1,562 research outputs found

    Rascal: A domain specific language for source code analysis and manipulation

    Get PDF
    Many automated software engineering tools require tight integration of techniques for source code analysis and manipulation. State-of-the-art tools exist for both, but the domains have remained notoriously separate because different computational paradigms fit each domain best. This impedance mismatch hampers the development of each new problem solution since desired functionality and scalability can only be achieved by repeated, ad hoc, integration of different techniques. Rascal is a domain-specific language that takes away most of this boilerplate by providing high-level integration of source code analysis and manipulation on the conceptual, syntactic, semantic and technical level. We give an overview of the language and assess its merits by implementing a complex refactoring

    Amorphous procedure extraction

    Get PDF
    The procedure extraction problem is concerned with the meaning preserving formation of a procedure from a (not necessarily contiguous) selected set of statements. Previous approaches to the problem have used dependence analysis to identify the non-selected statements which must be 'promoted' (also selected) in order to preserve semantics. All previous approaches to the problem have been syntax preserving. This work shows that by allowing transformation of the program's syntax it is possible to extract both procedures and functions in an amorphous manner. That is, although the amorphous extraction process is meaning preserving it is not necessarily syntax preserving. The amorphous approach is advantageous in a variety of situations. These include when it is desirable to avoid promotion, when a value-returning function is to be extracted from a scattered set of assignments to a variable, and when side effects are present in the program from which the procedure is to be extracted

    Amorphous procedure extraction

    Get PDF
    The procedure extraction problem is concerned with the meaning preserving formation of a procedure from a (not necessarily contiguous) selected set of statements. Previous approaches to the problem have used dependence analysis to identify the non-selected statements which must be 'promoted' (also selected) in order to preserve semantics. All previous approaches to the problem have been syntax preserving. This work shows that by allowing transformation of the program's syntax it is possible to extract both procedures and functions in an amorphous manner. That is, although the amorphous extraction process is meaning preserving it is not necessarily syntax preserving. The amorphous approach is advantageous in a variety of situations. These include when it is desirable to avoid promotion, when a value-returning function is to be extracted from a scattered set of assignments to a variable, and when side effects are present in the program from which the procedure is to be extracted

    VADA: A transformation-based system for variable dependence analysis

    Get PDF
    Variable dependence is an analysis problem in which the aim is to determine the set of input variables that can affect the values stored in a chosen set of intermediate program variables. This paper shows the relationship between the variable dependence analysis problem and slicing and describes VADA, a system that implements variable dependence analysis. In order to cover the full range of C constructs and features, a transformation to a core language is employed Thus, the full analysis is required only for the core language, which is relatively simple. This reduces the overall effort required for dependency analysis. The transformations used need preserve only the variable dependence relation, and therefore need not be meaning preserving in the traditional sense. The paper describes how this relaxed meaning further simplifies the transformation phase of the approach. Finally, the results of an empirical study into the performance of the system are presented

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)
    corecore