
 

ABSTRACT 

 

 

 

Title of Document: ROBOTIC SOUND SOURCE LOCALIZATION 

AND TRACKING USING BIO-INSPIRED 

MINIATURE ACOUSTIC SENSORS 

  

 Laith Sami Sawaqed, Doctor of Philosophy, 2013 

  

Directed By: Professor Miao Yu 

Department of Mechanical Engineering 

 

 

     Sound source localization and tracking using auditory systems has been widely 

investigated for robotics applications due to their inherent advantages over other 

systems, such as vision based systems. Most existing robotic sound localization and 

tracking systems utilize conventional microphone arrays with different arrangements, 

which are inherently limited by a size constraint and are thus difficult to implement 

on miniature robots. To overcome the size constraint, sensors that mimic the 

mechanically coupled ear of fly Ormia have been previously developed. However, 

there has not been any attempt to study robotic sound source localization and tracking 

with these sensors. 

     In this dissertation, robotic sound source localization and tracking using the 

miniature fly-ear-inspired sensors are studied for the first time.  First, through 

investigation into the Cramer Rao lower bound (CRLB) and variance of the sound 

incident angle estimation, an enhanced understanding of the influence of the 

mechanical coupling on the performance of the fly-ear inspired sensor for sound 

localization is achieved. It is found that due to the mechanical coupling between the 



membranes, at its working frequency, the fly-ear inspired sensor can achieve an 

estimation of incident angle that is 100 time better than that of the conventional 

microphone pair with same signal-to-noise ratio in detection of the membrane 

deflection. Second, development of sound localization algorithms that can be used for 

robotic sound source localization and tracking using the fly-ear inspired sensors is 

carried out. Two methods are developed to estimate the sound incident angle based on 

the sensor output. One is based on model-free gradient descent method and the other 

is based on fuzzy logic. In the first approach, different localization schemes and 

different objective functions are investigated through numerical simulations, in which 

two-dimensional sound source localization is achieved without ambiguity. To address 

the slow convergence due to the iterative nature of the first approach, a novel fuzzy 

logic model of the fly-ear sensor is developed in the second approach for sound 

incident angle estimation. This model is studied in both simulations and experiments 

for localization of a stationary source and tracking a moving source in one dimension 

with a good performance.  Third, nonlinear and quadratic-linear controllers are 

developed for control of the kinematics of a robot for sound source localization and 

tracking, which is implemented later in a mobile platform equipped with a 

microphone pair. Both homing onto a stationary source and tracking of a moving 

source with pre-defined paths are successfully demonstrated.  

     Through this dissertation work, new knowledge on robotic sound source 

localization and tracking using fly-ear inspired sensors is created, which can serve as 

a basis for future study of sound source localization and tracking with miniature 

robots.
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Chapter 1    Introduction and Background 

 

 Problem of Interest 1.1

 

     Sound source localization is one of the most interesting problems, which have 

been used in many applications such as hearing aids [1], underwater wireless sensor 

networks, tactical surveillance systems, robotics  [2–20], and audio/video conferences  

[21], [22]. To date, sound source localization in all above mentioned applications are 

achieved by using conventional microphone arrays. These arrays usually consist of a 

number of microphones ranging from 2 to 32 [2–20], which are arranged in two 

dimensions (2D) or three dimensions (3D) to localize  and/or track sound sources 

[23].  These arrangements are typically chosen through conducting analytical analysis 

on improving the localization accuracy [24]. Among many different methods, the 

most widely used method to analyze the localization accuracy is based on the Cramer 

Rao lower bound of the array for sound localization based on the time difference of 

arrival (TDOA) information. It has been shown that the microphones arranged in one 

of the five symmetrical 3D platonic solids shapes, namely, tetrahed, ocahed, cube, 

icosahed, and dodecahed [23], can help achieve the best sound source localization 

accuracy. However, the drawbacks of using such arrays are the large sizes and high 

computational complexity for extracting the directional cues. The large size is 

attributed to the fact that the separation distance between any pair of microphones in 

the array should not exceed half the minimum wavelength that presents in the 

propagated sound wave [25]. This condition is necessary to ensure a detectable 
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time/phase difference between the microphones signals that are utilized to estimate 

the sound direction. 

     To overcome these drawbacks, bio-inspired ideas have been investigated and used 

in developing sound localization sensors with different configurations, characteristics, 

and sizes [26–31]. Miniature directional microphones that mimic the ear of the 

parasitoid fly Ormia are one of these sound localization sensors. Micro-Electro-

Mechanical-Systems (MEMS) fabrication technology has been used to fabricate these 

sensors. Due to the small size and high performance of these sensors, they can 

become excellent choices for miniature robots to perform sound localization and 

tracking tasks. However, there has not been any effort to use these sensors for such 

applications.  

     This dissertation work is aimed to achieve a fundamental understanding of the fly-

ear inspired acoustic sensors for sound localization and tracking, and to develop 

localization algorithms and control strategies for robotic sound localization and 

tracking using the bio-inspired acoustic sensors. 

 Literature Review  1.2

 Sound Source Localization Approaches 1.2.1

     Currently acoustic localization systems that are used for sound localization in an 

environment are mainly based on two approaches (see Figure  1.1). The first approach 

is a direct approach, in which the most popular technique is referred to as the steered 

beamforming. The second approach is an indirect approach, in which the time 

difference of arrival (TDOA) of the sound wave received from two microphones in a 
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microphone array is estimated and utilized to determine the angle of arrival (AOA) of 

the sound [32].  

 

 

Figure  1.1: Sound source localization techniques. 

 

 1.2.1.1 Direct Sound Source Localization 

     The most popular direct technique is the beamforming. Beamforming is based on a 

filter-and-sum process, which applies some temporal filters to the microphone signals 

before summing them to produce a single, focused signal [33]. The role of these 

filters is to enhance the signals from the desired sources and cancel or attenuate the 

signals from the undesired sources. This is achieved by performing time shifts to the 

detected signals then summing them up to localize the sound source. These filters can 

be chosen according to the nature of the sound source signal and the noise type [33]. 

Practically, the sound source location is usually unknown. Therefore, a beamformer 

can steer by following a predefined spatial region and by modifying the steering 
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delays the source can be localized. This technique is called the steered beamforming, 

as illustrated in Figure  1.2. 

 

Figure  1.2: The structure of a filter-and-sum beamformer [33]. 

 

The frequency response of the M-element filter-and-sum beamformer is defined as: 
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where ∆i is the determined steering delay to pinpoint the sound source, s1(t) is the 

time signal from the reference microphone, α is the spatial attenuation coefficient, Di 

is the TDOA, ni(t) is the noise associated with the signal from sensor i, Xi(ω) is the 

Fourier transform of the microphones signals xi(t), and Gi(ω) is the Fourier transform 

of the temporal filter. For the case that the temporal filters are not used, the technique 

is called delay-and-sum beamformer. For the case that the temporal filters are used, 

the technique is called filter-and-sum beamformer. The output power of the filter-and-

sum beamformer is called steered response power (SRP), which can be obtained as 
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where Y(ω,∆1…∆M) is the output of the filter-and-sum beamformer, Y*(ω,∆1…∆M) is 

its complex conjugate, and ∆1…∆M are the steering delays that maximize the SRP. If 

the source location vector in space is ��, the SRP can be represented as: 
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Here, ∆M is the propagation time delay between two sensors (microphones), which 

can be represented mathematically as: 
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     For a far-field condition, the propagation delay can be expressed in terms of the 

assumed sound propagation direction ��� as: 
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     The angles (θ, φ) are the assumed direction of arrival, which can be used to find 

the propagation delays required to maximize Eq. (1.3) for localizing the source.  

 1.2.1.2 Indirect Sound Source Localization 

     Combining Eqs. (1.1) and (1.3) in the previous section with some manipulation, it 

can be shown that the SRP technique is basically a data averaging method. For the 

case of two microphone pairs, it is proved that SRP is equivalent to the generalized 
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cross correlation (GCC), which is the most commonly used method for indirect sound 

source localization [33] that is represented as: 

 ( )
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Ψ ( ) ( ) ' ( )
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ωττ ω ω ω ω

π
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where ����	
  represents the GCC of the two microphone signals, and �����
 
represents the weighting function, which can be any of the weighting functions listed 

in Table  1-1. Figure  1.3 summarizes the different GCC methods used in the sound 

source localization.  

Table  1-1: Generalized Cross Correlation (GCC) method weighting functions 

GCC Method 

Name Weight Ψlq (ω) Reference 

Cross Correlation 1 

 [34] 

Roth Impulse  

Response 

1
����
�′���
 

SCOT 

1
�����
�′���
����
�′���


 

PHAT 
1

�����
�′���
� 

Eckart 
����
�′���


�����
�′���
����
�′���
� 

ML or HT 
������
��

�����
�′���
� �1 − ������
���
 

PHAT-ργ 
1

�����
�′���
�� + ������
��
  [35]  
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Figure  1.3: Generalized Cross Correlation methods. 

 

 Localization of Single and Multiple Sound Sources 1.2.2

      Robotic sound source localization problems have attracted much attention of 

many researchers due to the importance of audition systems for robotic perception, 

which does not need direct line of sight with the source [13]. Other systems, such as 

vision based systems, have limited capabilities that can lead to lack of information for 

robotic perception. The different methods discussed in the previous section have been 

used for robotic sound localization using different number of microphones and 

different microphone arrangements in audition systems. Localization of single and 

multiple, stationary and moving sound sources have been investigated intensively [2–

22]. In the following subsections, detailed work on this aspect will be reviewed. 
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 1.2.2.1 Localization of Stationary Single and Multiple Sound Sources 

     Huang et al. [8] studied a mobile robot equipped with a real time sound source 

localization system consisting of three microphones used in an echo-avoidance model 

to detect the echo–free portions of the coming sound. A sonar system was used to 

avoid the obstacles in the robotic navigation experiment, as shown in Figure  1.4. This 

system was shown to have great capability to localize the sound while avoiding the 

obstacles in an echoic environment.  

 

Figure  1.4: Schematic of a robot equipped with microphones for real time sound localization [8]. 

 

     In another work, Valin et al. [13] presented a robust sound source localization 

system, using eight microphones arranged in three dimensions (3D) on a Pioneer 2 

robot, as shown in Figure  1.5. The localization was based on time difference of 

arrivals and it was shown that the robot was capable to localizing different types of 

sound sources over a range of 3 meters with a localization precision of 3
o
. 
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Figure  1.5: Microphone array installed on a Pioneer 2 robot for sound source localization [13]. 

 

     In another work carried out by the U.S. Army Research Laboratory (ARL), 

acoustic sensors on robotic platforms were used to help the future combat systems to 

perform different types of military tasks, as shown in Figure  1.6 [20]. The robotic 

systems were tested for localizing acoustic sources such as gunshots in three different 

urban environments. The cross correlation method was used to extract the acoustic 

directions in azimuth and elevation to orient an infrared (IR) camera placed on top of 

the robot. Based on the measurements from different robots, triangulation was used to 

precisely locate the position of a sniper. 

 

 

(a) (b) 

Figure  1.6: (a) iRobot ATRV-2 robot with the acoustic array and (b) iRobot Urban Robot with 

9'' diameter microphone array [20]. 
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     In 2004, Andersson et al. reported a biomimetic sound source localization 

apparatus, as shown in Figure  1.7. The system was based on the principle that 

directional cues such as the interaural time difference (ITD) and the interaural level 

difference (ILD) obtained with two microphones are related to the diffraction about 

the head [5]. A performance metric was defined by using the directional cues. The 

angle indicating the sound source direction can be obtained by minimizing this metric 

using the least mean square between the measured and the theoretical directional 

cues. Localization of a single broadband sound source was achieved successfully with 

a localization error of ±2
o
. 

 

Figure  1.7:bio-inspired sound localization apparatus [5]. 

      

     Moreover, Murray et al. demonstrated a robotic acoustic tracking system that used 

the interaural time difference, obtained by using the cross correlation method, to 

orient itself towards the sound source [9]. The robot used in this system was equipped 

with two ears (microphones) and sonar sensors, as shown in Figure  1.8. The sound 

was positioned at different angles relative to the head centerline and a high 

localization accuracy of better than 90% was achieved. 
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Figure  1.8: PeopleBOT with the two mounted microphones [9]. 

 

     In 2005, Sasaki et al. reported a microphone array arrangement that is suitable for 

robotic navigation in an indoor environment [14]. The microphone array arrangement 

employed 32 microphones and the signals from these microphones showed small side 

lobes by using the sum and delay beamforming algorithm, discussed earlier, which 

can be used for sound localization. This arrangement led to a good localization 

performance and the capability of separation of multiple sources. The robot (Nomad-

XR4000) equipped with this array (as shown in Figure  1.9) was capable of estimating 

the locations of three sound sources with a position estimation error of 20 cm. 

 

Figure  1.9: Nomad-XR4000 with the microphone array [14]. 
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     Another array (as shown in Figure  1.10) with 32 microphones arranged in a three 

ring configuration was developed by the same group to estimate the 

horizontal/vertical sound position [15]. The delay and sum beamforming method 

discussed earlier was used to localize the different sound sources. Separation of the 

source was achieved by using a frequency band selection algorithm. With this 

arrangement, localization of up to three sound sources can be achieved theoretically. 

Experimentally, two sound sources were localized with an angular error of 5
o
 and 

distance error of 20-30 cm at 1m distance.  

 

Figure  1.10: Microphone array arranged in three rings [15]. 

 

     In 2009, the same research group developed another microphone array 

arrangement (as shown in Figure  1.11) so that a 2D sound source map can be 

obtained from the measured sound directions using the particle filtering algorithm  

[16]. The developed microphone array has 32 microphones with low side lobes and 

narrow main lobe. Localization of different sound sources was achieved by using the 

sum and delay beamforming method and the frequency band selection methods. The 

experimental results showed that the sound can be localized in 2D with an error of 

less than 50cm. 
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Figure  1.11: An array with 32 microphone arrangement [16].  

 

     In another work, Uchiyama et al. presented a mobile robot equipped with an 

auditory system for sound tracking and distance sensors for obstacles avoidance to 

follow a trajectory generated by a reference model [10]. Interaural time difference 

and sound level difference between the desired and the current position of the robot 

were used to control the robot. The system was tested in an indoor environment at 

different robot initial positions and different sound directions relative to the robot. 

The experiments showed that the robot (shown in Figure  1.12) was able to track the 

sound and avoid the obstacles during navigation and the navigation failed when the 

obstacle was high and the sound direction was 90 degrees since detecting the wall 

corner was difficult. 

 

Figure  1.12: Two-wheeled robot with an auditory system [10]. 
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     In 2010, Arvin et al. presented a swarm robot (as shown in Figure  1.13) employed 

for exploring voice with a module that utilized four condenser microphones to capture 

the voice. The captured signals were processed to get the proportional signal strengths 

so as to estimate the sound orientation using a fuzzy logic approach  [11]. Three 

separate experiments were conducted with different objectives. The first experiment 

aimed to test the developed module to localize the sound. The second experiment 

utilized one swarm robot to navigate randomly in the environment to measure the 

signal strengths and execute basic tasks like obstacle avoidance. In the third 

experiment, a number of swarm robots were used only one of them was served as the 

explorer for searching the sound source. The other robots would wait until the 

explorer found the source and transmit a message that the source is found to 

aggregate together after receiving the message. 

 

Figure  1.13: (a) Voice processor module and (b) robot equipped with the module [11]. 

 

     More recently, in 2011, Sun et al. presented a rescue robot that can be used to 

search survivors in collapsed buildings after an earthquake occurs [6]. This robot was 

equipped with sonar sensors for obstacle avoidance and an auditory system that 

utilized three microphones, as shown in Figure  1.14. The sound direction is 
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determined using the TDOA calculated for the array. Experiments showed a high 

accuracy in localizing the sound source.  

 

Figure  1.14: The experiment platform for searching survivors in collapsed buildings [6]. 

 

     The platform, was improved later and a fourth microphone was added to have a 

tetrahedral shape arrangement of the microphones, as shown in Figure  1.15 [7]. The 

same localization algorithm was used with the new array to localize the sound with a 

priority to avoid the obstacles in the environment. 

 

Figure  1.15: Improved survivor searching platform [7]. 
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 1.2.2.2 Localization of Moving Single and Multiple Sound Sources 

     Kumon and Uozumi presented a robot equipped with two microphones to provide 

binaural hearing, as shown in Figure  1.16 [4]. The calculated TDOA that takes into 

account the Doppler shift and the auditory system motion is used with the extended 

Kalman filter (EKF) to estimate the state of the dynamical system even with noisy 

measurements. Figure  1.17 shows the dynamics model of the system used. 

 

 

Figure  1.16: Robotic head with two microphones (front and side views) [4]. 

 

 

Figure  1.17: Dynamics model of the robot and the sound source (left) and detailed sketch of 

robot (right) [4]. 

 

     Estimating the position of a moving sound source using the bearings-only 

measurements from a network of acoustical sensor arrays was investigated by Kaplan 
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et al. [12]. The acoustical network geometry of the single node and multiple nodes are 

shown in Figure  1.18. Four maximum likelihood (ML) methods were developed, 

based on various simplifications of the target model, to estimate the moving target 

position. 

 

Figure  1.18: Geometry of the acoustical network: (a) The single node and (b) triangulation using 

multiple nodes [12].  

 

     More recently, in 2012, Han et al. presented a two wheeled robot equipped with 

three microphones that utilized the time delays and triangulation to track the sound of 

a moving object [36]. A Fuzzy Inference System was developed to drive the robot 

according to the estimated position and direction of the moving object. 

 

Figure  1.19: Mobile robot structure developed by Han et al. [36]. 
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     Although the above mentioned systems exhibited good capabilities to localize 

single and/or multiple, stationary and/or moving sound sources, the main limitation is 

the array size when applied to miniature robots. It should be noted that the separation 

distance between any pair of microphones in the array cannot be too small to obtain 

enough directional cues for sound localization even though this distance should be 

less than half the minimum wavelength present in the sound signal [25].  

 Bio-Inspired Acoustic Sensors 1.2.3

     Bio-inspired sensors have received much attention during the last two decades. 

One type of sensors was inspired by the hearing organ (see Figure  1.20(a)) of the 

parasitoid fly Ormia Ochracea (tachinid family) which was first presented by Miles et 

al. [37], [38]. The fly-ear, as shown in Figure  1.20, consists of two membranes 

(Ipsilateral, and Contralateral) and a beam that connects the two membranes. The 

functionality of this beam is to provide a coupling between the two membranes, 

which will amplify the phase difference between the two membranes. The two 

membranes vibrate due to the acoustic pressure at a certain direction with an azimuth 

angle of θ from the midline of the two membranes. Although, the separation distance 

between the two ears is too small (~1.2 mm) to render enough directional cues at the 

acoustic stimulus level, the mechanical coupling between the two ears can help 

improve the directional hearing ability of the fly so that it can localize its host in 

azimuth and elevation directions. Studies also showed that fly’s sound localization 

trajectory follows a saturation function, which suggests a localization/lateralization 

scheme. This means that the fly can only accurately localize the sound source if the 

sound is coming from orientations within ~20
o
 range. If the sound is beyond this 
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range, the fly is only capable of distinguishing the direction of the sound (i.e. right or 

left). 

 

Figure  1.20: (a) Sketch of the fly-ear and (b) the 2-DOF model of the fly-ear. 

