1.2 1 1.2 1.5 1.2 144 1.2

ROT3 497 0 168324 0 200196 0 160147 0 - - - -

IMP1 188 0 144318 0 181223 0 151696 0 - - - -

IMP2 0.053 0 0.793 0 0.938 0 1.5 0 2.5 0 971 0

Table 5.21 Directed DFS result with synthetic graph (n = 10000).

19999 60000 100000 200000 400000 Complete

time space time space time space time space time space time space

STD 2.2 158.7 3.2 94.1 2.8 112.8 2.9 133.7 6.7 146 3453.7 158

ROM1 10.8 41.1 19.8 50.8 23.4 60.6 38.4 85 71.4 133.8 1300978 97687

ROM2 2.1 12.2 5.4 22 7 31.8 12.8 56.2 27.4 105 1094831 97658

ROM3 1.4 12.2 3.5 20.1 4.2 24.5 5 30.2 7.2 35.6 656.8 85.5

ROT1 7.5 31.3 13.6 31.3 15.8 31.3 23.9 31.3 40.3 31.3 29399 31.3

ROT2 0.54 2.4 1.8 2.5 1.7 2.5 2.6 2.5 4.7 2.5 568 2.5

ROT3 2010 0 1545320 0 1928539 0 1285334 0 - - - -

IMP1 641 0 1415216 0 1789548 0 1180314 0 - - - -

IMP2 0.104 0 1.7 0 2.2 0 3.9 0 7.6 0 5024 0

Table 5.22 Directed DFS result with synthetic graph (n = 20000).

49999 150000 250000 500000 1000000 Complete

time space time space time space time space time space time space

STD 3.1 396.7 5.4 239.7 6 280 9.7 334 15.3 365.1 21285553 396.7

ROM1 27 102.6 50.9 127 68.7 151 113 212 203.2 334 - -

ROM2 5.1 30.5 16.2 55 24.7 79.4 47.9 140 92.5 262 - -

ROM3 3.2 30.5 11.8 50.1 15.7 61.2 20.8 75.4 24 89 4176 225

ROT1 18.6 78.1 37 78 46.3 78.2 68.5 78.2 109 78.2 188432 78.2

ROT2 1.4 6.1 5.7 6.1 8.6 6.1 13.3 6.1 17.3 6.1 3790 6.1

ROT3 12832 0 26689962 0 - - - - - - - -

IMP1 4061150 0 25342641 0 - - - - - - - -

IMP2 0.331 0 7.9 11.4 0 18.7 0 28.6 0 53739 0

Table 5.23 Directed DFS result with synthetic graph (n = 50000).

37

Tables 5.24 to 5.26 show the result of time and space cost of directed DFS

in the real life data sets. The result resembles the result we have discussed in

undirected DFS.

Time(ms) Space(KB)

STD 40 130640

ROM1 431 332

ROM2 73.7 232

ROM3 26.6 83.7

ROT1 360.7 109

ROT2 18.1 17.6

ROT3 3577231 0

IMP1 3301660 0

IMP2 16198 0

Table 5.24 Directed DFS result of Slashdot.

Time(ms) Space(KB)

STD 0.33 4.34

ROM1 4.27 8.63

ROM2 1.51 6.49

ROM3 0.23 1.62

ROT1 2.43 2.27

ROT2 0.11 0.13

ROT3 50.1 0

IMP1 47.1 0

IMP2 0.168 0

Table 5.25 Directed DFS result of EmailEU.

38

Time(ms) Space(KB)

STD 210135.8 777.7

ROM1 2143571 3655.3

ROM2 43497.9 2768.8

ROM3 33915.2 751.9

ROT1 2180105 986.7

ROT2 27528.1 100.2

ROT3 - -

IMP1 - -

IMP2 215.1 0

Table 5.26 Directed DFS result of Flickr.

39

Chapter 6

Conclusion

Since study of space efficient graph algorithms has been initiated, numerous

approaches have tackled the problem to break space bound barrier. In this

thesis, we have summarized various space efficient graph algorithms based on

ROM model and in-place model, and evaluated their performance on both syn-

thetic and real graphs. In our knowledge, this thesis is the first to implement

various space efficient graph algorithms suggested by Banerjee et al. [3] and

Chakraborty et al. [7].

