3 research outputs found

    ROBOTIC SOUND SOURCE LOCALIZATION AND TRACKING USING BIO-INSPIRED MINIATURE ACOUSTIC SENSORS

    Get PDF
    Sound source localization and tracking using auditory systems has been widely investigated for robotics applications due to their inherent advantages over other systems, such as vision based systems. Most existing robotic sound localization and tracking systems utilize conventional microphone arrays with different arrangements, which are inherently limited by a size constraint and are thus difficult to implement on miniature robots. To overcome the size constraint, sensors that mimic the mechanically coupled ear of fly Ormia have been previously developed. However, there has not been any attempt to study robotic sound source localization and tracking with these sensors. In this dissertation, robotic sound source localization and tracking using the miniature fly-ear-inspired sensors are studied for the first time. First, through investigation into the Cramer Rao lower bound (CRLB) and variance of the sound incident angle estimation, an enhanced understanding of the influence of the mechanical coupling on the performance of the fly-ear inspired sensor for sound localization is achieved. It is found that due to the mechanical coupling between the membranes, at its working frequency, the fly-ear inspired sensor can achieve an estimation of incident angle that is 100 time better than that of the conventional microphone pair with same signal-to-noise ratio in detection of the membrane deflection. Second, development of sound localization algorithms that can be used for robotic sound source localization and tracking using the fly-ear inspired sensors is carried out. Two methods are developed to estimate the sound incident angle based on the sensor output. One is based on model-free gradient descent method and the other is based on fuzzy logic. In the first approach, different localization schemes and different objective functions are investigated through numerical simulations, in which two-dimensional sound source localization is achieved without ambiguity. To address the slow convergence due to the iterative nature of the first approach, a novel fuzzy logic model of the fly-ear sensor is developed in the second approach for sound incident angle estimation. This model is studied in both simulations and experiments for localization of a stationary source and tracking a moving source in one dimension with a good performance. Third, nonlinear and quadratic-linear controllers are developed for control of the kinematics of a robot for sound source localization and tracking, which is implemented later in a mobile platform equipped with a microphone pair. Both homing onto a stationary source and tracking of a moving source with pre-defined paths are successfully demonstrated. Through this dissertation work, new knowledge on robotic sound source localization and tracking using fly-ear inspired sensors is created, which can serve as a basis for future study of sound source localization and tracking with miniature robots

    HIGH WAVE VECTOR ACOUSTIC METAMATERIALS: FUNDAMENTAL STUDIES AND APPLICATIONS

    Get PDF
    Acoustic metamaterials are artificially engineered structures with subwavelength unit cells that hold extraordinary acoustic properties. Their ability to manipulate acoustic waves in ways that are not readily possible in naturally occurring materials have garnered much attention by researchers in recent years. In this dissertation work, acoustic metamaterials that enable wave propagation with high wave vector values are studied. These materials render several key properties, including energy confinement and transport, wave control enhancement, and enhancement of acoustic radiation, which are exploited for enhancing acoustic wave emission and reception. The dissertation work is summarized as follows. First, to enable experimental studies of the deep subwavelength cavities in these metamaterials, a low dimensional fiber optic probe was developed, which allows direct characterization of the intrinsic properties of the metamaterials without seriously disrupting the acoustic fields. Second, low dimensional acoustic metamaterials for enhancing acoustic reception were realized and studied. These metamaterials were demonstrated to achieve both passive and active functionalities, including passive signal amplification and frequency filtering, as well as active tuning for switching and pulse retardation control. Third, a metamaterial emitter was realized and studied, which is capable of enhancing the radiative properties of an embedded emitter. Parametric studies enhanced the understanding of the effects of different geometric parameters on the radiation performance of the structure. Finally, the metamaterial emitter and receiver were combined to form a metamaterial-based sonar system. For the first time, the superior performance of the metamaterial enhanced sonar system over conventional sonar systems was analytically and experimentally demonstrated. As a proof of concept, a robotic sonar platform equipped with the metamaterial system was shown to possess remarkably better tracking performance compared to the conventional system. Through this dissertation work, an enhanced understanding of high-k acoustic metamaterials has been achieved, and their applications in acoustic sensing, emission enhancement, and sonar systems have been demonstrated
    corecore