 

    Based on the two-degree-of-freedom (2-DOF) system model [37] of the fly-ear 

(see Figure  1.20(b)), a bio-inspired pressure gradient microphone was developed by 

Miles et al. which consists of two micro-machined polysilicon plates supported by a 

flexible pivot, as shown in Figure  1.21 . The acoustic pressure causes the two plates 

to deflect like a seesaw (rotational mode) or wings (translational mode). The 

deflections of the plates were detected by using an optical system demonstrated by 

Degertekin et al. [39] with a structure similar to the conventional capacitive acoustic 

sensor except that the back electrode has an optical diffraction grating that is used in 

the optical interferometer circuit. The measured light intensity change is a function of 

the deflection of the plates. The sensor has a small size (1 mm x 2 mm), which makes 

it possible to equip the sensor on miniature robots for sound source localization. 

However, there are several drawbacks of this sensor, which include  the response 

amplitude dependence on the direction and the intensity of the sound, limited 

dynamic range, and thermal noise due to the squeeze film damping effect [39].  
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Figure  1.21: Bio-inspired pressure gradient microphone (Miles, et al. 2006) [26]. 

 

     Another sensor design was presented by Saito et al., which has a circular bronze 

diaphragm with a gimbal center support [27], as shown in Figure  1.22. The sensor 

structure with this design has three vibrational modes include one in-phase and two 

out-phase modes. Sound localization using this sensor was achieved in two-

dimension (azimuth and elevation) using the information from the in-phase mode and 

the two out-phase modes of diaphragm deflections. The detection system used to 

detect the deflections of the diaphragm was a laser vibrometer. Although the size of 

this sensor is larger than the previous sensor (radius of 10.8 mm and thickness of 30 

µm), it is still small enough for usage on small robots to localize a sound source. 

However, the problem in this sensor is the size of the detection system, which is even 

larger than the size of the robot. 

 

Figure  1.22: Directional microphone design presented by Saito et al. [27].  
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     In another work, Currano et al. presented a design of a fly-ear inspired MEMS 

acoustic sensor that can be used to localize the sound in one dimension (azimuth) 

[28]. This sensor has two membranes coupled with a beam that amplifies the 

phase difference between the detected signals from the two membranes, as shown 

in Figure  1.23. The sensor structure with this design has also two vibrational 

modes. The first mode is the rocking mode in which the two membranes are 180
o
 

out of phase and the second is the bending mode in which the two membranes are 

in phase, as shown in Figure  1.24. The deflections of the membranes were 

detected by using a low coherence fiber optic interferometer. 

 

Figure  1.23: Bio-inspired MEMS optical acoustic sensor developed by Currano et al. [28].  

 

 

Figure  1.24: Mode shapes of the fly-ear inspired sensor: (a) bending mode and (b) rocking mode 

[28].  
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     An extension of the work of Currano et al., another bio-inspired acoustic sensor 

design is presented by Lisiewski et al., in which sound localization can be achieved in 

two dimensions (azimuth and elevation) [29]. This sensor has three membranes that 

are arranged in a triangular shape, as shown in Figure  1.25. The sensor structure has 

three vibrational modes: two rocking modes and one bending mode, as shown in 

Figure  1.26. The advantage of this sensor compared with the previous work is that the 

sound can be localized in 2-D (azimuth and elevation) and the power consumption 

due to measuring the deflections of three membranes is less than that of using two 

sensors with two-coupled membranes. The size of this device is about 2 mm x 2 mm. 

Owing to these advantages, a miniature robot can be equipped with this sensor to 

localize the sound in 2D. 

 

Figure  1.25: (a) Schematic of the fly-ear inspired sound localization sensor and (b) three-degree-

of-freedom (3DOF) model of the sensor device [29].  

 

 

Figure  1.26: (a) SEM image of the micro-fabricated sensor device and mode shapes of the sensor 

device with (b) rocking mode at 11.3 kHz and (c) bending mode at 19.9 kHz [29]. 
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     Wang et al. presented a sensor that has three membranes that are coupled with 

rigid bars as shown in Figure  1.27 [30]. Laser displacement sensors were used to 

detect the membranes displacements. Specific device size was not mentioned in the 

paper but the separation distance is 50 mm, which gives an indication how big the 

device is compared with the MEMS devices presented by Currano et al. and 

Lisiewski et al. In this work, by using the same mechanics model, the stiffnesses and 

damping factors were investigated and the best values were chosen to increase the 

sensor sensitivity. Two localization methods of the fly were hypothesized.  In the first 

method, the relation between the incident angle and the magnitude of transfer 

functions of any membrane pair displacements is used. The second approach is to find 

the incident angle in two separate steps. In the first step, the fly determines the side of 

the incident sound (ipsilateral or contralateral side). In the second step, the fly takes 

the advantage of the high sensitivity to the sound direction at the zero incident angle 

at a specific frequency. 

 

Figure  1.27: Schematic of the sound localization sensor developed by Wang et al. [30].  

 

     Chen and Cheng studied a biomimetic microphone designed with a central-

supported (C-S) diaphragm, as shown in Figure  1.28 and Figure  1.29 [31]. The 

clover-stem-like C-S design was shown to achieve 47% improvement on net 
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diaphragm displacement in comparison with the conventional C-S diaphragm design. 

Compared with the conventional C-S diaphragm, this design enables compensation of 

undesired deformation of sensing diaphragm due to gravity and residual stresses, and 

good diaphragm flexibility for better sound pressure sensitivity. 

 

Figure  1.28: Conventional (left) and quadratic-linear (right) C-S diaphragms [31].  

 

 

Figure  1.29: Schematic of central-supported gimbal circular biomimetic diaphragm (left), 

schematic of the quadratic-linear biomimetic microphone with central floating gimbal design 

achieving quadratic-linearized by the acoustic sensing mechanism of the parasitoid fly and the 

flexible clover-stem-like gimbal structure (right) [31].  

 

 Objectives and Scope of this Doctoral Research 1.3

     The overall goal of the dissertation work is to investigate how to use the fly-ear 

inspired acoustic sensors for robotic sound source localization and tracking and 

develop a mobile robot platform along with localization algorithms and control 
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schemes for sound source localization and tracking in an indoor environment. 

Specific objectives include the following:  

1. Develop a fundamental understanding of using fly-ear inspired sensors in 

robotic sound localization and tracking. 

2. Develop a localization algorithm based on model free gradient descent 

method to localize a stationary or moving sound source. 

3. Develop a Fuzzy logic model of the fly-ear sensor to map the directional 

cues to the angle of arrival of the sound. 

4. Investigate and develop nonlinear and quadratic-linear controllers to control 

the robot kinematics to localize a stationary and track a moving sound 

source. 

5. Carry out experimental studies on a mobile robotic sound source 

localization platform for implementation and validation of the developed 

localization algorithms and controllers. 

 

 Organization of the Dissertation 1.4

     The rest of the dissertation is organized as follows. In Chapter 2, detailed 

derivation of the CRLB for the coupled and uncoupled microphones is presented to 

show the effect of the coupling beam on improving the theoretical lower bound of the 

bearing angle estimation. In Chapter 3, making use of the fly-ear inspired sensor, 

different sound source localization algorithms are investigated, which utilize an 

optimization method, namely, model-free gradient descent method. In addition, a 

fuzzy logic model of the fly-ear inspired sensor is studied, which will be used to 

directly map the information extracted from the sensor, namely, the ITD to the angle 
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of arrival (AOA) of the sound. Furthermore, experimental studies are conducted to 

compare the performance of localization and tracking of a single sound source using 

the developed fuzzy model to that using the conventional localization algorithms. In 

Chapter 4, nonlinear and quadratic-linear controllers are designed to control the robot 

kinematics to localize and track a stationary and moving single sound source in an 

indoor environment. In Chapter 5, a robotic platform equipped with a microphone 

pair, acting as a tracker, and another platform equipped with an omnidirectional 

speaker, acting as the sound source, are used to study robotic sound localization and 

tracking with a goal of demonstrating the developed algorithms and control schemes. 

In Chapter 6, a summary of the dissertation work is provided along with an outline for 

future work. 
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Chapter 2     Sensor Performance Analysis for Sound Source 

Localization 

       

     Arrangement of microphones in a microphone array is important in sound 

localization. Much effort has been made to find the best arrangement with a given 

number of microphones to achieve the desirable sound localization performance. The 

most popular criterion to determine the sound localization performance is based on 

the Cramer-Rao lower bound (CRLB) [12], [23–25] (see  Appendix A for more 

details). The CRLB has been applied to evaluate many signal processing problems 

including range estimation (e.g. sonar, radar, and robotics) [40], [41], frequency 

estimation (e.g. sonar, radar, econometrics, and spectrometry) [42–44], bearing 

estimation (e.g. sonar and radar) [41], [45], [46], and autoregressive parameter 

estimation (e.g. speech and econometrics) [47]. The CRLB can be used in these 

estimation problems due to the fact that these problems are unbiased estimation 

problems [48].  

     In a previous study, Akcakaya and Nehorai presented a performance analysis of 

the fly ear using the CRLB [49]. In their work, the two-degree-of-freedom (2DOF) 

model of the fly ear was formulated in the state space and the frequency response was 

obtained accordingly. In the analysis, it was assumed that multiple sources were 

present with unknown incident angles. Even though the assumption of multiple 

sources represents a general scenario, this assumption is not necessary to show the 

influence of the mechanical coupling on the accuracy of incident angle estimation. In 

addition, the CRLB analysis was performed in the frequency domain by using the 
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geometrical model of the time delay between the signals from the two ears for both 

the coupled and uncoupled diaphragm configurations. Even though the geometrical 

model can be used to obtain the time delay for two uncoupled microphone, it is not 

valid for the fly ear due to the coupling between the two eardrums.  Furthermore, in 

their results, the phase difference between the two ear signals is shown to be almost 

constant over the entire frequency range. This is not consistent with the findings from 

the previous studies conducted by our group, in which the interaural phase difference 

is found to be amplified as the stimulus frequency reaches the rocking mode natural 

frequency when the signals are out of phase (i.e., IPD = 180
o
) due to the mechanical 

coupling between the ear diaphragms. In this dissertation work, in order to achieve 

the fundamental understanding of the sound localization performance by using the 

fly-ear inspired sensors, the CRLB of the sensor with two coupled diaphragms is 

determined, which is compared with that obtained from two uncoupled diaphragms 

shown in Figure  2.1(a). As illustrated in Figure  2.1(b), the fly-ear inspired sensor has 

two circular diaphragms that are coupled by a beam pivoted in the middle, which can 

help amplify the directional cues. Here the phase difference between the two 

microphone signals [50] is used as the directional cue in the analysis. Furthermore, 

one acoustic source with single tone is assumed for the analysis. 

     In this this chapter, the CRLB of the fly-ear sensor and a conventional two-

microphone array will be derived in detail and compared to study the effect of the 

mechanical coupling between the diaphragms on the variance of the incident angle 

estimation. In addition, numerical simulations will be conducted to compare the 
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variance of the estimation by using a well-known real time estimator, namely, the 

cross correlation, for both the fly-ear sensor and the conventional array. 

 

  
 

Figure  2.1: Schematic of (a) two uncoupled microphones and (b) fly-ear inspired sensor with two 

coupled diaphragms, d is the separation distance between the two microphones, and +θ 

represents a positive incident angle. 

 

 CRLB of Two Uncoupled Microphones  2.1

     Here, two uncoupled microphones are considered, as shown in Figure  2.1 (a). For 

a pure tone source with a frequency f, the signal received from each microphone can 

be obtained as: 

 ( ) ( ) ( )cos 2= + Φ +
m m m m

x t A ft w tπ
,
 (2.1) 

where Am (m=1, 2) is the amplitude of the sound, wm is the white Gaussian noise with 

zero mean and variance σ
2
, Φm is the phase shift of the signal. It is assumed that the 

white noises from the two microphones are uncorrelated. The relationship between 

the two phases Φm (m=1, 2) is described by: 

 
1 2 2 sinΦ = Φ +

d
π θ

λ ,
 (2.2) 
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where d is the separation distance between the two microphones, λ is the sound 

wavelength, and θ is the incident angle. 

Sampling the signal at N evenly spaced instants leads to: 

 [ ] ( ) [ ]cos 2= ∆ ⋅ + Φ +m m m mx n A f t n w nπ
,
 (2.3) 

where n is an integer from 0 to N-1, ∆t is the sampling interval, and wm(n∆t) is simply 

denoted as wm[n]. Accordingly, the signal-to-noise ratio (SNR) can be defined as: 

 ( )2 2SNR / / 2= =m s n mP P A σ  (2.4) 

where Ps and Pn are the signal and the noise power spectra respectively, and σ
2
 is the 

noise variance.  

In order to localize the acoustic source, it is necessary to estimate the following 

parameter vector:  

 [ ]
T

1 2 1 2
   Θ = Φ ΦA A

,
 (2.5) 

Also, to determine the CRLB, one needs to consider the following probability density 

function (PDF) [23], [48]: 

              ( )
( )

[ ] ( )
2 1

2

/2 22
1 0

1 1
; exp cos 2

22

−

= =

 
 Θ = ⋅ − − ∆ ⋅ +Φ  

 
∑∑

N

m m mN
m n

p x x n A f t nπ
σπσ

.

 (2.6) 

Further, the corresponding Fisher Information Matrix (FIM) can be calculated by 

taking the following steps [48] (the details are given in  Appendix A): 

i) Take the logarithm of p(x; Θ) to remove the exponential part. 

ii) Take the partial derivative with respect to the parameters: Θ= [A1 A2 Φ1 Φ2]
T
 

iii) If xm[n] still appears after step ii, the expectation (E{.}) of the obtained Eq. is 

calculated. 



 

31 

 

Accordingly, taking the natural log of p(x; Θ) leads to: 

         ( ) ( ) [ ] ( )
2 1

22

2
1 0

1
ln ; ln 2 cos 2

2 2

−

= =

 Θ = − − − ∆ ⋅ + Φ ∑∑
N

m m m

m n

N
p x x n A f t nπσ π

σ .

(2.7) 

Since there are four parameters, the FIM will be a 4x4 matrix, in which the elements 

of the matrix can be calculated as follows: 

 

11 12 1

21

1

. . .

. .

. . .
( )

. . .

. . .

. . . .

 
 
 
 

Θ =  
 
 
 
  

j

i ij

I I I

I

I

I I

, (2.8) 

where 

2

[ ( )] (

, 1, 2,

; )

3, 4

Θ Θ
 ∂

= −  
∂ ∂  Θ Θ

=

ij

i j

I l

i

x

j

E n p

.

 (2.9) 

The following trigonometric identities are needed for determining the FIM: 

 ( ) ( ) ( )sin 2   2sin cos =β β β
,
 (2.10) 

and                     

( ) ( ) ( )

( )

( )

2 2

2

2

cos 2   cos  –  sin  

               2cos 1 

               1  2sin

=

= −

= −

β β β

β

β
.

 (2.11) 

Starting with the first row in Eq. (2.8), the FIM can be defined as: 

( )( ) [ ] ( ) ( )( )
1

2

1 1 1 12
01

1
 ln ;  cos 2 cos 2

−

=

∂
Θ = + Φ − +∆ Φ⋅ ∆ ⋅

∂
∑
N

n

p x x n f A ft
A

n t nπ π
σ

 (2.12) 

 ( )( ) ( )( )
2 1

12 2
01

1 1
 ln ;  1 cos 4 2

2

−

=

∂
Θ = + +

∂
∆ ⋅ Φ∑

N

n

p x f n
A

tπ
σ

 (2.13) 
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Using the following approximation: 

 ( )
1

1

0

cos 4 2
−

=

+ Φ∆ ⋅∑ �

N

n

ntf Nπ , (2.14) 

then 

 
11 2

[ [ ]]  
2

Θ �
N

I
σ .

 (2.15) 

 

Now using Eq. (2.12), taking the derivative with respect to A2 and Φ2, respectively, it 

can be obtained that: 

 ( )( ) ( )( )
2 1 2 1

 ln ;   ln ; 0
∂ ∂ ∂ ∂

Θ = Θ =
∂ ∂ ∂Φ ∂

p x p x
A A A

, (2.16) 

which gives that 

 [ ] [ ]
12 14

 0   Θ = Θ =   I I
.
 (2.17) 

Similarly, using Eq. (2.12), the third element of the first row is found to be 

 

( )( )

[ ] ( ) ( )( )

1 1

1

1 1 1 12
0

 ln ;

1
 sin 2 sin 4 2

−

=

∂ ∂
Θ =

∂Φ ∂

− + Φ −∆ +⋅ ⋅ Φ∆∑
N

n

p x
A

x n f n A f nt tπ π
σ .

 (2.18) 

     Since xm[n] still appears in the second derivative, taking the expectation of the Eq. 

(2.18)(2.18) gives 

       [I[Θ]]
13

= 
1

σ 2

n=0

N −1

∑ E x
1

n { }sin 2π f ∆t ⋅ n + Φ
1( ) − A

1
sin 4π f ∆t ⋅ n + 2Φ

1( )( )
,

 (2.19) 

                                     [ ] ( )( )
1

1
1213

0

 sin 4 2   0
−

=

 Θ = − + Φ ≈ ∆ ⋅ ∑
N

n

A
I ntfπ

σ .

 (2.20) 
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Note that 

 [ ] [ ]
12 21

    Θ = Θ   I I
,
 (2.21) 

and 

 [ ] [ ]
13 14

 0   Θ = Θ =   I I  (2.22) 

For the second row elements, taking the derivative of the PDF with respect to A2 

gives: 

 

( )( )

[ ] ( ) ( )( )

2

1
2

2 2 2 22
0

 ln ;

1
 cos 2 cos 2

−

=

∂
Θ =

∂

+ − Φ∆ +⋅ ∆ ⋅Φ∑
N

n

p x
A

x n f n A ft t nπ π
σ .

 (2.23) 

Then taking the second derivative of Eq. (2.23) leads to 

 ( )( ) ( )
2 1

2

22 2
02

1
 ln ; cos 2

−

=

∂
Θ = − − ∆ ⋅ + Φ

∂
∑
N

n

p f tx n
A

π
σ

 (2.24) 

Following Step (iii) and using the identities defined earlier leads to: 

 ( )( )
1

22 22
0

1 1
[ [ ]]  1 cos 4 2

2
.

−

=

+ +∆Θ = Φ∑
N

n

f tI nπ
σ .

 (2.25) 

By using Eq. (2.14), it gives: 

 
22 2

[ [ ]]  
2

Θ �
N

I
σ

 (2.26) 

To obtain the first and third elements of the row, taking the derivative of Eq.  (2.23) 

with respect to A1 and Φ1, respectively, gives: 

 ( )( ) ( )( )
1 2 1 2

 ln ;   ln ; 0
∂ ∂ ∂ ∂

Θ = Θ =
∂ ∂ ∂Φ ∂

p x p x
A A A

. (2.27) 

Also note that: 
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 [ ] [ ]
21 23

 0   Θ = Θ =   I I
.
 (2.28) 

For the elements [I[Θ]]24,  [I[Θ]]42, using Eq. (2.23) and taking the derivative with 

respect to Φ2 leads to 

 

( )( )

[ ] ( ) ( )( )
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2 2 2 22
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 ln ;

1
sin 2 sin 4 2

−

=

∆
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∂Φ ∂
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N

n

p x
A

x n f n A f nt tπ π
σ

.

(2.29) 

Similarly, it can be obtained that  

                     
[ ]{ } ( ) ( )( )

24 42

1

2 2 2 22
0

[ [ ]]  [ [ ]]  

1
sin 2 sin 4 2

−

=

Θ = Θ =

⋅ + Φ ⋅∆− + Φ∆∑
N

n

I I

E t tx n f n A f nπ π
σ .

