3 research outputs found

    Source Location of Forced Oscillations Using Synchrophasor and SCADA Data

    Get PDF
    Recent advances in synchrophasor based oscillation monitoring algorithms have allowed engineers to detect oscillation issues that may have previously gone undetected. Although such an oscillation can be flagged and its oscillation shape can indicate the general vicinity of its source, low number of synchrophasors means that a specific generator or load that is the root cause of an oscillation cannot easily be pinpointed. Fortunately, SCADA serves as a much more readily available telemetered source of data if only at a relatively low sampling rate of 1 sample every 1 to 10 seconds. This paper shows that it is possible to combine synchrophasor and SCADA data for effective source location of forced oscillations. For multiple recent oscillation events, the proposed automatic methods were successful in correct identification of the oscillation source which was confirmed in each case by discussion with respective generation plant owners

    Using Passivity Theory to Interpret the Dissipating Energy Flow Method

    Full text link
    Despite wide-scale deployment of phasor measurement unit technology, locating the sources of low frequency forced oscillations in power systems is still an open research topic. The dissipating energy flow method is one source location technique which has performed remarkably well in both simulation and real time application at ISO New England. The method has several deficiencies, though, which are still poorly understood. This paper borrows the concepts of passivity and positive realness from the controls literature in order to interpret the dissipating energy flow method, pinpoint the reasons for its deficiencies, and set up a framework for improving the method. The theorems presented in this paper are then tested via simulation on a simple infinite bus power system model.Comment: Submitted to PESGM1

    Using Effective Generator Impedance for Forced Oscillation Source Location

    Full text link
    Locating the sources of forced low-frequency oscillations in power systems is an important problem. A number of proposed methods demonstrate their practical usefulness, but many of them rely on strong modeling assumptions and provide poor performance in certain cases for reasons still not well understood. This paper proposes a systematic method for locating the source of a forced oscillation by considering a generator's response to fluctuations of its terminal voltages and currents. It is shown that a generator can be represented as an effective admittance matrix with respect to low-frequency oscillations, and an explicit form for this matrix, for various generator models, is derived. Furthermore, it is shown that a source generator, in addition to its effective admittance, is characterized by the presence of an effective current source thus giving a natural qualitative distinction between source and nonsource generators. Detailed descriptions are given of a source detection procedure based on this developed representation, and the method's effectiveness is confirmed by simulations on the recommended testbeds (eg. WECC 179-bus system). This method is free of strong modeling assumptions and is also shown to be robust in the presence of measurement noise and generator parameter uncertainty.Comment: 13 page
    corecore