134,694 research outputs found

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Reasoning and Improving on Software Resilience against Unanticipated Exceptions

    Get PDF
    In software, there are the errors anticipated at specification and design time, those encountered at development and testing time, and those that happen in production mode yet never anticipated. In this paper, we aim at reasoning on the ability of software to correctly handle unanticipated exceptions. We propose an algorithm, called short-circuit testing, which injects exceptions during test suite execution so as to simulate unanticipated errors. This algorithm collects data that is used as input for verifying two formal exception contracts that capture two resilience properties. Our evaluation on 9 test suites, with 78% line coverage in average, analyzes 241 executed catch blocks, shows that 101 of them expose resilience properties and that 84 can be transformed to be more resilient

    Fault Localization in Multi-Threaded C Programs using Bounded Model Checking (extended version)

    Full text link
    Software debugging is a very time-consuming process, which is even worse for multi-threaded programs, due to the non-deterministic behavior of thread-scheduling algorithms. However, the debugging time may be greatly reduced, if automatic methods are used for localizing faults. In this study, a new method for fault localization, in multi-threaded C programs, is proposed. It transforms a multi-threaded program into a corresponding sequential one and then uses a fault-diagnosis method suitable for this type of program, in order to localize faults. The code transformation is implemented with rules and context switch information from counterexamples, which are typically generated by bounded model checkers. Experimental results show that the proposed method is effective, in such a way that sequential fault-localization methods can be extended to multi-threaded programs.Comment: extended version of paper published at SBESC'1

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    Symbolic crosschecking of data-parallel floating-point code

    Get PDF

    NPEFix: Automatic Runtime Repair of Null Pointer Exceptions in Java

    Full text link
    Null pointer exceptions, also known as null dereferences are the number one exceptions in the field. In this paper, we propose 9 alternative execution semantics when a null pointer exception is about to happen. We implement those alternative execution strategies using code transformation in a tool called NPEfix. We evaluate our prototype implementation on 11 field null dereference bugs and 519 seeded failures and show that NPEfix is able to repair at runtime 10/11 and 318/519 failures
    • …
    corecore