 (2.30) 

Using Eqs. (2.10) and (2.11), the following FIM elements are found 

            ( )( )
1

2
24 42 22

0

[ [ ]]  [ [ ]]  sin 4 2   0
−

=

Θ = Θ = − ⋅ + Φ ≈∆∑
N
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nt
A

I I fπ
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 (2.31) 

For the third row of the FIM, taking the derivative of PDF with respect to Φ1 leads to: 
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(2.32) 

Then, taking the second derivative gives: 
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(2.33) 

Further, following Step (iii) ,  the third element of the third row can be obtained as: 
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                       [ ] ( ) ( )
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21
1 1233
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 (2.34) 

Similarly, using Eqs. (2.10) and (2.11) leads to 

 [ ] ( )( )
2 21

1 1
12 233
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 1 cos 4 2   
2 2
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=
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Since 

 ( )( ) ( )( )
1 1 1 1

 ln ;  ln ; 0
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Θ = Θ =
∂Φ ∂ ∂ ∂Φ

p x p x
A A

 (2.36) 

and ( )( ) ( )( )
2 1 2 1

 ln ;   ln ; 0
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Θ = Θ =
∂ ∂Φ ∂Φ ∂Φ

p x p x
A ,

 (2.37) 

it can be obtained that [ ]
31

0 Θ = I  (2.38) 

and [ ] [ ]
32 34

 0   Θ = Θ =   I I
.
 (2.39) 

Finally, for the fourth row of the FIM, taking the derivative of the PDF with respect 

to Φ2 gives: 
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 (2.40) 

Next, taking the second derivative leads to: 
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(2.41) 

Similarly, following Step (iii), it can be shown that 

                    [ ] ( ) ( )
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which can be further simplified as [ ] ( )
2 1
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4244
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 sin 2
−
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Again, using the identities defined earlier leads to: 
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It can be also shown that: 

 ( )( ) ( )( )
1 2 1 2

 ln ;  ln ; 0
∂ ∂ ∂ ∂
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∂ ∂Φ ∂Φ ∂Φ
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Therefore, it can be obtain that [ ] [ ]
41 43
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and                                                       [ ] [ ]
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 (2.48) 

Accordingly, the FIM matrix is found to be: 
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Since FIM is a diagonal matrix, the inverse of FIM is found to be: 
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 (2.50) 

The CRLB can be written as: 

1 1
 ( )   int( )

det( )

−= = ×CRLB FIM Adjo FIM
FIM

 (2.51) 

To determine the variance of the following parameters:  

 [ ] ( )1 2
    = = Θ

T
A A gα θ

,
 (2.52) 

the variances are related to the CRLB as  
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where 
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and 
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Therefore, the variance of the incident angle estimation using Eq. (2.53) can be 

rewritten as 
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 (2.56) 

where SNR1 and SNR2 are the signal to noise ratios of the two microphone signals, 

which are defined as [48]: 
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 (2.57) 

Let the equivalent SNR be defined as: 

 1 2

1 2

⋅
=

+
eq

SNR SNR
SNR

SNR SNR ,

 (2.58) 

and the directional sensitivity DS be defined as the derivative of interaural phase 

difference (IPD) with respect to the incident angle, i.e. 

 ( )2 cos
∂  

= = 
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IPD d
DSπ θ

θ λ ,

 (2.59) 

the variance can thus be determined as 
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1 1 1
var ≥

eq
SNR N DS

θ

.

 (2.60) 

 CRLB of the Fly-Ear Inspired Sensor 2.2

     In the fly-ear inspired sensor, the two diaphragms are mechanically coupled by a 

beam as indicated in Figure  2.1(b). As a result, the IPD in the sound stimulus is 

amplified to the mechanical Interaural Phase Difference (mIPD). Hence, Eq. (2.2) 

needs to be replaced by: 

 
1 2

Φ = Φ + mIPD
,
 (2.61) 

where mIPD can be obtained from the equivalent 2-DOF model of the acoustic sensor 

by (details are shown in  Appendix B):  

 
( )
( )

tan / 2

tan / 2

Γ +
= ∠

Γ −

j IPD
mIPD

j IPD
,

 (2.62) 

where 
2

1

2 2

2

1 2

2

− Ω + Ω
Γ =

− Ω + Ω

j

j

ξ

η ηξ
,

 (2.63) 

Also, η = f2 / f1 denotes the ratio of the system first two natural frequencies, ξ1, and ξ2 

are the damping ratios, Ω is the sound frequency f normalized by the first natural 

frequency of the fly-ear inspired sensor structure as Ω = f / f1. Following the same 

procedure used in obtaining the CRLB for the uncoupled microphones in the previous 

section and using Eqs. (2.61) - (2.63), the variance can be obtained for the fly-ear 

inspired sensor as  

 �( ) 2

1 1 1
var ≥

eq
SNR N mDS

θ

,

 (2.64) 

where mDS is the directional sensitivity of the fly-ear inspired sensor and  
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∂

=
∂

mIPD
mDS

θ .

 (2.65) 

Accordingly, to determine the mDS, let 

 Γ = +R Ij . (2.66) 

Then, Eq. (2.62) can be rewritten as 

 

 tan
2

 

 tan
2

  
+ +   

  =∠
  

+ −   
  

R j I

mIPD

R j I

ϕ

ϕ

,

 (2.67) 

where 

 2 sin( )= ≡
d

IPDϕ π θ
λ ,

 (2.68) 

and                                                           ( )2 cos
∂

=
∂

dϕ
π θ

θ λ .
 (2.69) 

Multiplying Eq. (2.67) by the conjugate of the denominator, gives: 

 ( )
2 2 2

2 . tan
2

tan

tan
2

 
 
 =

 
+ −  

 

R

mIPD

R I

ϕ

ϕ

.

 (2.70) 

     Next, the derivative of mIPD with respect to the incident angle is determined to 

estimate the directional sensitivity as follows: 

 
( )( )

( )

2 2 2

2
2 2 2 2

2 ( / ) cos 1

4

Γ + Ψ + Ψ
=

Γ

∂
=

∂ − Ψ + Ψ

mIPD d

R

m
R

DS
π

θ

λ θ

,

 (2.71) 

where R denotes the real part of Γ  as 

 
2

1

2 2

1

1 2

2

− Ω + Ω
=

− Ω + Ω
R

ξ

η ηγξ
,

 (2.72) 
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and Ψ are defined as: 

 tan sin
 

Ψ =  
 

d
π θ

λ .

 (2.73) 

     Based on Eqs. (2.60) and (2.64), it can be concluded that the variance of the 

azimuth estimation for both the conventional microphone pair and the fly-ear inspired 

sensor is inversely proportional to the equivalent SNR, number of samples, and the 

squares of the directional sensitivity. When the SNR and N are assumed to be the 

same for both the conventional microphone pair and the fly-ear inspired sensor, for 

the ease of comparison, the variance can be normalized as follows: 

 �( ) �( )var var= ⋅ ⋅n eqSNR Nθ θ
.
 (2.74) 

     In Figure  2.2, comparison of the normalized CRLB for both the conventional 

microphone pair and the fly-ear inspired directional microphone is shown, in which 

for the simulation purposes, the fly-ear inspired sensor is characterized with the same 

calibrated parameters of the fly ear listed in Table  2-1 [37]. Two remarks can be 

made, based on this figure. First, for both configurations, the CRLB increases as the 

sound incident angle increases. This indicates that the incident angle estimation 

accuracy decreases when the sound source deviates from the midline (θ=0
o
). Second, 

due to the amplification of the directional sensitivity by the mechanical coupling 

mechanism, the CRLB for the fly-ear inspired sensor can be reduced significantly. 

For example, at the midline, the directional sensitivity is amplified from 0.11 deg/deg 

in the sound stimulus input to 1.13 deg/deg in the mechanical response output. As a 

result, the CRLB of the fly-ear reduces to be less than 1/100 of that obtained for the 

conventional microphone pair with the same separation distance between the two 
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microphones. This indicates that the mechanical coupling improved the incident angle 

estimation accuracy by 100 times compared with that of the conventional microphone 

pair. 

Table  2-1: Parameters used in the 2-DOF model for the fly-ear [37] 

Parameters Values 

Mass of membrane m 2.88×10
-10

 kg 

Translational spring k1,k2 0.576 N/m 

Translation dashpot c1,c2 1.15×10
-5

  N s/m 

Torsional spring k3 5.18 N/m 

Torsional dashpot c3 2.88×10
-5

  N s/m 

Separation of force locations d 1.2×10
-3

  m 

Tympanum area s 0.288×10
-6

  m
2
 

Excitation frequency ω 3.14×10
4
 rad/s (5 kHz) 

Sound speed c 344 m/s 

 

   

Figure  2.2: Cramer-Rao lower bound (CRLB) of azimuth estimation obtained from both the 

microphone pair and the fly-ear inspired sensor. The separation distance is 1.2mm for both 

cases, the frequency is 5kHz, and the parameters in  [37] are used for the fly-ear inspired sensor. 

      

     A question needs to be addressed is whether an unbiased estimator that can be 

used to achieve the CRLB exists for the fly-ear inspired sensor and the conventional 

microphone array. Clearly, if the CRLB condition can be satisfied then there exists an 
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unbiased estimator that attains the CRLB, which is the minimum variance unbiased 

(MVU) estimator. Otherwise, an unbiased estimator that attains the CRLB does not 

exist. But this does not necessarily mean that there may not be a minimum variance 

unbiased estimator. To further explore this, the CRLB theorem [48] for the scalar and 

vector parameters states that:  

(i) Cramer-Rao lower bound theorem for scalar parameters 

It is assumed that the PDF p(x; θ) satisfies the “regularity” condition  

 ln ( ; ) 0
∂ 

= ∂ 
E  p x for allθ θ

θ ,

 (2.75) 

where the expectation is taken with respect to p(x; θ). Then, the variance of any 

unbiased estimator θ! must satisfy 

 �
2

2

1
var( )

ln ( ; )

≥
 ∂

−  ∂ 
E  p x

θ

θ
θ

,

 (2.76) 

where the derivative is evaluated at the true value of θ and the expectation is taken 

with respect to p(x; θ). Furthermore, an unbiased estimator can be found that attains 

the CRLB for all θ if and only if 

 ln ( ; ) ( ) ( ( ) )
∂

= × −
∂

 p x I g xθ θ θ
θ ,

 (2.77) 

for some functions g(.) and I (.). The estimator, which is the MVU estimator, is

� ( )g xθ = , and the minimum variance is 1/ I(θ). 

(ii) Cramer-Rao lower bound theorem for vector parameters 

It is assumed that the PDF p(x; θ) satisfies the “regularity” condition  
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 ln ( ; ) 0
∂ 

= ∂ 
E  p x for allθ θ

θ ,

 (2.78) 

where the expectation is taken with respect to p(x; θ). Based on Eq.(2.77), the 

covariance matrix of any unbiased estimator θ!	satisfies 

 �

1( ) 0−− ≥C I
θ

θ
,
 (2.79) 

where larger or equal to zero is interpreted as meaning that the matrix is positive semi 

definite. The Fisher information matrix I(θ) is then given as 

 
2

[ ( )] ln ( ; )
 ∂

= −  
∂ ∂  

ij

i j

I E  p xθ θ
θ θ

,

 (2.80) 

where the derivatives are evaluated at the true value of θ and the expectation is taken 

with respect to p(x; θ). Furthermore, an unbiased estimator can be found that attains 

the CRLB in that �

1( )C I
θ

θ−= if and only if Eq. (2.77) is satisfied. For a q-

dimensional function g and a q x q matrix I, the estimator, which is the MVU 

estimator, is � ( )= g xθ , and its covariance matrix is I
-1

(θ). 

     It is found that Eqs. (2.12), (2.23), (2.32), and (2.40) cannot be rewritten in the 

form shown in Eq. (2.77) in the CRLB theorem for the vector parameters. Therefore, 

there is no unbiased estimator that can be used to attain the CRLB. To find a possible 

MVU estimator, two approaches can be used, namely, applying the Rao-Blackwell - 

Lechman - Scheffe theorem [48], which is not common in practice, or applying a 

linear unbiased estimator. The problem of using the second approach is that the 

sensor behavior is not linear and a linear approximation can only be made within a 

certain range of incident angles. Outside this linear region, the linear unbiased 

estimator is not valid. 
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     Using the first approach, a single sufficient statistic for θ should be found by using 

the Neyman-Fisher factorization theorem [48]. Then, the sufficient statistic is tested 

for completeness. If it is not complete, this approach cannot be used. If it is complete 

a function g of the sufficient statistic that yields an unbiased estimator #! = g(T(x)) 

should be found which is the MVU estimator. An alternative implementation of the 

last step can be evaluating #! = E(#$ |T(x)), where θ$  is any unbiased estimator. 

     According to Neyman-Fisher factorization theorem, if the PDF p(x;θ) can be 

written as 

 ( ) ( )( ; )  ( , )=p x g T x h xθ θ
,
 (2.81) 

where g is a function depending on x through T(x) with r x 1 statistic, and also on θ, h 

is a function depending only on x, and T(x) is a sufficient statistic for θ.  

The PDF in Eq. (2.81) can be re-written as the following: 
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 (2.82) 

where the jointly sufficient statistic is represented as 
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. (2.83) 

Since the PDF (Eq. (2.82)) belongs to the vector exponential family of PDFs, the 

sufficient statistic is complete. 
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Based on Rao-Blackwell – Lechman – Scheffe theorem, if θ$  is an unbiased estimator 

of θ and T(x) is an r x 1 sufficient statistic for θ, then #! = E(#$ |T(x)) is 

i) a valid estimator for θ (not dependent on θ), 

ii) unbiased, 

iii) of lesser or equal variance that of #$(each element of #! has lesser or equal 

variance). 

     Additionally, if the sufficient statistic is complete, then θ! is the minimum variance 

estimator. However, the Rao-Blackwell - Lechman - Scheffe theorem cannot be 

applied without the estimators g(T(x)) which cannot be easily obtained. Alternatively, 

numerical simulations are conducted to find the angle estimation variance. 

 Numerical Simulations 2.3

     Numerical simulations are conducted to find the angle estimation variance by 

using the variance of the phase difference between two signals, namely, the IPD in 

Eq. (2.68). The signals from the two microphones in the fly-ear sensor [37] or the 

conventional microphone pair are defines as follows 

The fly-ear inspired sensor [37], the signals are 

 
1

2

( ) sin( ) cos( ),

( ) sin( ) cos( ),

= + + +

= + − +

t t r r

t t r r

x t A t A t

x t A t A t

ω φ ω φ

ω φ ω φ
 (2.84) 

where 
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 (2.85) 

     Here, P is the sound pressure level in dB, s is the sensor diaphragm cross sectional 

area, m is the mass of the diaphragm, ωt and ωr are the bending and the rocking mode 

natural frequencies, respectively, in rad/s, ξt and ξr are the bending (translational) and 

the rocking mode damping ratios, respectively, and ω is the stimulus frequency. 

For a conventional microphone pair, the received signals can be written as: 

 ( ) sin( ), ( 1,2)= + =
m m m

x t A t mω φ  (2.86) 

where 

 
1( 1) sin( )+= − m

m

d
φ π θ

λ .
 (2.87) 

Here, d and λ are the separation distance between the microphones and the sound 

wavelength, respectively. The phase difference between the signals is obtained using 

one of the well-known methods, namely, the cross correlation explained earlier in 

Section  1.2.1.2. 

     The variance of the incident angle estimation cannot be evaluated directly, since 

the closed form calculation of the incident angle cannot be derived from Eq. (2.62). In 

this work a numerical approach is developed to evaluate the variance of the incident 

angle estimation.  
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     To get the variance of estimating the sound incident angle, the variance of 

estimating the phase difference can be utilized since IPD is a function of the sound 

incident angle and frequency; that is, 

 ( , )=IPD F fθ . (2.88) 

Taking the Taylor series expansion of Eq. (2.88) at a specific known frequency and 

ignoring the higher order terms leads to 

 
( )∂

≅ ⋅
∂

F
IPD

θ
θ

θ
. (2.89) 

The variance is found to be 

 
2

var( )
var( ) ≅

∂ 
 

∂ 

IPD

IPD
θ

θ .

 (2.90) 

     In the simulations, a sampling rate of 500 kHz is used to obtain 1000 data points 

for each signal with additive white Gaussian noise. Angle estimation was conducted 

100 times at each hypothetical sound position.  Since the phase difference estimation 

is sensitive to the separation distance and signal to noise ratio (SNR), these 

parameters are kept the same in the simulations for the conventional microphone 

array and the fly-ear sensor to have a fair comparison under the same conditions.  

 Based on Eq. (2.97), the variance of the simulated measurements is evaluated and 

compared with the CRLB obtained for the fly-ear inspired sensor and the 

conventional microphone array, as shown in Figure  2.3, in which the SNR is assumed 

to be 30 dB. As expected, a smaller variance is obtained for the fly-ear inspired 

sensor than that for the conventional microphone array due to the higher directional 

sensitivity resulted from the mechanical coupling between the diaphragms. Figure  2.4 
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shows the effect of the SNR on the variance of the incident angle estimation at a 

specific incident angle of 45
o
. Both the fly-ear and the conventional microphone array 

exhibit a smaller variance with increasing the SNR.  

 

Figure  2.3: Cramer-Rao lower bound (CRLB) of azimuth estimation and the variance of azimuth 

estimation using Eq. (2.90). The diaphragms separation is 1.2mm, the frequency is 5 kHz, and 

the parameters in [33] are used for the fly-ear inspired sensor. The signal to noise ratio is 30 dB 

 

Figure  2.4: Variance of azimuth angle estimation at different SNRs. The diaphragms separation 

is 1.2mm, the frequency is 5 kHz, the parameters in  [33] are used for the fly-ear inspired sensor, 

and the incident angle is 45
o
. 
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      The above results indicate that using the fly-ear inspired sensor with mechanical 

coupling between the two microphone diaphragms, the accuracy of estimating the 

sound incident angle can be improved. This means that by using a microphone array 

with the fly-ear inspired sensor, a reduced size of the array can be obtained, without 

significantly compromising the localization performance. These results demonstrate 

that it is promising that the fly-ear inspired sensors can be applied to miniature robots 

for sound source localization. 

 Summary 2.4

     In this chapter, the derivation of the Cramer Rao Lower Bound (CRLB) for the 

fly-ear inspired sensor and the conventional two-microphone array is presented. 

Comparing with that of a microphone pair with the same separation distance and 

same signal to noise ratio, it is found that the CRLB for the fly-ear inspired sensor is 

100 times less due to the mechanical coupling between the diaphragms.  

     A numerical approach is used to obtain an estimation of the incident angle with the 

fly-ear inspired sensor and the two-microphone array. The simulation results 

demonstrate that the fly-ear sensor has a much lower variance (~500 times) in the 

sound incident angle estimation than that for the conventional two-microphone array. 

The improvement on the incident angle estimation variance for the fly-ear inspired 

sensor is related to the high directional sensitivity enabled by the mechanical coupling 

between the diaphragms in the sensor. 

     These results shown that it is promising to equip the fly-ear inspired sensors in 

miniature robots for sound source localization, which will help to address size 
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restrictions associated with the conventional microphone arrays. These results can 

also enhance the understanding of the performance of the fly-ear inspired sensors. 