As discussed in Chapter 5, we showed that our implementations match the

expected theoretic bound of time and space, both for undirected and directed

graphs.

Comparing runtime with standard BFS, ROM model and in-place model

algorithms give slower runtime. However, if number of edges increases as many

as a graph becomes complete, Theorems 5 (BFS ROT1) and 6 (BFS ROT2)

perform the fastest. When compared for space efficiency of the BFS algorithms,

the ROM model algorithms do not depend on number of edges but only on num-

ber of vertices, whereas standard BFS may increase space usage proportional to

number of edges. In Chapter 5, we observed Theorem 1 (BFS ROM1) used more

40

space than standard BFS, but for case when edge density becomes larger, we

observe BFS ROM1 has lesser space usage than standard BFS. For other ROM

model algorithms, standard BFS has better space usage only when m = n− 1,

which is the most optimal situation for standard BFS. Other than this case,

those ROM model algorithms occupy much smaller space. For in-place model,

BFS ROT1 occupies n bits regardless of number of edges that it shows much

better space efficiency compared with the standard BFS and ROM model algo-

rithms. Other in-place model algorithms use only constant number of variables

that they have the best space usage.

For DFS, Theorem 11 (DFS ROM3) has superior runtime and space ef-

ficiency compared with standard DFS, and runtime and space gaps between

the two algorithms increase as the number of edges increases. However, stan-

dard DFS quickly outperforms other ROM model algorithms than ROM3 when

number of edges increases. Although most in-place model DFS algorithms have

poor time performance compared to that of standard DFS, Theorem 16 (DFS

IMP2) gives similar runtime performance while using only constant number of

variables. Moreover, Theorem 13 (DFS ROT2) even dominates runtime versus

all other DFS algorithms while maintaining only a bit vector visited.

Studies of space efficient graph algorithms continue as study of model is

actively ongoing, such as restore model and catalytic-space model. Chakraborty

et al. [7] pointed some future directions of in-place model, such as improving the

running time further, defining in-place model algorithms for adjacency matrix

representation and implementing parallelism of the algorithms. As a future

work, implementing and evaluating performance of algorithms in various models

will explorer future researches.

41

Bibliography

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximat-

ing the frequency moments. Journal of Computer and system sciences,

58(1):137–147, 1999.

[2] T. Asano, T. Izumi, M. Kiyomi, M. Konagaya, H. Ono, Y. Otachi,

P. Schweitzer, J. Tarui, and R. Uehara. Depth-First Search Using O(n)

bits. In International Symposium on Algorithms and Computation, pages

553–564. Springer, 2014.

[3] N. Banerjee, S. Chakraborty, V. Raman, and S. R. Satti. Space efficient

linear time algorithms for bfs, dfs and applications. Theory of Computing

Systems, pages 1–27, 2018.

[4] H. Buhrman, R. Cleve, M. Kouckỳ, B. Loff, and F. Speelman. Computing

with a full memory: catalytic space. In Proceedings of the forty-sixth annual

ACM symposium on Theory of computing, pages 857–866. ACM, 2014.

[5] H. Buhrman, M. Kouckỳ, B. Loff, and F. Speelman. Catalytic space: non-

determinism and hierarchy. Theory of Computing Systems, 62(1):116–135,

2018.

[6] S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti. Frameworks

for designing in-place graph algorithms. arXiv preprint arXiv:1711.09859,

2017.

42

[7] S. Chakraborty, A. Mukherjee, V. Raman, and S. R. Satti. A Framework

for In-place Graph Algorithms. In Y. Azar, H. Bast, and G. Herman, edi-

tors, 26th Annual European Symposium on Algorithms (ESA 2018), volume

112 of Leibniz International Proceedings in Informatics (LIPIcs), pages

13:1–13:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik.

[8] T. M. Chan, J. I. Munro, and V. Raman. Selection and sorting in the

restore model. In Proceedings of the twenty-fifth annual ACM-SIAM sym-

posium on Discrete algorithms, pages 995–1004. Society for Industrial and

Applied Mathematics, 2014.

[9] D. Clark. Compact pat trees. 1997.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

algorithms. MIT press, 2009.