 

Chapter 3    Sound Localization Algorithms 

 

      Although the fly-ear inspired sensor has been proven to have better performance 

in estimating the sound incident angle compared with a conventional microphone 

pair, using the fly-ear inspired acoustic sensor for localizing the sound source has 

several challenges. First, based on Eq. (2.62), the explicit analytical expression for the 

sound azimuth angle is difficult to obtain from the measurement results of mechanical 

Interaural Phase Difference (mIPD). Second, since mIPD to sound incident angle is a 

surjective (not one-to-one) mapping (i.e., inverse problem) for different frequencies, 

the incident angle cannot be obtained easily. Third, when the mIPD is used as the 

directional cues, differentiation between the sound propagating from the front and the 

back is challenging which results in the “ambiguity problem”. 

     In this chapter, two sound source localization algorithms that can be used along 

with the fly-ear inspired acoustic sensors are developed. The first sound source 

localization algorithm utilizes an optimization method, namely, the model-free 

gradient descent method. This algorithm utilizes the extracted phase difference 

information (i.e., mIPD) from the fly-ear inspired sensor, which is investigated for 

two dimensional sound localization. Instead of using an iterative optimization 

technique to localize the sound, the second algorithm employs a fuzzy logic method. 

This algorithm can be used to obtain a mapping between the sound azimuth angle and 
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the information extracted from the fly-ear inspired sensor (e.g., mIPD or mechanical 

interaural time difference (mITD)).  

 Optimization Based Method 3.1

      In optimization, a gradient descent/ascent method, which is a first-order 

optimization algorithm, is commonly used to find a local minimum/maximum of a 

function. Using this method, increments proportional to the negative/positive of the 

gradient of the function are taken, at the current point to improve the estimates of the 

state variable y, which can be written as [51]:   

 ( 1) -  ( )  -  ( ( ))+ = ∇y i y i J y iµ , (3.1) 

where µ is the gain such that  

 
 > 0       (searching for local minimum)

 < 0       (searching for local maximum)

µ

µ
 (3.2) 

and J is the objective function used to find a local minimum/maximum. 

  

     In this work, rather than calculating the analytical value for the gradient, the sensor 

measurement will be used to numerically evaluate the gradient in the azimuth and 

elevation directions. In addition, the gradient can be approximated as a finite 

difference as the following: 

 ( ( 1)) ( ( ))
( )

( 1) ( )

Θ + − Θ
∇ Θ =

Θ + − Θ
J i J i

J
i i ,

 (3.3) 

where Θ is the absolute position of the fly-ear sensor. 

     In order to illustrate this algorithm, a conventional microphone array with four 

microphones is used which satisfies the uniform angular distribution [24], as shown 
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in Figure  3.1. In this work, the studies are carried out for the conventional 

microphone array, but the methodology can be readily applied to the fly-ear inspired 

sensor array. Two rotational stages are used to control the azimuth and elevation 

positions separately. The separation distance between each two microphones in the 

azimuth/elevation is assumed to be 1 inch (2.54 cm).  Figure  3.2 illustrates the setup 

of two rotational stages equipped with two of the 2-diaphram fly-ear inspired devices 

or one of the 3-diaphragm device for sound localization in the azimuth and elevation 

directions. 

 

Figure  3.1: Conventional microphone array arrangement, where θ and φ are the azimuth and 

elevation angles. 
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Figure  3.2: Sound localization with two rotational stages and the fly ear inspired sensors. 

 Objective Functions  3.1.1

     In this section, two objective functions are developed and investigated with a goal 

of achieving the least number of iterations and smallest error in sound source angle 

determination.  The first objective function, called the 3-Point Algorithm (3PA), is 

defined as: 

   / /= − ∂ ∂ − ∂ ∂J ITD ITDθ ϕ , (3.3) 

where ∂ITD/∂θ, and ∂ITD/∂φ are the directional sensitivity of the sensor (or the 

microphone array) in the azimuth (θ) and elevation (φ) directions, respectively. 

Figure  3.3 shows the contour plot of the negative of objective function described in 

Eq. (3.3), which achieves the global minimum value at the origin (θ = φ = 0
o
), when 

the sensor is pointing to the sound source. 



 

55 

 

 

Figure  3.3: Contour plot of the objective function given by Eq. (3.3). 

 

     To evaluate the change in the objective function (Eq. (3.3)) via the finite 

difference approximation, three data points are needed in each direction, e.g., ITD(θi), 

i=1,2,3, in the azimuth direction, where θ1 , θ2, and θ3 represent the starting position, 

the end position after one moving step, and the end position after two moving steps, 

respectively. Let J1 denote the objective function based on the first two data points, 

and J2 to be based on the last two data points. Accordingly, the change in the 

objective function can be obtained as: 

 2 1
= −J J Jδ

,
 (3.4) 

The second objective function, called 2-Point Algorithm (2PA), is defined as: 

 
2 2  = +J ITD ITDϕθ ,

 (3.4) 

where ITDθ,
 

and ITDφ are the ITD in the azimuth and elevation directions 

respectively. 
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Figure  3.4: Contour plot of the objective function given by Eq. (3.4). 

 

    The objective function J defined in Eq. (3.4) has a global minimum value (ITD = 0) 

when the sensor is pointing to the sound source direction, as shown in Figure  3.4. To 

evaluate the change in the objective function given by Eq. (3.4), two data points in 

each direction are needed, namely, ITD(θ1), and ITD(θ2) where θ1 represents the 

current position and θ2 represents the end position after one moving step. The change 

in this objective function can similarly be calculated by Eq. (3.4). 

 Proposed Localization Schemes 3.1.2

     After defining the objective functions a control function needs to be applied to 

relate the change in the objective function to the step size for moving the rotational 

stages using the gradient descent method. Here, four model-free localization schemes 

are proposed, which are the following: 

 1
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 1
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     Here, ∆θ and ∆φ are the rotation angles in the azimuth and elevation directions 

respectively. µ, α, and β denote the gain values, and δJ is the change in the objective 

function, w11 and w22 are weighting factors that will be defined later depending on the 

objective function and δu1 and δu2 are the rotation directions (clockwise (+1) or 

counter clockwise (-1)) in the azimuth and elevation directions, respectively. The first 

three schemes given by Eqs. (3.4) - (3.6) are called Non Weighted Algorithm (NWA), 

while the last one given by Eq. (3.6) is called the Weighted Algorithm (WA). The 

characteristics of each scheme are investigated through simulations at different initial 

positions of the sound source.  

      The first localization scheme given by Eq. (3.4) uses the same gain value µ and 

objective function change δJ to control both azimuth and elevation rotational stages. 

The drawback of using this scheme is the large overshoot. This overshoot is related to 

the fact that when the azimuth and elevation angles are not close to each other, one 

term in the objective functions will be dominant. This will result in an overshoot in 

one of the directions until the two angles (azimuth and elevation) become close to 

each other. 

     The second localization scheme given by Eq. (3.5) uses the same δJ but different 

gain values (α and β) to control the two rotational stages. The drawback of using this 
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scheme is the need for continuously tuning the gains at different sound positions, 

which is experimentally impractical unless the gain is changed adaptively. 

     The third scheme given by Eq. (3.6) uses the same gain value µ but different δJ to 

control the two rotational stages. This case limits the working range of the system, in 

which the sound position in the azimuth and the elevation directions should be equal 

or close to each other, otherwise the system performance will be undesirable. For 

example, since the two stages are controlled using the same gain with different 

changes in the objective function, using a larger gain will cause the direction with the 

smaller δJ to move with a large step.  Furthermore, Since in the linear region, using 

the directional sensitivity, δJ will be constant and thus there will be no convergence 

toward the zero angle in that direction unless the azimuth and elevation angles are 

initially equal or close to each other. On the other hand, using a smaller gain may 

solve the problem but at the cost of convergence time.  

     Finally, the fourth localization scheme described by Eq. (3.6) uses the same gain 

value µ and the same δJ with weighting factors. For the objective function defined in 

Eq. (3.3), the weighting factors are defined as  
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 (3.8) 

     The localization algorithm based on these weighting factors and the control 

scheme defined in Eq. (3.6) is called the Weighted 3-Point Algorithm (W3PA). Using 

the same scheme, the weighting factors can also be defined for the objective function 
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(3.4) as: 
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     In this case the localization algorithm is called the Weighted 2-Point Algorithm 

(W2PA). 

     In Figure  3.5, the azimuth and elevation angles obtained with different algorithms, 

using the objective functions defined by Eqs. (3.3) and (3.4) and the localization 

schemes described in Eqs. (3.4) and (3.6), for an initial position with 75
o
 azimuth and 

20
o
 elevation angles are compared. It can be seen that the number of iterations needed 

for the non-weighted two-point and weighted three-point algorithms is larger than 

those for the weighted two-point and non-weighted three-point algorithms. In 

addition, the overshoot happens in the non-weighted two-point, the non-weighted 

three-point, and the weighted three-point. The weighting did not help in reducing the 

overshoot because of the large gain that is chosen based on the criteria in terms of the 

number of iterations  required to converge and the steady state error. To reduce the 

overshoot, a smaller gain can be used at the cost of increasing the number of 

iterations to localize the sound. This means that there is a tradeoff between the 

number of iterations and the level of overshoot when specific algorithm is used. 
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Figure  3.5: Time history of (a) azimuth and (b) elevation angles obtained with different 

algorithms for the initial sound source position θ =75
o
 and φ = 20

o
. 

 

     In Figure  3.6, the directional sensitivity updates in the azimuth and elevation 

directions obtained with different algorithms are compared. The overshoot observed 

earlier for the weighted three-point algorithm (see Figure  3.5(b)) agrees with the 

overshoot shown in Figure  3.6(b). The overshoot in the non-weighted two-point and 

the non-weighted three-point algorithms does not affect the sensitivity plot due to the 

fact that the conventional microphone array or the fly-ear inspired sensor has linear 

response within the incident angle region of -30
o
 to 30

o
 azimuth and elevation 

directions. The non-weighted two-point and weighted three-point algorithms require 

more iterations to achieve convergence than the weighted two-point and non-

weighted three-point algorithms. 
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Figure  3.6: Time history of (a) azimuth and (b) elevation directions sensitivities obtained with 

different algorithm for the initial sound source position θ =75
o
 and φ = 20

o
. 

 
Table  3-1:Performance comparison of proposed algorithms 

Localization algorithm 

Number 

of 

iterations 

Steady state error 

azimuth 

 (deg) 

Steady state error 

Elevation 

 (deg) 

Non-weighted 3-point 5 1.45 1.48 

Weighted 3-point 7 1.44 1.35 

Non-weighted 2-point 7 1.02 1.02 

Weighted 2-point 5 1.00 1.00 

 

     In Table  3-1, the localization algorithm performance obtained with different 

algorithms for the initial positions of θ = 75
o
, and φ = 20

o
 are compared. As 

concluded earlier the number of iterations required for the non-weighted three-point 

and the weighted 2-point algorithm are less than that for the weighted three-point and 

the non-weighted 2-point algorithms. The steady state error, which is defined as the 

average of the steady state azimuth/elevation angle with respect to zero,  ranges from 

1 ̴ 1.5 degrees for all algorithms in both azimuth and elevation directions.    
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 Ambiguity Problem 3.1.3

     The algorithms discussed previously have been shown to be able to localize the 

sound source in two dimensions (2D), namely azimuth and elevation directions. Here 

an answer is sought for the following question: can the proposed algorithms be used 

to localize a sound propagating from the back (i.e., ambiguity problem)? To answer 

this question, the initial sound direction in both azimuth and elevation directions are 

changed to θ = 100
o
, and φ = -120

o
 to represent a sound from the back of the sensor. 

The results are shown in Figure  3.7. 

 

Figure  3.7: Time history of (a) azimuth and (b) elevation angles obtained with different 

algorithms for the initial sound source position θ =100
o
 and φ = - 120

o
. 

 

     The results show that the numbers of iterations required to localize a back sound 

with the non-weighted 2-point and weighted 3-point algorithms are more than those 

obtained with the weighted two-point and non-weighted three-point algorithms. This 

is similar to the previous case for localizing a front source. The non-weighted two-

point and the non-weighted three-point algorithms exhibit overshoot due to the gain 

value and the dominating ITD values associated with the non-weighted cases. To 
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reduce the overshoot, a smaller gain can be used at the expense of increasing the 

number of iterations. The control performance is more chattering for the weighted 

three-point algorithm than that for the other three methods. The reason is that for the 

specific initial position chosen for the simulation, the derivative ∂ITD/∂φ is larger 

than ∂ITD/∂θ so that the localization scheme has more effect on the elevation 

rotations. Furthermore, results indicate that all the algorithms can be used to localize 

a sound from the back of the sensor without the “ambiguity problem”. To explain this, 

for simplicity, consider sound source localization in a 1D case (azimuth only). 

Assume that the sign of the measured ITD according to the configuration shown in 

Figure  3.1 is positive. Then, the stage will rotate clockwise, which causes an increase 

in the measured ITD and a decrease in the sensitivity until the measured ITD reaches 

the maximum and the sensitivity reaches the minimum. After this point, the sound 

source becomes in frontal position and the localization process will continue till the 

sound source is located. This process of localizing a back source needs more effort     

In Figure  3.8, the sensitivity histories obtained with different algorithms in the 

azimuth and elevation directions for a back sound source are compared. The 

sensitivity requires less number of iterations to stabilize than the angle, due to the fact 

that when the sound position is in the linear region the sensitivity becomes constant. 

It is also noted that the large fluctuations in the elevation angle history shown in 

Figure  3.7(b) for the weighted three-point did not show up in Figure  3.8. 

compared with the front source case, which is reflected on the number of iterations as 

shown in Table  3-2. 
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Table  3-2: Proposed algorithms performance for localizing a back source 

Localization algorithm 
Number of 

iterations 

steady state error 

azimuth 

 (deg) 

steady state error 

elevation 

 (deg) 

Non-weighted 3-point 6 1.03 1.00 

Weighted 3-point 9 1.37 1.90 

Non-weighted 2-point 11 1.24 1.02 

Weighted 2-point 7 1.00 1.00 

 

 

Figure  3.8: Time history of (a) azimuth and (b) elevation directional sensitivities obtained with 

different algorithms for the initial sound source θ = 100
o
 and φ = -120

o
. 

 

     Table  3-2 summarizes also the localization algorithm performance obtained with 

different algorithms for the initial positions θ = 100
o
 and φ = -120

o
. As concluded 

earlier, the number of iterations for the non-weighted three-point and the weighted 

two- point algorithm is less than that for the weighted three-point and the non-

weighted two- point. The absolute localization error (steady state error) in all cases 

ranges from 1 ̴ 1.9 degrees for both azimuth and elevation directions. 

      The gain values used in the simulations are listed in Table  3-3. These values are 

obtained by using a MATLAB code that searches for the gains leading to the smallest 

number of iterations and the smallest absolute error at steady state. 

1 3 5 7 9 11 13 15
-0.5

0

0.5

1

1.5

Number of Iterations
(a)

A
zi

m
u

th
 A

n
g

le
 S

en
si

ti
v

it
y

 

( 
µ

se
c/

d
eg

)

 

 

Non-Weighted 2-point

Weighted 2-point

Non-Weighted 3-point

Weighted 3-point

1 3 5 7 9 11 13 15
-1

-0.5

0

0.5

1

1.5

Number of Iterations
(b)

E
le

v
at

io
n

 A
n

g
le

 S
en

si
ti

v
it

y
 

( 
µ

se
c/

d
eg

)

 

 

Non-Weighted 2-point

Weighted 2-point

Non-Weighted 3-point

Weighted 3-point



 

65 

 

Table  3-3: Gain values used in different algorithms 

Algorithm  
Non-weighted 2-

point 

Weighted 2-

point 

Non-weighted 3-

point 

Weighted 3-

point 

gain µ 0.034 0.073 320 440 

 

     In summary, the model-free gradient descent method for the sound localization 

without the problem of ambiguity has been demonstrated in the simulations. 

However, the main drawback of this method is that it is time consuming especially 

when the sound source is moving in space following an unknown path since this 

method is based on physical motion iterations not numerical iterations. In the next 

section a non-iterative approach is investigated in which the sound localization is 

achieved by modeling the fly-ear sensor using fuzzy logic.  

 Fuzzy Logic Method 3.2

     To carry out robotic sound source localization, the uncertainties in ITD/IPD 

measurements should be considered. In addition, as discussed earlier, for a fly-ear 

inspired sensor, the relation between the incident angle and the directional cue is 

linear within the -30
o
 to 30

o
 sound incident angle. Outside this linear region the 

measurement of directional cue behaves nonlinearly with respect to the sound 

incident angle. This nonlinear relationship also varies with respect to different 

stimulus frequencies. To address this, it is essential to study a localization algorithm 

with which one can make use of the entire range of incident angles regardless the 

frequency of the sound source. Beside the iterative method discussed in Section 3.1, 

several methods can be used to localize the sound source in general. The first method 
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is based on the assumption that the mIPD has a constant amplification of the IPD 

obtained from a conventional microphone pair, which can be represented as 

 
2 sin( )

= ×

=

mIPD M IPD

d
IPD π θ

λ

, (3.11) 

where d is the separation distance of the microphones, λ the wavelength, and θ the 

sound incident angle. However, the main drawback of this model is that this model 

can only be used for a specific frequency and within certain incident angle range, at 

which the IPD is amplified by a certain value M  and the inverse of the model can 

take values within the range of -1 to 1.  

     In another method, the mathematical model of the sensor presented in Chapter 2 

can be used to estimate the incident angle. The main drawback of the mathematical 

model is its complexity. Hence, a closed-form relationship that maps the sensor 

information to the incident angle can hardly be established. The least square error 

analysis can be used to determine the incident angle, but this method is iterative in 

nature and it requires a long execution time that increases dramatically with 

increasing the estimation accuracy and the number of unknowns.  

     One good method that can address the challenge of using the fly-ear inspired 

sensor for sound localization is the Fuzzy Logic (FL) method. The FL has been 

widely used because of its simplicity and flexibility. Furthermore, the FL method can 

be used to model nonlinear systems. In addition, for any set of input-output data, a 

fuzzy model can be built using some adaptive techniques such as adaptive Neuro-

Fuzzy Inference Systems (ANFIS), which are provided in the Fuzzy Logic Toolbox 

of MATLAB. Furthermore, fuzzy models for the problems that involve human expert 
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can be built using the human natural language according to the experience of the 

people who totally understand the system of interest. Therefore, fuzzy models can be 

built based on imprecise or uncertain information, which makes it suitable for 

applications that involve measurements uncertainties. The FL method can also be 

used with conventional control systems to make the system implementation simpler 

[52], [53].  

     FL is a logical system that extends the Boolean logic concept that has two values, 

(i.e., even completely on or off) to partial value concept that ranges between 

completely on and off which is totally different from the traditional multivalued 

logical systems. The basic idea of FL is that one can linguistically define some 

variables, such as temperature, age, length, etc. These variables are called “linguistic 

variables” which have values that can be defined linguistically as well. These values 

are called “linguistic values” of the linguistic variables. Imprecision mentioned above 

came from the fuzzy way of defining the system or problem of interest. Fuzzy rule is 

another concept in FL, which can be represented linguistically as: 

IF A is a Then X is x, 

where A is the linguistic variable that represents the input of the system that has a 

linguistic value a. The FL inputs in the fuzzy rules are called “antecedents”. Every 

linguistic value is called a “membership function”. These membership functions can 

be defined in many different shapes, including triangular, bell, Gaussian, trapezoidal, 

sigmoidal, etc. X represents the output variable that has a linguistic value x. The FL 

outputs in the fuzzy rules are called “consequents”. To have a meaningful system 

there should be a translation mechanism that determines the relation between the 
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fuzzy antecedents and consequents. Fuzzy calculus is the mechanism used to do the 

transformation from the human linguistic representation into a meaningful 

quantization. The whole system including the antecedents, consequents, the if-then 

rules, and the fuzzy calculus is called the Fuzzy Inference System (FIS). Fuzzy 

inference process consists of five steps: fuzzification of the input variables, 

application of the fuzzy operator (AND or OR) in the antecedent, implication from 

the antecedent to the consequent, aggregation of the consequents across the rules, and 

defuzzification [54].  In the fuzzification process, the linguistic values of the 

antecedents are defined. When the fuzzy rule has more than one input, the fuzzy 

operator is used to obtain a single value that represents the antecedent output of that 

rule. Generally in the FIS, each rule has a weight (ranging between 0 and 1) that 

should be considered in the implication process represented by the “THEN” word in 

the fuzzy rule discussed previously (default weight is 1). The implication process has 

two methods: min (minimum), which truncates the output, and prod (product), which 

scales the output. Since the FIS has many rules, the output of these rules should be 

combined to get a single fuzzy set so as to make a decision. This process is called 

“aggregation” of the consequents, which is applied across all the rules. Finally, 

defuzzification is the process of getting a single value from the aggregated single 

output fuzzy set which represents the decision. Five different methods can be used for 

defuzzification, namely, centroid, bisector, middle of maximum (the average of the 

maximum value of the output set), largest of maximum, and smallest of maximum. 

Figure  3.9 shows the components of the FIS and the flow of the five steps explained 

above. 
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Figure  3.9: Flow chart for Fuzzy Inference System. 

 

     The most commonly used FIS types are the Mamdani-type and Sugeno-type [54]. 

Mamdani-type FIS, which was proposed by Ebrahim Mamdani in 1975, has been 

used more than Sugeno-type since it was the first control system that was 

implemented to control a steam engine and boiler combination by translating the 

experience of a human operator to a FIS. The main difference between Mamdani-type 

and Sugeno-type FIS is that the output membership functions in the Mamdani-type 

are fuzzy as well as the inputs [55]. The output membership functions in the Sugeno-

type FIS are even constants, which are called the zero-order functions, or linear, 

which are called first-order functions of the inputs. Using such output simplifies the 

defuzzification step. The zero and first order functions for two inputs (x and y) case 

can be represented as the following: 
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 (constant)=z c  (3.12) 

 = × + × +z a x b y c . (3.13) 

     To build a fuzzy model for the input-output data set, one of the soft computing 

techniques, namely neural network, can be combined with fuzzy logic so as to 

adaptively move and/or widen/narrow the membership functions used to match the 

input-output set. This neuro-fuzzy system is called Adaptive Neuro-Fuzzy Inference 

System (ANFIS) [54], which has been included in the fuzzy logic toolbox in 

MATLAB. 

 Neuro-Fuzzy Inference System (Grid Partitioning vs. Subtractive 3.2.1

Clustering) 

     In Figure  3.10, the IPD of the fly-ear inspired acoustic sensor as a function of the 

incident azimuth angle at different sound frequencies are obtained by using Eq. (2.62)

, which is nonlinear outside the region of -30
o
 to 30

o
. This nonlinearity is a function 

of the stimulus frequencies. The parameters used to obtain the simulation results are 

based on the fly ear parameters listed in Table  2-1. 

 

Figure  3.10: (a) IPD versus incident azimuth angle and (b) 3D surface of the mIPD at different 

incident angles θ and frequencies using the fly ear parameters listed in Table  2-1. 
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     Based on these results, a normalized truth table can be generated that involves all 

the theoretical values of the measurements at different frequencies. The maximum 

absolution value of the theoretical measurement at each frequency is obtained when 

the incident angle is at ±90
o
. These maximum values are used to normalize the 

response at each frequency. The obtained data is then used to model the sensor 

response by using fuzzy logic toolbox in MATLAB.  

     The generated truth table can be used in ANFIS editor to train the data and test 

Sugeno-type fuzzy systems to get the sensor fuzzy model. ANFIS GUI can be started 

to achieve the following four different tasks [56]: 

1. loading, plotting, and clearing the data set, 

2. generating or loading the Initial FIS structure, 

3. training the FIS, 

4. validating the trained FIS. 

     After loading the data to the ANFIS GUI, since the initial FIS structure has to be 

generated, one has to choose between the “Grid Partition” method and the 

“Subtractive Clustering” method. The grid partition (GP) method can be used to 

divide the input space into grids. A small number of membership functions for each 

input is needed so the problem of having a large number of fuzzy rules is not 

encountered, which will complicate the computation of the output [57]. For this 

reason, subtractive clustering (SC) is usually used to estimate the number of clusters 

and the clusters centers needed for a given input-output data set when the number of 

clusters and cluster centers are unknown since it is a fast, and one-pass algorithm 

[58].  
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     Accordingly, a fuzzy model using each above-mentioned method is constructed 

and the results from each model are compared. The obtained data set has two inputs 

and one output. When the grid partitioning method is used, some parameters should 

be initialized to generate the FIS model, which includes the number of inputs and 

outputs, the number of membership functions, and type of the membership functions 

for the inputs and outputs. In this study, seven Gaussian membership functions for 

each input are initialized. For the output membership function, the linear type is 

chosen to get a smoother response. 

     After initializing the FIS structure, the data will be trained to obtain the best fuzzy 

model according to the initialization. The training error as a function of the number of 

epochs (i.e., the number of iterations needed to train the data) is shown in Figure  3.11. 

After training, the model can be evaluated to find out how well it matches the original 

input-output data set. Usually a different set of data called the “checking data” is 

used to test the model.  

 

Figure  3.11: FIS training error history using the Grid Partitioning method. 
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      The resulted model as illustrated in Figure  3.12 basically has two inputs and one 

output. The two inputs are the normalized frequency and the normalized mIPD, with 

seven membership functions for each input, which are specified in the fuzzy structure 

initialization (as shown in Figure  3.13). The one output is the normalized bearing 

angle which is normalized by the maximum estimated angle (90
o
), with 49 

membership functions.  A total of 49 fuzzy rules are constructed by multiplying the 

number of membership functions in the inputs. The relationship between the two 

inputs and the output is shown in Figure  3.14. The fuzzy calculus used to achieve the 

mathematical operations in the fuzzy model include the AND method that is chosen 

to be the product operation and the OR method that is chosen as the “probabilistic 

OR” (PROBOR) method (also known as the algebraic sum), which is calculated 

according to the following equation: 

 ( ),       = + −probor a b a b ab . (3.14) 

     For the implication and aggregation methods, MIN and MAX (minimum and 

maximum) operations are chosen respectively. For the defuzzification method, the 

“weighted average” (WTAVER) is chosen. WTAVER can be expressed as a function 

of the rule firing strength and the rule output; that is, 
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where wi is the rule firing strength (output of the antecedents after applying the 

AND/OR operator) and zi represents the output from the zero or first order Sugeno 

functions.  

 

Figure  3.12: Final Fuzzy model using the Grid Partitioning method. 

 

 

 

Figure  3.13: Normalized inputs membership functions using the grid partitioning method. 
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Figure  3.14: Fuzzy model surface using the grid partitioning method. 
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factor that is a fraction of the potential threshold of the first cluster center. Above this 

threshold another data point is accepted as a new cluster center (default value of 0.5). 

The “reject ratio” is another threshold factor that is a fraction of the potential 
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threshold of the first cluster center. Below this threshold a data point will be rejected 

as the cluster center (default value of 0.15) [59]. The default values are used in the 

simulations. By confirming the FIS parameters the clustering process starts grouping 

the data points that share certain characteristics. Similar to the model obtained using 

the GP method, after initializing the structure the data will be trained to get the best 

fuzzy model according to the initialization. The obtained training error history as a 

function of the number of epochs needed to train the data is shown in Figure  3.15. In 

addition, after training, the model can be tested to check how well it matches the 

original input-output data set.  

     Compared with the GP algorithm based fuzzy model, the number of rules and the 

number of output membership functions used in the SC algorithm based model are 

less. Next, investigation is carried out to show whether this affects the fuzzy model 

performance.  

  

Figure  3.15: FIS training error history using the Subtractive Clustering method. 
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     By using the checking data set, the model can be tested to investigate how the 

model output matches the original data set. The resulted model shown in Figure  3.16 

has the same number of inputs (i.e., the normalized frequency and the normalized 

mIPD with seven Gaussian membership functions as shown in Figure  3.17) and one 

output. The output is the normalized bearing angle with only 7 linear membership 

functions which is much less than that for the GP method. This will be useful when 

the fuzzy model is implemented experimentally to reduce the processing time and 

needed memory. The relationship between the two inputs and the output of the SC 

method is shown in Figure  3.18, which appears to be similar to that of the GP 

method. The fuzzy calculus used to achieve the mathematical operations in this fuzzy 

model is the same as the ones used in the GP method. 

 

 

Figure  3.16: Schematic of fuzzy model using the subtractive clustering method. 
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Figure  3.17: Normalized inputs membership functions used in the subtractive clustering method. 

 

 

Figure  3.18: Fuzzy model surface obtained with the subtractive clustering method. 
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has less number of rules and output membership functions, it can help dramatically 

reduce the computational time. Therefore, this model will be used in the later studies. 

     In this subsection, two fuzzy models were developed for the fly-ear inspired 

sensor. The first model used the grid partition method and the second model used the 

subtractive clustering method to construct the fuzzy model. Although the simulation 

results showed that both models work properly, the model created using the 

subtractive clustering method has less number of rules which will be a critical issue 

when all the processing and decision making is conducted on board and online. To 

further validate the fuzzy models, previously collected experimental data will be used 

to test the fuzzy models which will be discussed in the next subsection. 
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Figure  3.19: Fuzzy model testing results at different frequencies using the GP method. 
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Figure  3.20: Fuzzy model testing results at different frequencies using the SC method. 
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 Fuzzy Modeling of the Fly-Ear Inspired Sensor 3.2.2

     A fuzzy model of the fly-ear inspired sensor can be constructed by using two 

different approaches. In the first approach, the theoretical model is used to generate 

theoretical input/output data set, which can be utilized to construct the fuzzy model. 

The fuzzy model will then be tested using a data set obtained from the experiment. 

The main drawback of this approach is that when the theoretical parameters used to 

generate the theoretical input/output data differ from the real experimental 

parameters, the model becomes not accurate in estimating the sound incident angle. In 

the second approach, an experimental data set is divided into training and checking 

data sets to construct and test the fuzzy model, respectively. However, the main 

challenge using this approach is that the training data should be accurate enough so 

that the obtained model can be used to estimate the incident angle accurately. 

     To construct the mapping (i.e. the fuzzy models) based on any of the two 

approaches, the training and checking data have two inputs, namely the normalized 

frequency and the normalized mIPD, and one output, namely the normalized azimuth 

angle. The frequency space is normalized by the maximum applied sound frequency 

(22.5 kHz). The azimuth angle space is normalized by the maximum estimated angle 

(90
o
). The mIPD at each frequency is normalized by the maximum mIPD, which is 

obtained when the incident angle is 90
o
 at that frequency. Therefore, the 

normalization of the mIPD space is different with respect to frequency, which can 

help distinguish the sound incident angle at the different frequencies. 
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 3.2.2.1 Experimental Setup 

     The experimental arrangement, and the fly-ear inspired sensor developed by 

another lab member, Haijun Liu, is used in the experimental studies, as shown in 

Figure  3.21. The fly-ear inspired sensor was used to collect the experimental data, 

which were utilized later to construct one of the fuzzy models of the sensor and to 

check the performance of the models. As shown in Figure  3.21, the sensor device is 

mounted on the tip of an aluminum rod with a diameter of 0.25'', which is fixed on a 

motorized rotational stage (Newport, URS75BPP) connected to a motion controller 

(Newport, ESP 300). A pure tone or chirp sound of various frequencies is played 

through a speaker (ESS Heil air motion transformer). To simulate the movement of 

the source, another motorized rotational stage was placed under the stage mounting 

the sensor while the position of the speaker was fixed. The responses from the two 

diaphragms were acquired by using a fiber optic detection system for every 2.5 

degrees in the range of -30 to 30 degrees (i.e. the linear range) and every 5 degrees 

outside this range. For each frequency, this process was repeated 5 times and the 

average value was obtained.  Signals received from the photo detectors in the optical 

detection system were sampled at a rate of 500 kHz for each channel. 

     The time delay was calculated by finding the maximum cross-correlation of 

signals from the two channels and converted to phase difference mIPD. For the 

sampling rate used in the experiment (500 kHz), the time resolution of the cross-

correlation is 2 µs (note that a center-to-center distance of 1.2 mm only renders a time 

difference of up to 3.53 µs). For a sound frequency of 8 kHz, a time delay of 2 µs is 

equivalent to a phase difference of 5.76
o
. To improve the resolution, a second order 
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polynomial is used to perform the curve fitting in the vicinity of the center peak of the 

cross-correlation [60].  

 

Figure  3.21: Experimental arrangement of the fly-ear inspired sensor mounted on two rotational 

stages for sound source localization.  

 

 3.2.2.2 Fuzzy Modeling Based on the Data Set Obtained with the 2-DOF Model  

     By using the 2-DOF model of the fly-ear inspired sensor (Eq. (2.62) and the 

parameters listed in Table  3-4), mIPDs at different incident angles θ and frequencies 

were calculated. The incident angle space was divided equally with 5
o
 increments 

within the region |θ|>30
o
 and 2.5

o
 increments within the region |θ| %	30

o
. On the other 

hand, the frequency space was evenly divided over the frequency ranges of 1 kHz to 

22.5 kHz. The middle region from 5 kHz to 11 kHz was divided into 30 unevenly 

spaced segments 100 or 200 Hz increments. The constructed theoretical training data 

was used to get a Sugeno-type fuzzy model using ANFIS. The model was checked 

later by using the experimental data set obtained with the fly-ear inspired sensor. It 
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should be mentioned that dividing the training data into two sets to get two separate 

fuzzy models can enhanced the incident angle estimation since the IPD changes the 

sign at the rocking mode natural frequency. The experimentally measured sensor 

parameters were used to obtain a theoretical model of the sensor, which are listed in 

Table  3-4. Figure  3.22 shows the theoretical mIPD of the sensor as a function of 

sound incident angle and frequency by using these parameters, which has a good 

agreement with the experimental results shown in Figure  3.27.  

 

Figure  3.22: 3D surface of the mIPD at different incident angles θ and frequencies using the fly 

parameters shown in Table  3-4. 

 
Table  3-4: Parameters for the fly-ear inspired sensor device. 

Parameters Values 

Mass of bar m 2.88×10
-10

 kg 

Rocking mode natural frequency 9750 Hz 

Bending mode natural frequency 22970 Hz 

Damping ratio 1 0.18 

Damping ratio 2 0.05 

Separation of force locations d 1.2×10
-3

  m 

Tympanum area s 0.288×10
-6

  m
2
 

Sound speed c 344 m/s 
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Training with the theoretical data  

     The general structure of the fuzzy inference system for the fly-ear inspired sensor 

has two antecedents, i.e., the normalized frequency and the normalized mIPD, and 

one consequent, i.e., the normalized incident angle of the sound source as illustrated 

in Figure  3.23. The membership functions of the inputs for the two models in two 

different frequency regions are plotted in Figure  3.24 and Figure  3.25. In both 

models, 8 Gaussian membership functions for each input were used for the 

comparison purposes. The following first order Sugeno-type rule is used: 

Ri: IF nf is NF1i and nmipd is NmIPD1i THEN nθi = a0i + a1i × nf + a2i × nmipd 

     By using the subtractive clustering algorithm, the antecedent membership 

functions were identified with a radius of influence of 0.42 and the default values for 

the other factors (squash factor of 1.25, accept ratio of 0.5, and reject ratio of 0.15). 

The least square estimation was used to optimize the consequent parameters. 

Table  3-5 and Table  3-6 list the parameters of the antecedent Gaussian membership 

functions, shown in Figure  3.24 and Figure  3.25, which include the standard 

deviations σi the cluster centers ci and the optimized consequent parameters (a0i a1i a2i) 

after tuning by ANFIS. The weighted average defined by Eq. (3.15), of the outputs of 

the rules was calculated to obtain the model output. 
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Figure  3.23: Schematic of fuzzy inference system structure for the fly-ear inspired sensor. 

 

Figure  3.24: Antecedent membership functions for the 1
st
 model based on theoretical results. 
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Figure  3.25: Antecedent membership functions for the 2
nd

 model based on theoretical results. 

 

Table  3-5: Antecedent and consequent parameters for the first model. 

Rule # 

Normalized  

Frequency 

[σi ci] 

Normalized  

mIPD 

[σi ci] 

Normalized 

θ 

[a0i a1i a2i] 

1 [0.137  0.235] [0.475   0.733] [-31.61   4.6527     8.168] 

2 [0.137  0.235] [0.475   -0.733] [31.61    4.6527    -8.168] 

3 [0.191  0.338] [ 0.493   0.00] [0.00      9.0295     0.00] 

4 [0.134  0.167] [0.423    0.00] [0.00     -9.426      0.00] 

5 [0.056  0.377] [0.415   -0.886] [1.902    2.6127    0.698] 

6 [0.056  0.377] [0.415   0.886] [-1.902   2.6127  -0.698] 

7 [0.128  0.123] [0.342   -0.89] [11.92   1.922      4.585] 

8 [0.128  0.123] [0.342    0.89] [-11.92  1.922     -4.585] 

 

Table  3-6: Antecedent and consequent parameters for the second model. 

Rule # 

Normalized  

Frequency 

[σi ci] 

Normalized  

mIPD 

[σi ci] 

Normalized 

θ 

[a0i a1i a2i] 

1 [0.194    0.733] [0.493    -0.708] [23.71     -5.159   -17.785] 

2 [0.194    0.733] [0.493     0.708] [-23.71    -5.159    17.785] 

3 [0.214    0.575] [0.519    -0.00] [0.00       -9.202      0.00] 

4 [0.184    0.844] [0.449     0.00] [0.00        7.734      0.00] 

5 [0.077    0.534] [0.433     0.854] [-1.02      -2.435     1.805] 

6 [0.077    0.534] [0.433    -0.854] [1.02       -2.435    -1.805] 

7 [0.178    0.893] [0.341     0.892] [-7.245   -1.129      11.15] 

8 [0.178    0.893] [0.341    -0.892] [7.245    -1.129     -11.15] 
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Validating the model using experimental data  

     After the fuzzy models were constructed they were tested using experimental data 

set. In Figure  3.26, the estimated incident angle using the fuzzy logic models as a 

function of mIPD are compared with the theoretical and the experimental results at 

different frequencies. A complete list of results at all frequencies is provided 

in  Appendix F. From these figures,  the results obtained with the fuzzy models agree 

well with the theroretical data but poorly match with the experimental checking data. 