[11] C. Demetrescu, I. Finocchi, and A. Ribichini. Trading off space for passes

in graph streaming problems. ACM Trans. Algorithms, 6(1):6:1–6:17, Dec.

2009.

[12] Y. Dodis, M. Patrascu, and M. Thorup. Changing base without losing

space. In Proceedings of the forty-second ACM symposium on Theory of

computing, pages 593–602. ACM, 2010.

[13] A. Elmasry, T. Hagerup, and F. Kammer. Space-efficient basic graph al-

gorithms. In LIPIcs-Leibniz International Proceedings in Informatics, vol-

ume 30. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[14] S. Even and G. Even. Graph Algorithms, Second Edition. Cambridge

University Press, 2012.

43

[15] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph

problems in a semi-streaming model. Theoretical Computer Science, 348(2-

3):207–216, 2005.

[16] G. N. Frederickson. Upper bounds for time-space trade-offs in sorting and

selection. Journal of Computer and System Sciences, 34(1):19–26, 1987.

[17] S. Gog, T. Beller, A. Moffat, and M. Petri. From theory to practice: Plug

and play with succinct data structures. In 13th International Symposium

on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.

[18] A. Gupta, W.-K. Hon, R. Shah, and J. S. Vitter. A framework for dynamiz-

ing succinct data structures. In International Colloquium on Automata,

Languages, and Programming, pages 521–532. Springer, 2007.

[19] T. Hagerup and F. Kammer. Succinct choice dictionaries. arXiv preprint

arXiv:1604.06058, 2016.

[20] W.-K. Hon, K. Sadakane, and W.-K. Sung. Succinct data structures for

searchable partial sums with optimal worst-case performance. Theoretical

Computer Science, 412(39):5176–5186, 2011.

[21] F. Kammer and A. Sajenko. Linear-time in-place DFS and BFS in the

restore model. CoRR, abs/1803.04282, 2018.

[22] A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big

data. Proceedings of the VLDB Endowment, 5(12):2032–2033, 2012.

[23] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014.

[24] J. Mervis. Agencies rally to tackle big data, 2012.

44

[25] C. W. Mortensen, R. Pagh, and M. Pǎtraçcu. On dynamic range report-

ing in one dimension. In Proceedings of the thirty-seventh annual ACM

symposium on Theory of computing, pages 104–111. ACM, 2005.

[26] J. I. Munro. Tables. In International Conference on Foundations of Soft-

ware Technology and Theoretical Computer Science, pages 37–42. Springer,

1996.

[27] J. I. Munro and M. S. Paterson. Selection and sorting with limited storage.

In Foundations of Computer Science, 1978., 19th Annual Symposium on,

pages 253–258. IEEE, 1978.

[28] R. Raman, V. Raman, and S. S. Rao. Succinct dynamic data structures.

In Workshop on Algorithms and Data Structures, pages 426–437. Springer,

2001.

[29] R. A. Rossi and N. K. Ahmed. The network data repository with interactive

graph analytics and visualization. In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence, 2015.

[30] D. E. Willard. Log-logarithmic worst-case range queries are possible in

space θ (n). Information Processing Letters, 17(2):81–84, 1983.

[31] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding. Data mining with big data. IEEE

transactions on knowledge and data engineering, 26(1):97–107, 2014.

45

요약

소셜 네트워크나 빅 데이터로부터 생성된 다양한 그래프들은 방대한 양의 데이터

를 포함하고 있다. 이러한 그래프를 탐색하기 위해서는 그래프의 크기에 비례하여

필요한 메모리의 용량이 늘어난다. Asano 등(ISAAC (2014))은 공간 효율적 그래

프알고리즘연구를개시했다.이연구를통해선형적시간보다약간더걸리는대신

저선형적 공간을 사용하는 DFS 알고리즘과 활용 방안들이 제안됐다. Banerjee 등

(ToCS 62(8), 1736-1762 (2018))은 ROM 모델을 기반으로 하는 공간 효율적인

그래프 알고리즘들을 제안했다. 그래프 G의 n개의 정점과 m개의 간선이 주어졌

을 때, O(m+ n)의 시간과 2n+ o(n) 의 비트를 사용하는 BFS가 제안됐고, f(n)