Figure  3.26(a) and (b) show the angle estimation at frequencies less than the rocking 

mode natural frequency and Figure  3.26(c) and (d) show the estimation for 

frequencies higher than the rocking mode natural frequency. Comparing the two 

regions, mIPD changes its sign at the rocking mode natural frequency, which is 

estimated to be 9.8 kHz, and the mIPD range increases as the stimulus frequency gets 

closer to the rocking mode natural frequency. The huge differnce in the mIPD range 

does not affect the capability of fuzzy model to estimate the incident angle due to the 

normalization of the data. The main advantage of this normalization in constructing 

the fuzzy model is the ability to use the sensor in a wider frequency range. In 

addition, note that the nonlinearity of the sensor increases with increasing the 

stimulus frequency. Even though the fuzzy model based on the theoretical data set 

can deal with the nonlinearity, the huge error can be observed between the estimated 

angle and the experimental data due to the accuracy of the constructed model. To 

improve the estimation accuracy, a fuzzy model based on experimental results is 

constructed, which will be discussed in the following subsection. 
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(a) (b) 

(c) (d) 

 
Figure  3.26: Estimated sound incident angle compared with the experimental and 

theoretical results θ at different frequencies (a) f = 5.5 kHz, (b) f = 7.2 kHz, (c) f = 9.8 kHz, 

and d) f = 12 kHz. 

 

 3.2.2.3 Fuzzy Model Based on Experimental Data Set 

     Here, the previously collected experimental data were used to construct and test 

the fuzzy models. The experimental results obtained from the sensor were divided 

into two equal sets, with the same space segmentation method explained in 

Section  3.2.2.2, for training and checking. It should be noted that the experimental 

map of the phase difference as a function of the incident angle and the stimulus 

frequency slightly differs from the map shown in Figure  3.10 even with using the 
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calibrated sensor parameters listed in Table  3-4. Accordingly, new fuzzy models were 

created using the subtractive clustering method. Similarly, the mIPD values were 

normalized by the maximum value at each frequency so that the incident angle at the 

frequencies can be distinguished. Furthermore, two fuzzy models were created, one 

for frequencies lower than the rocking mode natural frequency and the other for the 

higher frequencies, which can help reduce the training error and make the offline 

training process faster, compared with constructing one model for the entire 

frequency range. 

 

Figure  3.27: Experimental results of the mIPD at different incident angles θ and 

frequencies. 

  

Training with the experimental data  
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the parameters of the antecedent Gaussian membership functions, shown in 

Figure  3.28 and Figure  3.29, which include the standard deviations σi, the cluster 

centers ci , and the optimized consequent parameters (a0i a1i a2i) after tuning by 

ANFIS. Similarly, the weighted average defined by Eq. (3.15), of the outputs of the 

rules was calculated to obtain the model output. Table  3-7 and Table  3-8 list the 

antecedents Gaussian membership function parameters, shown in Figure  3.28 and 

Figure  3.29, identified by the standard deviations σi, the cluster centers ci, and the 

optimized consequent parameters (a0i a1i a2i) after tuning by ANFIS. Accordingly, the 

weighted average of the rule outputs is computed to get the model output. 

 

Figure  3.28: Antecedent membership functions for 1
st
 model trained with experimental data. 
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Figure  3.29: Antecedent membership functions for the 2
nd

 model trained with experimental data. 

 

 

 
Table  3-7: Antecedent and consequent parameters for the 1

st
 model trained with experimental 

data. 

Rule # 

Normalized  

Frequency 

[σi ci] 

Normalized  

mIPD 

[σi ci] 

Normalized 

θ 

[a0i a1i a2i] 

1 [0.0847    0.4062] [0.3159   -0.0090] [-0.593   2.296    0.248] 

2 [0.0487    0.3426] [0.3434    0.7508] [-1.253   1.789    -0.271] 

3 [0.0618    0.3250] [0.3432   -0.7190] [1.61      1.075     0.041] 

4 [0.1067    0.1618] [0.3168    0.0817] [-0.645   0.862     0.027] 

5 [0.0884    0.1809] [0.3079   -0.4941] [-0.296   1.174    -2.762] 

6 [0.0642    0.3931] [0.3006   -0.9395] [6.575    0.96      -2.762] 

7 [0.0427    0.0912] [0.3003    0.6779] [0.673    1.301    -0.330] 

8 [0.0736    0.4028] [0.2911    0.9163] [1.197    1.346    -0.933] 
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Table  3-8: Antecedent and consequent parameters for the 2
nd

 model trained with experimental 

data. 

Rule # 

Normalized  

Frequency 

[σi ci] 

Normalized  

mIPD 

[σi ci] 

Normalized 

θ 

[a0i a1i a2i] 

1 [0.094      0.494] [0.310    0.004] [0.960      -1.565       -0.430] 

2 [0.117      0.857] [0.328    0.001] [15.387    -0.3197   -15.333] 

3 [0.0845    0.534] [0.303    0.706] [0.0542    -1.47         0.423] 

4 [0.102      0.544] [0.309   -0.781] [0.193      -1.316      -0.503] 

5 [0.079      0.850] [0.308   -0.527] [-12.250    1.083       6.768] 

6 [0.082      0.768] [0.303    0.522] [-0.987      -0.1451   -0.0935] 

7 [0.091      0.751] [0.320    0.121] [5.1547     -2.294     -1.204] 

8 [0.095      0.938] [0.318   -0.537] [-51.778    -0.425      52. 49] 

 

     Figure  3.30 shows the training error history obtained with different number of the 

input membership functions used in the fuzzy model. When the number of 

membership functions is larger than 8 the error saturates at a value of 0.042 to 0.044 

at about 50 epochs. This means that increasing the number of membership functions 

will not be useful for further improving the accuracy of azimuth angle estimation. To 

reduce the computation cost the smallest number of membership functions should be 

used (i.e., 8 membership functions) especially when all calculations are executed on a 

robotic platform in future. 

 

Figure  3.30: Training error history obtained with different number of inputs membership 

functions. 
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Validating the models with experimental data  

     After the fuzzy models were constructed, they were tested using the checking 

experimental data set. The estimated incident angle obtained with the fuzzy logic 

models at different frequencies are compared with the experimental checking data, as 

shown in Figure  3.31. It can be seen that the results obtained with the fuzzy model 

have a good agreement with the experimental checking data, when the sound 

frequency is not close to the rocking mode natural frequency. Figure  3.31(a) and (b) 

show the angle estimation for frequencies less than the rocking mode natural 

frequency which is found to be at 9.75 kHz, and Figure  3.31(c) and (d) show the 

estimation for frequencies higher than the rocking mode natural frequency. It can be 

seen that the results obtained with the fuzy model have a good agreement with the 

experimental checking data, when the sound frequency is not close to the rocking 

mode natural frequency. However, due to the abrupt change in mIPD at the rocking 

mode natural frequency, when the sound stimulus frequency is close to this 

frequency, a relatively large discrepancy can be found between the model estimation 

and the experimental data. A complete list of figures for incident angle estimation at 

all checking frequencies are provided in  Appendix F. 

     The root mean square error (RMSE) in the estimated angles obtained with the 

fuzzy model constructed using the theoretical data set and that  constructed using the 

experimental data set are compared in Figure  3.32. It can be observed that under the 

same conditions (same frequency, same number of fuzzy rules, same number of 

training/checking data points) the fuzzy model constructed from the experimental 

data is more accurate. This is due to the fact that the simple spring-mass-dashpot 
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system used to model the fly-ear inspired sensor is not accurate enough. Another 

reason can be the estimation accuracy of the sensor parameters used in the 2-DOF 

model to map the sound incident angle to mIPD. 

 

 
(a) 

 

(b) 

 

(c) (d) 

Figure  3.31: Estimated incident angle θ obtained using the model trained with an 

experimental data set compared with the experimental data at (a) f = 5.5 kHz (b) f = 7.2 

kHz (c) f = 10 kHz, and d) f = 12 kHz. 
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Figure  3.32: RMSE versus frequency for the two fuzzy models. 

 

 3.2.2.4 Experimental Validation 

     In this subsection, a reduced frequency range fuzzy model is constructed by 

following the procedure explained in the previous section using the experimental data 

for stimulus frequency range from 1 kHz up to 9 kHz. This model is then used in the 

experiment to localize a stationary and track a moving sound source, respectively. 

The experimental arrangement shown in Figure  3.21 was used. The localization 

performance with the fuzzy model is compared with that obtained with two 

conventional methods, namely, the least square error (LSE) method and the saturation 

function method. To compare the performance, the following four performance 

metrics are defined: the settling time, the over shoot, the steady state error, and the 

error band. The definitions of these metrics are listed in Table  3-9. Figure  3.33 

illustrates the performance metrics by using a sample time history of localizing a 

stationary sound source. 
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Table  3-9 : Performance metrics definitions. 

Name Units Definition 

Settling time [s] 

The time required for the estimated sound incident angle to reach and 

remain within an error band regardless the initial sensor orientation with 

respect to the sound source. 

Over shoot [deg] 
The maximum difference between the initial estimated sound source 

incident angle and the actual incident angle. 

Steady state 

error 
[deg] 

The difference between the average of the estimated angles during the 

period after the settling time and the true value (zero in this case). 

Error band [deg] The maximum range of error of the estimated angle after the settling time.   

Root mean 

square error  
[deg] 

A measure of the differences between the estimated incident angle and the 

actual incident angle calculated over the localization trip time. 

 

 

Figure  3.33: Illustration of performance metrics. 

     The importance of these performance metrics comes from the fact that one can use 

them to evaluate the performance of different methods and possibly choose a method 

with a better performance. Ideally, method that shows fastest convergence (i.e., 

shortest settling time) to a desired value with the smallest steady state error should be 

chosen. However, as will be shown later, a tradeoff is often found between the 

settling time and the error.  

     In the experiments, localization of a stationary source was first carried out. The 

sensor was initially oriented at different at an angle with respect to the source. The 

angle was changed from -180
o
 to 170

o
 with an increment of 10

o
, including the case 

when the sound source was from the back. Without loss of generality, the sound 

frequency was chosen at 6.25 kHz for the experiment. The sound incident angle was 
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estimated using the fuzzy model, the LSE method and saturation function at each 

angular position of the sensor. For the LSE, a predefined array of experimental phase 

difference results as a function of incident angle and sound frequency was used as a 

map for searching the incident angle at a specific frequency. If the exact angle cannot 

be found from the map, linear interpolation was used to estimate the angle using the 

data for the frequencies directly higher or lower than the frequency of interest. For the 

saturation function, the mIPD was assumed to be linearly proportional to the 

estimated angle within the range of -30
o
 to 30

o
. The slope of the linear region was 

calculated at the beginning of the experiment by calibrating the sensor at the chosen 

sound frequency. For the sound localization using all methods, a LabView code was 

developed to collect the sensor signals and calculate the mIPD, using the cross-

correlation method explained in Chapter 1. These measurements were averaged 15 

times, and the averaged results were used for estimation of the sound incident angles 

according to the three different methods. The estimated angle was then sent by the 

LabView code through the serial port (USB) to control the rotational stages.  

     The localization histories obtained by using the different methods with initial 

sound positions of -20
o
 and 150

o
 are shown in Figure  3.34. As seen in Figure  3.34(a), 

the LSE and fuzzy logic methods exhibits a smaller overshoot in the incident angle 

estimation compared with the saturation function method. For a sound coming from 

the back, the saturation function method requires more time to pinpoint the sound 

compared with the other two methods as shown in Figure  3.34(b). This is due to the 

fixed moved steps used in the saturation function method when the incident angle is 

outside the linear region.  
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(a) (b) 

Figure  3.34: Sound localization histories obtained with different methods for initial sound 

incident angles of (a) -20
o
 and (b) 150

o
. 

     The performance metrics obtained with the three methods used to localize a 

stationary source are compared in Figure  3.35. As can be seen from Figure  3.35(a), in 

terms of the settling time the fuzzy model performs slightly better than the LSE 

method, both of which exhibit much better performance than the saturation function 

method. The saturation function method requires more time to settle beyond the linear 

range since the sensor stage will rotate with a fixed step of 20
o
 until it reaches the 

linear region. When the source is from the back of the sensor, it takes even longer to 

achieve convergence. For the LSE method, the settling time is almost the same as that 

for the fuzzy model. However, at some angles, the settling time shows some spikes 

which can be attributed to the measurement uncertainties that in turn will affect the 

linear interpolation in the LSE method. However, using the fuzzy logic method can 

eliminate these spikes since the uncertainties can be addressed in the fuzzy models. 

The reason for the long settling time for all the methods is due to the following: i) the 

processing time of the sensor signals to get 15 phase difference measurements, ii) the 

slow data transfer between the DAQ and the PC, and iii) the limitation of sensor stage 

movement speed (30 deg/sec) until it reaches the estimated position of the sound 

source. 
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     The steady state error obtained from the three methods are compared in 

Figure  3.35(b). All of them have a steady state error within the range of -3
o
 to 4

o
, 

where the LSE method shows better performance than the other two methods. 

     Figure  3.35(c) shows the error band for the three methods which can give an 

indication on the level of fluctuation about the steady state for each method. All the 

methods exhibit considerable level of fluctuation about the steady state. However, the 

LSE method exhibits better performance than the other two methods with the smallest 

range of fluctuations up to 2
o
. 

     Figure  3.35(d) shows the overshoot for the three methods. Again, the saturation 

function shows higher overshoot than the other two methods outside the linear region. 

However, overshoot for all methods starts to increase dramatically as the incident 

angle increases, especially when the sound is coming from the back due to the effort 

needed to solve the ambiguity problem. On the other hand, this figure also shows that 

the LSE method suffers from the overshoot spikes, which can be explained with the 

same reasons as those settling time spikes. 

     Figure  3.35(e) shows the root mean square error for the three methods, which were 

calculated over the entire localization process. The saturation function is shown to 

perform poorly again when the source is outside the linear region for the same 

reasons mentioned previously, while the other two methods show better performance 

in localizing the sound source. 

     Based on these results, for localization of a stationary source can be concluded that 

fuzzy logic method can overcome the linear range limitation the saturation function 
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method and the settling time and overshoot spikes that LSE suffer from. However, the 

fuzzy logic method exhibits more steady state error compared to the LSE method. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure  3.35: Sound localization performance metrics obtained for different methods: (a) settling 

time, (b) steady state error, (c) error band, (d) overshoot, and (e) root mean square error. 
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     Further, tracking of a moving sound source was carried out. The tracking histories 

using the different methods at specific speed ratios (ratio of the speed of the sensor 

stage and that of the sound source stage) of 1 and 4 are shown in Figure  3.36. It is 

difficult to compare between the performance of different methods for tracking  a 

moving source, since the tracking histories, especially at low speed ratios, do not look 

similar to those obtained for localization of a stationary source, as shown in 

Figure  3.36(a). Therefore, to compare the performance of the three methods, different 

performance metrics were used. The absolute positions of the sensor (θsensor) and 

sound source (θsound) stages were acquired throughout the tracking process, which was 

used to obtain the absolute RMSE, which is defined as the difference between the 

sound stage position (θsound) and the sensor stage position (θsensor). The relative RMSE 

was also determined, which was defined as the difference between the estimated 

incident angle (θest) and the actual sound incident angle (θactual). In this experiment, a 

sound from the back was not tested to protect the sensor since the optical fibers used 

to detect the sensor signals may be broken especially at a low speed ratio. 

  
(a) (b) 

Figure  3.36: Sound tracking histories obtained with different methods at (a) speed ratio of 1 and 

(b) speed ratio of 4.      
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     Figure  3.37 shows the relative and absolute RMSE for the three methods as a 

function of the speed ratio (relative angular speed between the sensor and source 

stages). In both cases, the fuzzy logic method is shown to have better performance 

than the other two methods with less RMSE errors. To get a relative RMSE of less 

than 2
o
 (the localization accuracy of the fly ear), the speed ratio should be at least 2 

for the fuzzy logic, 4 for the LSE, and 5 for the saturation function. Due to the delays 

that can be attributed to the signals processing, angle estimation, and stage motion, a 

bias error that decreases with increasing the speed ratio is present as shown in 

Figure  3.37(b). 

  
(a) (b) 

Figure  3.37: (a) Relative RMSE and (b) absolute RMSE versus angular speed ratio. 

 

 Summary 3.3

     In this chapter, two methods are investigated and used for sound source 

localization with the fly-ear inspired sensor. The first method is based on the model-

free gradient descent method where the sensor output is used directly to evaluate an 

objective function. Different objective functions are used to develop difference 

localization schemes. The performance of these schemes is evaluated via simulations. 
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Furthermore, this method is shown to have the capability of solving the ambiguity 

problem. However, the main drawback of this method is the iterative nature, which 

makes the localization of a moving sound source challenging. 

     A non-iterative method for sound localization with the fly-ear inspired sensor is 

also developed, namely the fuzzy logic method. The sensor response at different 

incident angles and stimulus frequencies is modeled using fuzzy logic. The first 

attempt is to select an appropriate method to build the fuzzy model based on training 

set generated from the 2DOF model of the fly-ear sensor. Two methods, namely, the 

grid partitioning and the subtractive clustering method, are investigated. The 

subtractive clustering is found to be the better choice due to its clustering nature that 

require less number of rules which leads to faster execution time especially when this 

system is implemented in a mobile platform that has limited processing capabilities. 

Furthermore, a previously collected experimental data set is used to conduct the fuzzy 

model. The experimental data set is divided into two groups, the training data set and 

the checking data set. As indicated by the names, the training data set is used to train 

the fuzzy model and the checking data is used to validate the constructed fuzzy 

model. It is found that the fuzzy model works properly in estimating the incident 

angle at different frequencies. The challenge of finding the maximum phase 

difference at the specific sound source frequency, which is needed for normalization 

of the fuzzy model input, is addressed by using a lookup table and linear 

interpolation. 

     Finally, the fly-ear inspired sensor with a reduced fuzzy model is used in 

experimental studies to localize and track a stationary and moving sound source. The 
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performance of the system with the fuzzy model is compared to that using the least 

square error method and saturation function method.  For sound source localization, it 

is found that the fuzzy model overcome the linear range limitation in localization 

using the saturation function method and the spikes that the LSE method suffers from. 

However, the fuzzy model method is found to have a larger steady state error than 

that of the LSE method. 

     The fuzzy modeling of the fly-ear sensor will open the door for localization of 

stationary and moving sound sources by using a mobile robot equipped with the fly-

ear sensor. 

 

 



 

107 

 

Chapter 4    Mobile Robot Control for Localization and 

Tracking 

  

     In this chapter, nonlinear and quadratic-linear controllers are designed to control a 

differentially driven mobile platform, equipped with a pair of acoustic sensors for 

localization of a single stationary sound source and tracking a single moving sound 

source without any knowledge about the distance between the robot and the sound 

source or the trajectory of the moving sound source. Experimental implementation of 

this platform will be discussed in Chapter 5. As shown in Figure  4.1, the control loop 

has a plant (a differentially driven 2-wheeled robot kinematics in this case) to be 

controlled, a sensor with its own circuitry and the algorithms that calculate the 

time/phase difference between the acquired signals from the two microphones, an 

angle estimation block that estimates the incident angle from the sensor information 

by using any of the methods developed earlier in Chapter 3, and a controller. Here, 

different controllers are designed to drive the robot toward the sound source by using 

the acoustic sensor information. The well-known “cross correlation” method is 

applied to calculate the time/phase difference.  

 

Figure  4.1: Mobile robot control loop; θd is the desired angle, θm is the measured error angle, e is 

the error signal (θd-θm), υ is the robot translational velocity, ω is the robot angular velocity, XR, 

YR, θR are the robot position and heading angle. 
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     In this work, since the goal is to track a moving sound source by only using the 

angle error information, the sound tracking problem is considered as a path tracking 

problem. In the literature, the tracking problem is considered as a highly nonlinear 

problem [61]. Many approaches have been developed to solve the general path 

tracking problem or the sound tracking problem by directly controlling the dynamics 

and kinematics of the tracking mobile robotic platform. For example, Zhang et al. 

developed a Lyapunov approach based nonlinear controller to steer vehicles 

automatically to track a curved path [61]. In this work, the small angle assumption 

was not used and the model nonlinear terms were not ignored. Similarly, following 

the same approach DeSantis et al. experimentally studied the controller performance 

compared with a fuzzy controller developed in the literature [63]. Furthermore, Zhang 

et al. developed a sliding mode nonlinear controller [64], [65]. In addition, Shaout et 

al. developed a fuzzy logic robust controller based on Sugeno fuzzy model, in which 

the tracking performance was improved even with the existence of noise and the 

vehicle parameter variations [66]. Han et al. developed a Mamdani type fuzzy 

controller to track a moving object based on the sound signal detected using a three-

microphone array [36]. Triangulation was employed to calculate the distance and 

orientation of the object based on the time difference of arrival measurements 

between the microphone pairs. Gholipour and Yazdanpanah designed a tracking 

controller for non-holonomic mobile robot [67]. The Lyapunov based controller was 

designed in two steps. First, the kinematic stabilization was achieved by using 

nonlinear control laws. Second, translational and angular velocities were 

exponentially stabilized by controlling the acceleration rate. Bui et al. presented a 
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simple and robust Lyapunov based nonlinear controller to track a reference welding 

path and velocity of a differential driven mobile robot [68]. Song et al. designed a 

PID controller for odor/sound tracking in a multi-robot system [19]. Olfactory robot 

used sensor fusion (gas and air flow sensors) to get information about the odor 

distribution in space and two hearing robots were used to estimate the time difference 

with a microphone pair to geometrically localize the sound source. Normey-Rico et 

al. developed a PID controller for the path tracking problem [69]. The mobile robot 

model is normalized to tune the PID gains easily keeping a robust and nominal 

performance of the system. Experiments demonstrated the controller performance and 

robustness. 

     Generally speaking, controllers that are used to control a robot dynamics by 

directly controlling the motor torques and traction forces that are not physically 

accessible, cannot be implemented regardless how good their performance is [61]. 

Therefore, in this dissertation work, different controllers are proposed, which can be 

used to control the error of the robot heading angle while the robot is moving by 

using the robot kinematics. In a robotic platform equipped with the fly-ear inspired 

sensor, the output from the fuzzy model will be used as the input of the control laws. 

However, here for proof of concept, the geometrical model of a microphone pair is 

used to estimate the sound incident angle. The control laws are derived using the 

Lyapunov approach for localization of a stationary sound source. The results are 

compared with the conventional control of the robot kinematics using a PID 

controller. 
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 Robot Kinematics for Localization of a Stationary Sound Source 4.1

     The objective of this section is to derive the robot kinematics for localization of a 

stationary sound source, which will be used later to derive the control laws using the 

Lyapunov approach.  The problem of interest is basically a robot equipped with 

acoustic sensor, which is used to pinpoint the sound source by using the directional 

cue information obtained from the sensors. The distance between the sound source 

and the robot is unknown and cannot be estimated from the sensor measurement. In 

addition, there is no predefined path that the robot should follow to reach the source. 

Note that the robot position and the sound source position can be connected by a 

virtual line regardless the original robot (tracker) heading direction, as shown in 

Figure  4.2. If the measured robot heading angle relative to this line is zero, the robot 

should move along this line. Note that for a stationary sound source, while the 

tracking robot is moving, the measured sound incident angle not only changes due to 

not only the changed tracker heading angle but also the planar motion of the tracker. 

The problem here is therefore to control the robot kinematics according to the 

measured angle. Since the only obtainable information is the angle from the sensor, 

the decision making will only depends on the sensor measurements to control the 

robot angular and translational velocities needed to approach the sound source. 

Figure  4.2 shows the schematic of the robot and the stationary sound source. The non-

holonomic constraints of a differentially driven robot are taken into consideration.  
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Figure  4.2: Schematic of the robot and sound source positions. θe is the heading error 

measurement, θR is the robot heading angle, PS/O is the position vector of the sound source 

relative to the origin, PR/O is the position vector of the robot relative to the origin, and PS/R is the 

position vector of the sound source relative to the robot, ω and υ are the robot angular and 

translational velocities, 2L is the width of the robot, and Xe and Ye are the X and Y axis posture 

errors of the sound source relative to the robot in the global coordinates. 

 

For the posture shown in Figure  4.2, the posture error can be expressed in the Polar 

coordinates as: 
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where η is an additive measurement noise.  

     Accordingly, the posture velocity of the same configuration can be derived from 

the posture Eq. (4.1) as: 
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     The main problem of using the polar coordinate is that the trajectory that the robot 

will follow is not clear, according to the control laws that will be derived later. The 

posture error can also be expressed in the Cartesian coordinates, as  

 / /
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 (4.4) 

The corresponding posture velocity error can be derived from Eq.(4.4) as 
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     For simulation purposes, in addition to the stationary sound source assumption, it 

is also assumed that the sound source is a point source. Eq. (4.5) can thus be re-

written as 
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where  = + +R e sθ θ θ π  (4.7) 

and 
1tan−  

=  
 

R
s

R

y

x
θ . (4.8) 

Here, υ and ωe are the translational and angular velocities (i.e., control laws) that will 

be derived in the following section by using the Lyapunov approach. However, as 

will be shown later, the control laws designed using the Cartesian coordinates require 

more information about the robot states so that the robot can be driven towards the 

sound source. For this reason, the control laws described by using the polar 
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coordinates are used to control the robot kinematics represented in the Cartesian 

coordinates.  

 Lyapunov Based Controller for a Stationary Sound Source 4.2

     In this work, the Lyapunov approach is used to derive the control laws needed to 

control the mobile robot kinematics. For the posture error using the polar coordinates, 

a Lyapunov candidate can be defined as follows: 

 ( )( )21
  1 cos
2

= + −
ee

V x θ
.
 (4.9) 

      To ensure that this system is asymptotically stable according to the Lyapunov 

approach, the first time derivative of V in Eq. (4.9) (i.e.,V( ) should be less than zero; 

that is: 

 0≤�V . (4.10) 

Accordingly, it can be obtained that 

 ( )  . sin .= + ���
e e e eV x x θ θ

.
 (4.11) 

Substituting �ex and #()  from Eq. (4.3) into Eq. (4.11) yields 

 ( ) ( cos( )) sin= − + ⋅�
e e e e

V x ν θ θ ω
.
 (4.12) 

where 

                                           sin( )

= −

⋅
=

ω ω ω

ν θ
ω

e R S

R e
S

ex

                                          (4.13) 

To satisfy the Lyapunov approach condition, the following control laws are proposed: 

  cos( )⋅= ⋅νν θR e eK x  (4.14) 
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 ( ) sin=− ωω θ
R e

K
,
 (4.15) 

where Kxe and Kωe are the control laws gains. Since the range is always positive in a 

polar coordinate, the range term can be removed from Eq.(4.14) and it becomes 

  cos( )= νν θR eK
.
 (4.16) 

Therefore, one can find 

 ( )
2

22 2  sin ( )
  cos ( )   sin 0  

⋅
=− − − ≤�

ν ω

ν θ
θ θ R e

e e e

e

V K x K
x

 (4.17) 

or 

 ( )
2

22  sin ( )
  cos ( )  sin  0 

⋅
=− − − ≤�

ν ω

ν θ
θ θ R e

e e e

e

V K x K
x .

 (4.18) 

     Since *(  in both cases is less than zero except when xe = θe = 0, the system is 

globally asymptotically stable. 

     On the other hand, for the posture error using the Cartesian coordinates a 

Lyapunov candidate can be defined as following 

 ( ) ( )( )2 21
  1 cos
2

= + + −
R R e

V x y θ
.
 (4.19) 

     Similarly, it can be proved that the system satisfies the Lyapunov condition 

(Eq.(4.10)) and is thus asymptotically stable. The time derivative of V in Eq. (4.19) 

can be expressed as: 

 ( ) sin= ⋅ + ⋅ + ⋅ �� ��
R R R R e e

V x x y y θ θ
.
 (4.20) 

Substituting +(, , .(, , and	#()  from Eq. (4.6) yields  

 ( ) ( cos( ) sin( )) sin=− +⋅ +⋅ ⋅� θ θ θν ω
R R RR R e e

V x y
.
 (4.21) 
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Substituting θR from Eq. (4.7) yields  

                  ( ) ( cos( ) sin( )) sin= − ⋅ + + + + + + ⋅⋅� ν θ θ π θ θ π θ ω
R R e s R e s e e

V x y
.
 (4.22) 

     To satisfy the Lyapunov stability condition, the translational and rotational 

velocities should follow the following laws:  

  ( cos( ) sin( ))= + + + +⋅ +⋅νν θ θ π θ θ πR R e s R e sK x y  (4.23) 

and                                                   ( ) sin=− ωω θ
e e

K
.
 (4.24) 

Accordingly, the condition in Eq. (4.10) is satisfied 

             ( ) ( )( ) ( )
2 2

 .cos .sin  .sin  0= − + + + + + − ≤�
ν ωθ θ π θ θ π θ

eR e s R e s eV K x y K
,
 (4.25) 

where 

  
-1tan
 

=  
 

R
s

R

y

x
θ

.

 (4.26) 

     Since *(  is less than zero except when xR = yR = θe = 0, the system is globally 

asymptotically stable. The main problem of using these control laws (Eqs. (4.23) and 

(4.24)) is that the information of xR, yR,and ωe should be made available to calculate 

the proposed control laws. Unfortunately, this information is not available since the 

only used sensor on the platform is the acoustic sensor. Accordingly, the control laws 

should only be a function of the estimated sound incident angle since it is the only 

measurable information. Therefore, the proposed control laws given by Eqs. (4.15) 

and (4.16) are used in localization of a stationary sound source and the tracking of a 

moving sound source.  

     After carefully examining the control laws (Eqs. (4.15) and (4.16)), the following 

remarks can be made. For the translational velocity law, the velocity ranges between 
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zero and the maximum translational velocity depending on the heading angle error; 

that is,  

                                                       max[0, ]∈ vν
.
                                        (4.27) 

 As the angle gets closer to zero, the translational velocity goes to the maximum. 

For the angular velocity law, the angular velocity ranges between the negative of the 

maximum angular velocity to the positive maximum angular velocity; that is, 

                                           max max
[ , ]∈ −

R R R
ω ω ω                             (4.28) 

As the heading angle error gets closer to zero, the angular velocity goes to zero.  

     Furthermore, when the heading angle error is approaching ±90
o
, the angular 

velocity reaches its maximum value with a sign related to the sign of the angle error. 

In addition, the gains used in the control laws are basically the maximum translational 

and angular velocities of the robot.  

Accordingly, the control laws are modified to the following forms  

 

2

 1
/ 2

 
/ 2

= −

=−

         

 
  
 

eK
x
e

eK
e

e

θ
ν

π

θ
ω

ω π
.

 (4.29) 

This controller is called “Quadratic-linear Controller”, which combines linear and 

quadratic functions. 
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 Simulation Results  4.3

 Localization of Stationary Sound Source 4.3.1

     In a preliminary effort, simulations are carried out for locating a stationary sound 

source using the nonlinear and quadratic-linear controllers. Considering the polar 

coordinate case using the translation and angular velocities laws (i.e., nonlinear 

controller Eqs. (4.15) and (4.16)). Figure  4.3  shows the history of the translational 

and angular errors. For the angular error, it converges to zero at about 1 second. 

However, the translational error first decreases first, and then starts to increase. The 

increase in the translational error is due to the fact that the robot does not stop when 

the measured angle error becomes zero and the robot keeps moving in a straight line 

until it hits the target.  

     The control history of the translational and angular velocities is shown in 

Figure  4.4. The translational velocity saturates after about 0.5 second and the robot is 

moving with a constant maximum speed afterwards. The angular velocity converges 

to zero at about 1.2 seconds.  

     The change of translational error with respect to the orientation error is shown in 

Figure  4.5. The convergence of these velocities depends on the gains used in the 

control laws (i.e., Kν, and Kω). The gain values used in this simulation are 0.68 m/s 

and 3.88 rad/s, respectively. These control gains are chosen according to the physical 

capabilities of the robot in terms of the maximum translational and angular speeds.  
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Figure  4.3: History of error obtained by using the nonlinear controller. 

 

 

Figure  4.4: History of translational and Angular velocities by using the nonlinear controller. 
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Figure  4.5: Translational error xe as a function of θe using the nonlinear controller. 

 

     Next, the performance of the quadratic-linear controller (Eqs. (4.29)) is studied in 

the simulation.. Figure  4.6  shows the error tracking history, in which the angular error 

is shown to converge to zero at about 1.2 seconds. Again, the translational error is 

shown to decrease first, and then start to increase. Compared with the nonlinear 

controller, the angle error for the quadratic-linear controller reached zero slower 

because the angular control effort is less. 

     Figure  4.7 shows the history of translational and angular velocities (control 

efforts). The translational velocity is shown to saturate after about 1 second the robot 

is moving with a constant maximum speed afterwards. The angular velocity 

converges to zero at about 1.5 seconds. The translational error changes with respect to 

the orientation error are shown in Figure  4.8. 
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Figure  4.6: History of error obtained by using the quadratic-linear controller. 

 

 

Figure  4.7: History of translational and angular velocities using the quadratic-linear controller. 
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Figure  4.8: Tracking error history of xe as a function of measured error θe using the Quadratic-

linear controller. 
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results are shown in Figure  4.10 and Figure  4.11. For each controller, six parameter 

are plotted, namely, angular velocity, translation velocity, robot heading angle, sensor 

measurements, and the robot position. The results show that by using either controller 

the robot was able to orient itself and move towards the source. Here, noise was not 

taken into consideration due to the limitation of MATLAB ode45 function 

(SIMULINK block diagrams are provided in  Appendix G).  

 

Figure  4.9: 3D virtual environment. 
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Figure  4.10: System responses obtained by using the nonlinear controller. 

 

 

Figure  4.11: System responses obtained by using the quadratic-linear controller. 
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      Furthermore, simulations are carried out to compare the performance of the 

developed controllers with the controllers reported in the literature, which include the 

proportional controller presented by Andersson et al. [5] and the PID controller 

presented by Song et al. [19] utilizing an Euler integrator. In the simulations, the 

sound source is assumed to be at the origin and the tracking robot is 5 meters away. 

The initial orientation of the tracking robot is assumed to be 90
o
,
 
which corresponds 

to an initial heading angle error of -90
o
. The gains for the PID controller are 

determined by executing enumerative search in the integrator gain (KI) and derivative 

gain (KD) spaces and keeping the proportional gain (KP) fixed. To find the optimal 

gains, some performance metrics, namely, the rising time, the settling time, the 

overshoot, the PID output, and length of the trajectory are evaluated and the gain 

values that enable better performance are chosen. Accordingly, the optimal gains (KI, 

KD, KP) are found to be 0.01, 0.005, and 0.9, respectively. Figure  4.12 compares the 

step responses obtained with different controllers. As shown in Figure  4.12(a), the 

angle error reaches zero faster for the nonlinear controller than that for the other 

controllers. With a quadratic-linear and proportional controllers, the angle error 

converges to zero at about the same speed convergence with the PID controller is the 

slowest. The control effort used in different controllers are compared in 

Figure  4.12(c) and (d). For the nonlinear controller, the translation and angular 

velocities reach steady state faster than those for the other controllers. The trajectory 

of the tracker is shown in Figure  4.12(e). In all cases, the tracker robot is able to 

localize the source, but followed different trajectories. Using the nonlinear controller, 

not only the error converges faster but also the robot follows the shortest trajectory. 
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(a) (b) 

 
(c) (d) 

 
(e) 

Figure  4.12: Response obtained with different controllers; (a) angle error history, (b) tracker 

heading angle history, (c) translational velocity history, (d) angular velocity history, and (e) 

tracker trajectory. 
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 Effect of Measurement Error on Localization Performance 4.3.2

     To investigate how the measurement error affects the sound localization 

performance, a random noise with a normal distribution was added to the measured 

sound incident angle and the step responses were obtained. Here, three metrics are 

defined to compare the performance of the different controllers with the additive 

noise, which are the settling time, the steady state error, and the error band of the 

estimated error angle. The settling time in these simulations is defined as the time at 

which the estimated incident angle becomes smaller than a threshold value. The 

steady state error is defined as the average of the estimated sound incident angle 

starting from the settling time until the tracking robot reaches the sound source. The 

error band is defined as the maximum range of error of the estimated angle starting 

from the settling time.  

     The settling time of the estimated sound incident angle using the different 

controllers is shown in Figure  4.13. The nonlinear controller exhibit the shortest 

settling time compared with the other methods. The steady state error of the estimated 

sound incident angle is shown in Figure  4.14. There is no clear relationship that can 

be observed between the measurement noise and the settling time as well as the 

steady state error for all the controllers. Figure  4.15 shows the error band of the 

estimated incident angle. It can be seen that for all the controllers the error band 

increases as the estimated incident angle noise increases.  
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Figure  4.13: Settling time versus the measurement noise. 

 

Figure  4.14: Steady state error versus the measurement noise. 

 

Figure  4.15: Error band versus the measurement noise. 

 

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

Noise (+/- degree)

S
et

tl
in

g
 t

im
e 

(s
ec

)

 

 

Nonlinear controller

Quad-Linear controller

PID controller

Proportional controller

0 1 2 3 4 5
-1

-0.5

0

0.5

1

1.5

Noise (+/- degree)

S
te

ad
y

 s
ta

te
 e

rr
o

r 
(d

eg
re

e)

 

 

Nonlinear controller

Quad-Linear controller

PID controller

Proportional controller

0 1 2 3 4 5
0

10

20

30

40

50

60

70

Noise (+/- degree)

E
rr

o
r 

b
an

d
 (

d
eg

re
e)

 

 

Nonlinear controller

Quad-Linear controller

PID controller

Proportional controller



 

128 

 

 Tracking of a Moving Sound Source 4.3.3

     In this subsection, tracking of a moving sound source is investigated. The 

challenge as mentioned earlier is that the nonlinear and quadratic-linear control laws, 

that need to be only a function of the angle error. Figure  4.16 shows the schematic of 

the tracking robot and the trajectory of the sound source that the robot should follow 

using only information of the angle error θe. 

 

Figure  4.16: Schematic of the robot and a moving sound source positions. θe is the heading angle 

error, θR is the robot heading angle, PS/O is the position vector of the sound source relative to the 

origin, PR/O is the position vector of the robot relative to the origin, and PS/R is the position vector 

of the sound source relative to the robot, ω and υ are the robot angular and translational 

velocities, 2L is the width of the robot, and Xe and Ye are the X and Y axis posture errors of the 

sound source relative to the robot in the global coordinate. 

 

     The kinematics of the robot in the robot body frame can be described as [70] 

 

1

2

3

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

     
     = −     
          

R R e

R R e

e

e x

e y

e

θ θ

θ θ

θ
,

 (4.30) 

where 
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= −

= −

= −

e R S

e R S

e R S

x x x

y y y

θ θ θ
.

 (4.31) 

Taking the time derivative of Eq. (4.30) gives 

 

1 2 3

2 1 3

3

cos( )

sin( )

+ ⋅ − ⋅   
   = − ⋅ + ⋅   
   −   

�

�

�

R R S

R S

R S

e e e

e e e

e

ν ω ν

ω ν

ω ω
.