을 n에 비례해서 매우 느리게 커지는 함수라고 했을 때, O(m lg nf(n))의 시간과

n lg 3 + o(n)의 비트를 사용하는 알고리즘이 제안됐다. DFS의 경우, O(m+ n)의

시간과 O(m lg m
n)의비트를사용하는알고리즘이제안됐다. Chakraborty등(ESA

(2018))은 ROM 모델이 가지고 있는 한계점을 넘기 위해 ROM 모델의 제한점을

완화시키는 in-place 모델을 소개했다. In-place 모델을 기반으로 한 알고리즘들은

n + O(lg n)의 비트를 사용하여 BFS와 DFS를 수행할 수 있고, 추가적으로 더

긴 시간을 소요하여 O(lg n) 비트의 공간만으로 알고리즘을 수행할 수 있다. 이

논문에서는 ROM 모델과 in-place 모델에서 제안된 다양한 알고리즘들을 연구 및

구현하고 실험을 통하여 이들 알고리즘의 수행 결과를 평가한다.

주요어: DFS, BFS, 공간 효율적인 그래프 알고리즘

학번: 2015-22905

46

Acknowledgements

Firstly, I express my sincere gratitude to my advisor, professor Srinivasa Rao

Satti. I managed to progress my Master’s degree with his continues support,

deep patients and guidance.

I would also give thanks to the other thesis defense committee, professor

Sun Kim and professor Berhard Egger, for their effort to give advice.

I give my thank to members in Computer Theory and Algorithm Engineer-

ing Lab: Wonil Jeong, Wooyoung Park, Seyoung Kim, Seungeun Lee, Seungwoo

Kim and MohammadSadegh Najafi. I could not ask for any better colleague

than you. I also give my thanks to our lab alumni members: Seungbum Jo,

Jeongsoo Shin, Edman Paes dos Anjos and Hagos Alema. It was their legacy

that guided me. Among all the colleagues, I would like to give special thanks

to Junhee Lee. Without his immeasurable support, I would never have finished

my Master.

My sincere thanks also goes to professor Sam Chung. Without his advice, I

would have gave up Computer Science. He fixed my depressive character, told

me to look up and forced me to have a dream. He is my mentor for both life

and religious.

Finally, I would like to give my thanks to my family who showed endless

support. My sister, Nari Yoo, gave me countless advice and shared ’home’ where

I can have at least one family member. Last but not least, my father, Uksang

47

Yoo, and my mother, Poongja Yoon, sacrificed everything for my sister and

me.

48

	Chapter 1 Introduction
	1.1 Related Work .
	1.2 Organization of the Paper .

	Chapter 2 Preliminaries
	2.1 ROM Model .
	2.2 In-place Model .
	2.3 Succinct Data Structure .
	2.4 Changing Base Without Losing Space
	2.5 Dictionaries With Findany Operation

	Chapter 3 Breadth First Search
	3.1 ROM model .
	3.2 Rotate model .
	3.3 Implicit model .

	Chapter 4 Depth First Search
	4.1 ROM model .
	4.2 Rotate model .
	4.3 Implicit model .

	Chapter 5 Experimental Results
	5.1 BFS .
	5.2 DFS .

	Chapter 6 Conclusion
	요약
	Acknowledgements

<startpage>12
Chapter 1 Introduction 1
 1.1 Related Work . 2
 1.2 Organization of the Paper . 2
Chapter 2 Preliminaries 4
 2.1 ROM Model . 4
 2.2 In-place Model . 5
 2.3 Succinct Data Structure . 6
 2.4 Changing Base Without Losing Space 6
 2.5 Dictionaries With Findany Operation 7
Chapter 3 Breadth First Search 9
 3.1 ROM model . 9
 3.2 Rotate model . 11
 3.3 Implicit model . 12
Chapter 4 Depth First Search 14
 4.1 ROM model . 14
 4.2 Rotate model . 16
 4.3 Implicit model . 20
Chapter 5 Experimental Results 22
 5.1 BFS . 23
 5.2 DFS . 31
Chapter 6 Conclusion 40
요약 46
Acknowledgements 47
</body>