 (4.32) 

     Here, the actual position and orientation of the robot are denoted by xR(t), yR(t), 

θR(t), respectively, and the time-varying sound position and orientation are denoted 

by xS(t), yS(t), θS(t), respectively. The sound source is assumed omnidirectional. Based 

on the sound and tracker position, θS can be defined as 

 
1tan−  −

=  
− 

S R
S

S R

y y

x x
θ

.

 (4.33) 

The time derivative of Eq. (4.33) is obtained as 

 ( )
2

2

cos ( )
( )( ) ( )( )

( )
= − − − − −

−
� � � �S

S S R S R S R S R

S R

x x y y y y x x
x x

θ
ω

.

 (4.34) 

Following the Lyapunov approach, let the Lyapunov candidate be 

 ( ) ( )( )2 2

1 32

1
  1 cos
2

= + + −V e e e
.
 (4.35) 

Using the same control laws derived earlier for the stationary sound source (Eqs. 

(4.15) and (4.16)) and taking the time derivative of the candidate, one can obtain that 

 
1 1 2 2 3 3
. . s n( ). i+= +� � � �e e e e e eV

.
 (4.36) 

Substituting 1
�e , 2
�e , and 3

�e  from Eq. (4.32) into Eq. (4.36) leads to 

                 
1 3 2 3 3 3

 ( ) .cos( ) sin( ) sin( )( sin( ) - )= − ⋅ + ⋅ ⋅ + − ⋅�
ν ων ν ω

S S S
V K e e e e e K e

,
 (4.37) 
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where 3
2 2

− ≤ ≤e
π π

.
 (4.38) 

To satisfy the Lyapunov condition, the following inequalities are found: 
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 (4.39) 

     To gain more insight about the conditions that ensure a stable system, the 

localization and tracking problem is simulated by using the MatLab SIMULINK. In 

the simulations, a moving sound source that follows a circular path at a constant 

velocity is considered; that is, 

 
sin( )

cos( )

= − ⋅ −

= − ⋅ −

α

α
S

S

x R t

y R t
,

 (4.40) 

 where R is the radius of the circular path and α=0.3 is the frequency of completing 

one revolution of the circular path.  

     In the simulations different control scenarios are studied with different types of 

controllers. Both the robot kinematics and the motors of the robot can be controlled. 

Two PID controllers are designed to control the left and right side motors. 

Furthermore, a PID controller is used to control the robot kinematics while tracking 

the sound source. Table  4-1 summarizes the different simulation scenarios (the 

SIMULINK block diagrams are provided in  Appendix G). 
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Table  4-1: List of different simulation scenarios. 

Controller 

type 
Control Laws 

PID Motor 

Control 

Initial conditions 

S: sound source 

R: robot 

Non-linear 
ex e K cos(θ )ν =  

( )
ee eω  K sin θω= −  

No 
S: (2 m, 0 m) 

R: (3 m, 3 m, 0
o
) 

Non-linear 
ex e K cos(θ )ν =  

( )
ee eω  K sin θω= −  

Yes 
S: (2 m, 0 m) 

R: (3 m, 3 m, 0
o
) 

Quadratic-

linear 

e

2

e
R xK 1

/ 2

 θ 
ν = −   π  

 

e
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R: (3 m, 3 m, 0
o
) 

 

     Figure  4.17 - Figure  4.19 show the tracking results obtained by using the nonlinear 

controller with the sound and robot initial positions and orientations listed in 

Table  4-1. As shown in Figure  4.17, the robot was able to track the sound source with 

a small heading error. However, as shown in Figure  4.18, after about 13 seconds, the 

angle error starts to have large fluctuations. The reason for this is that the robot and 

the sound source positions coincide starting at that time (i.e., the tracking robot hit the 

moving source). This also leads to a considerable control effort as can be seen in 

Figure  4.19. When increasing the rotational speed of the sound source (i.e., increasing 

α) up to a certain level it is possible to let the tracker keep following the source 

without hitting it. This means that there should be a relative speed limit that depends 
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on the application. For example, a missile tracker may not only need track but also hit 

the target.   

 

Figure  4.17: Trajectory of the sound source (red curve), and the robot (triangles) by using the 

nonlinear controller without PID wheel control. 

 

Figure  4.18: Tracking errors obtained with the nonlinear controller without PID wheel control. 
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Figure  4.19: History of control effort obtained with the nonlinear controller without PID wheel 

control. 

     The sound source tracking results obtained with the nonlinear controller with PID 

wheel control are shown in Figures Figure  4.20 - Figure  4.25. Although the robot is 

able to track the sound source, but the angle error has considerable fluctuations. The 

reason for this is that the wheel control loop needs time until it reaches the steady 

state. During this time the angle error is not updated and the robot has to put 

considerable effort to reach the desired motor speeds based on the error 

measurements. This also limits the relative velocity between the robot and the sound 

source. Furthermore, as shown in Figure  4.22, the control efforts have considerable 

variations, especially the angular velocity. This will result in frequent rotation of 

robot, which can lead to high power consumption and shorten the life time of the 

electrical components of the robot. Figure  4.23 shows the history of torques of the 

motors based on the required motor angular velocities shown in Figure  4.24. 
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Figure  4.20: Trajectory of the sound source (red curve), and the robot (triangles) by using the 

nonlinear controller with PID wheel control. 

 

Figure  4.21: Tracking errors using the nonlinear controller with PID wheel control. 
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Figure  4.22: History of control efforts by using the nonlinear controller with PID wheel control. 

 

Figure  4.23: History of wheel torques by using the nonlinear controller with PID wheel control. 
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Figure  4.24: Required angular velocities of the wheels by using the nonlinear controller with PID 

wheel control. 

 

 

Figure  4.25: Wheels angular velocities obtained by using the nonlinear controller with PID wheel 

control. 
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     The tracking results obtained by using the quadratic-linear controller without the 

PID wheel control by using the same sound and robot initial positions and 

orientations (listed in Table  4-1) are shown in Figures Figure  4.26 - Figure  4.28. 

Similarly, as shown in Figure  4.27 the angle error starts to have large fluctuations at 

about 5 seconds. This happens slower than that using the nonlinear controller. The 

reason for the angle error fluctuations again is due to position coincidence of the 

robot and the sound source. This also leads to a considerable control effort as shown 

in Figure  4.28, which is smaller than the one shown in the nonlinear controller.  

 

Figure  4.26: Trajectories of the sound source (red curve), and the robot (triangles) obtained by 

using the quadratic-linear controller without PID wheel control. 
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Figure  4.27: Tracking errors using the quadratic-linear controller without PID wheel control. 

 

 

Figure  4.28: Control efforts using the quadratic-linear controller without PID wheel control. 
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     The tracking results obtained by using the quadratic-linear controller with the 

wheel control as shown in Figure  4.29 - Figure  4.34. The robot is shown to be able to 

track the sound source with less angle error variations compared with those obtained 

by using the nonlinear controller with the wheel control. The reason for the variations 

is again due to the slow wheel control loop. On the other hand, compared with the 

results obtained with the nonlinear controller, the variations are less because the 

quadratic-linear controller has less control effort, as shown in Figure  4.31. With less 

variation in angle error, the power consumption will be less and the life time of the 

electrical components will be longer. Figure  4.32 shows the corresponding motor 

torques based on the required motors angular velocities shown in Figure  4.33. 

 

Figure  4.29: Trajectories of the sound source (red curve), and the robot (triangles) obtained by 

using the quadratic-linear controller with PID wheel control. 
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Figure  4.30: Tracking errors by using the quadratic-linear controller with PID wheel control. 

 

 

Figure  4.31: Control efforts by using the quadratic-linear controller with PID wheel control. 
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Figure  4.32: History of wheel torques by using the quadratic-linear controller with PID wheel 

control. 

 

 

Figure  4.33: Required angular velocities of the wheels by using the quadratic-linear controller 

with PID wheel control. 
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Figure  4.34: Wheels angular velocities obtained by using the quadratic-linear controller with 

PID wheel control. 

 

     The sound tracking results obtained by using a PID controller are shown in 

Figure  4.35 - Figure  4.37. Due to the slow convergence of the PID controller, which 

was discussed, the tracking robot does not hit the target during the tracking process 

compared with the nonlinear and quadratic-linear controller cases. On the other hand, 

Figure  4.37 shows the control efforts by using the PID controller.  
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Figure  4.35: Trajectories of the sound source (red curve), and the robot (triangles) obtained by 

using the PID controller. 

 

 

Figure  4.36: Tracking errors using the PID controller. 
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Figure  4.37: Control efforts by using the PID controller. 

 

     Finally, the results obtained by using the proportional (P) controller are shown in 

Figure  4.38 - Figure  4.40. Due to the absence of the integrator (I), convergence to 

steady state is faster than that by using the PID controller, but slower than that by 

using the Nonlinear controller. The convergence speed is the same compared with the 

quadratic-linear controller. Figure  4.40 shows the control efforts by using the P 

controller. Similar to using the PID controllers, small rapid oscillations exhibit the 

control efforts.  
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Figure  4.38: Trajectories of the sound source (red curve), and the robot (triangles) obtained by 

using the P controller. 

 

 

Figure  4.39: Tracking errors by using the P controller. 
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Figure  4.40: Control efforts by using the P controller. 

 Summary 4.4

     In this chapter, different controllers are designed and investigated to control a 

robot equipped with acoustic sensor for localizing a single stationary sound source 

and tracking a single moving sound source. Simulations are carried out to compare 

the performance of these controllers to that of the conventional controllers, namely, 

Proportional and PID controllers, presented in the literature. 

     For localization of a single stationary sound source, the robot kinematics were 

modeled using both the polar and Cartesian coordinates. It is found that the control 

laws should only be a function of the estimated angle error since it is the only 

measurable information in the system of interest. In addition, the control laws derived 

in the polar coordinates were used in the Cartesian coordinate model. In terms of 

convergence speed of the angle error, the nonlinear controller was the fastest, 
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followed by the quadratic-linear and proportional controllers, and the PID controller 

was found to be the slowest. In terms of the convergence speed of the X and Y 

trajectory errors, the nonlinear controller was found to be not only the fastest in 

driving the angle error to zero but also following the shortest path to arrive the origin. 

     For tracking moving sound source different controller configurations were 

investigated. For the control system using the nonlinear and quadratic-linear 

controllers, a PID controller that controls the robot wheel speeds is added to the 

control loop and performance is compared to the cases without the robot wheel 

control. It is found that adding the PID controller increased the control time for both 

the nonlinear and quadratic-linear controllers In addition, adding the PID controller 

also increased the angle error variation for the nonlinear controller due to the time 

needed for the PID controller to reach the steady state. However, the angle error 

variations are less for the quadratic-linear controller with the wheel control. In 

general, these variations can lead to more power consumption and shorter life time of 

the electrical components of the robot. 

     On the other hand, the performance of the nonlinear and quadratic-linear 

controllers is compared to two conventional controllers (P and PID controllers) 

presented in the literature for the same problem. When the P or PID controllers are 

used to control the robot kinematics, it is found that the angle error convergence 

speed is slower than that using the nonlinear controller. In general, for all the 

simulated cases, it is found that there is a limitation on the relative speed between the 

robot and the sound source, which should be properly chosen according to the 

application.  
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     In the next chapter, the experimental implementation of the models and designed 

controllers will be carried out, which will help validate the simulation results obtained 

in the previous chapters. 
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Chapter 5    Experimental Studies of Robotic Sound 

Localization and Tracking Using Mobile 

Platforms 

 Experimental Setup 5.1

 

     The objective of this chapter is to study robotic sound localization and tracking 

with two mobile platforms (iRobot - Create).  One of the platforms is equipped with a 

conventional two-microphone array and the other one holds a portable speaker. The 

two robotic platforms are shown in Figure  5.1. 

  

(a) (b) 

Figure  5.1: a) Robotic platform serving as the moving source with the following components: 1) 

portable speaker (X-mini MAX II Capsule Speakers), 2) Xbee module for wireless 

communication, 3) iRobot – Create robot, and 4) markers. b) Tracking robot with the following 

components: 1) Xbee module for wireless communication, 2) electret microphone array 

separated by 5 cm with the conditioning circuit, 3) electret microphones power supply (battery 

set), and 4) data acquisition (DAQ) board (NI USB-6009). 

 

     The moving source platform has three main components: the iRobot-Create 

platform, the wireless communication module (Xbee), and the portable speaker (X-

mini MAX II), as shown in Figure  5.1(a). The tracking platform has four main 
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components: the iRobot-Create platform, the wireless communication module (Xbee), 

a microphone pair with a conditioning circuit, and a DAQ board (NI USB-6009), as 

shown in Figure  5.1(b). 

     The Xbee module in both platforms is used to receive the motion commands from 

a PC, which is used to define the path of the moving sound platform any feedback 

control. The path of the moving source can be defined in any arbitrary form. For 

simplicity in this work, a straight path and rectangular shaped path are chosen. The 

tracking platform receives the commands after extracting the angle of arrival 

information of the sound source, which is used in the control laws defined in the 

previous chapter. A list of commands with a brief description and the corresponding 

opcodes can are provided in  Appendix H (more details can also be found in Ref. 

[71]). The signals from the microphones are acquired by using the DAQ. The signal 

processing and decision making is conducted by using a LabView code provided 

in  Appendix H.  

     The microphone used in the tracking platform are electret microphones [72] with a 

frequency range of 20 Hz to 20 kHz. The microphone conditioning circuit is a 

compact fully assembled board from Adafruit [73], as shown in Figure  5.2. An op-

amp (Maxim MAX4466) is used to amplify the microphone signal, which is designed 

to have excellent power supply noise rejection [74]. A small trimmer pot is added to 

adjust the gain (25x to 125x).  



 

151 

 

 

Figure  5.2: Front and back views of the microphone circuit board. 

 

           Figure  5.3 shows the experimental arrangement to obtain the microphone 

signals from two channel of the DAQ. The signals are sampled at a rate of 22 kHz for 

each channel. The acquired signals are transmitted through a USB cable from the 

DAQ to a PC, and then processed to obtain the phase difference between the two 

microphone signals. To determine the phase difference the time delay is first 

calculated by finding the maximum of the cross-correlation of the two signals, which 

is converted later to phase difference (PD) using the following relation: 

 2= ⋅PD f TDπ
.
 (5.1) 

 A second order polynomial is used to perform  the curve fitting around the center 

peak of the cross-correlation to improve the resolution [60].  
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Figure  5.3: Experimental arrangement for data acquisition and wireless communication. 

 

 Results 5.2

     The experiments were carried out in Prof. Humbert’s lab in the Department of 

Aerospace, which is equipped with the VICON tracking system [75]. The markers 

shown in Figure  5.1 reflect the red light from the VICON system, which can be used 

to collect data about the states (position, orientation, translational and angular 

velocities) of the robot in 3D. The data is processed later and used to evaluate the 

localization and tracking performance of the tracking robot using the control laws 

derived in the previous chapter (i.e., nonlinear and quadratic-linear controllers (see 

Table  4-1)). For the moving sound source experiment, the source platform is 

controlled to move in a straight path and a square path. In all experiments, the sound 

source platform and the tracking robot are represented as green (referred to as (2)) 

and blue circles (referred to as (1)), respectively. The dashed line represents the 

trajectory of each robot during the localization and tracking missions.  The gains are 

chosen to be Kxe = 0.10 (m/s), and Kωe = 0.766 (rad/s), which represent the maximum 
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translational and angular velocities that the robot can achieve. The tracking robot can 

be stopped manually by sending the stop command via the Xbee module. 

 Localization of a Stationary Sound Source 5.2.1

     In this experiment, the robot holding the portable speaker was fixed in place.  The 

speaker is located in the cargo bay, which is facing up to receive the sound waves. 

The nonlinear and quadratic-linear controllers were tested at an initial sound incident 

angle of 45
o
. Snapshots of the localization of the stationary sound process are shown 

in  Appendix I.  

 5.2.1.1 Nonlinear Controller 

     The trajectories of the robots in the homing sound source with initial angle of 45
o
 

are shown in Figure  5.4. Figure  5.5 shows the history of the measured translational 

velocities at the initial sound incident angle. The history of the measured angular 

velocities at the initial incident angle is shown in Figure  5.6. The trajectory errors Xe, 

Ye, Ψe are shown in Figure  5.7. It can be observed that the tracking robot hits the 

target eventually. As expected, the tracking robot needs more time to hit the target 

when the initial angle error increases. The trajectory errors in XY coordinate 

decreases as the tracker moves closer to the source. However, they will not converge 

to zero since the VICON system considers the origin of each robot at its center.  
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Figure  5.4: Trajectory of the tracking robot homing to a stationary source using the nonlinear 

controller with an initial angle error of 45
o
. 

 

Figure  5.5: History of translational velocity using the nonlinear controller with initial angle error 

of 45
o
. 
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Figure  5.6: History of angular velocity by using nonlinear controller with an initial angle of 45
o
. 

 

 

Figure  5.7: Tracking errors by using the nonlinear controller with an initial angle error of 45
o
. 
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 5.2.1.2 Quadratic-linear Controller 

     In Figure  5.8, the trajectory of the tracking robot in the homing to the stationary 

source by using the quadratic-linear controller is shown. Figure  5.9 and Error! 

Reference source not found. show the histories of the measured translational 

velocities of the tracking robot at initial angle of 45
o
. In Figure  5.10 and Error! 

Reference source not found., the histories of the measured angular velocities are 

shown. The tracking errors Xe, Ye, Ψe are shown in Figure  5.11 and Error! 

Reference source not found.. Similarly, the trajectory errors in XY coordinate 

decrease as the tracker gets closer to the source, but will not reach zero.  

 

Figure  5.8: Trajectory of the tracking robot homing to a stationary source using the quadratic-

linear controller with an initial angle error of 45
o
. 
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Figure  5.9: History of translational velocity using the quadratic-linear controller with initial 

angle error of 45
o
. 

 

 

 

Figure  5.10: History of angular velocity by using quadratic-linear controller with an initial angle 

of 45
o
. 
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Figure  5.11: Tracking errors by using the quadratic-linear controller with an initial angle error 

of 45
o
. 
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     Figure  5.12 shows the trajectory of the robot in tracking of a source moving in a 

straight path using the nonlinear controller. The histories of the measured translation 

and angular velocities of the source and tracker are shown in Figure  5.13 and 

Figure  5.14. The translational velocity of the source is kept constant most of the time, 

0 5 10 15 20 25 30 35 40
-0.5

0

0.5

1

1.5

2

Time (second)

X
e
 (

m
),

 Y
e
 (

m
),

 ψ
e
 (

ra
d

)

 

 

X
2
-X

1

Y
2
-Y

1

∆ψ



 

159 

 

and the fluctuations at the end of the tracking process are due to the tracker hitting the 

target. After hitting, both robots were stopped manually. The tracking errors Xe, Ye, 

Ψe are shown in Figure  5.15. 

 

Figure  5.12: Trajectory of the robot tracking a source with a straight path by using the nonlinear 

controller. 

 

Figure  5.13: History of translational velocity for robot tracking a source with a straight path by 

using the nonlinear controller. 
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Figure  5.14: Angular velocity history for robot tracking a source with a straight path by using 

the nonlinear controller 

 

Figure  5.15: Tracking errors for robot tracking a source with a straight path by using the 

nonlinear controller. 
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the source at the lower right corner resulting in a drift in the source motion. The 

histories of the measured translational and angular velocities of the source and 

tracking robots are shown in Figure  5.13 and Figure  5.14. The translational speed of 

the source was kept constant. The square waveform signal indicates that the source 

has straight motion followed by turning at edges. The spikes present in Figure  5.17 

are due to the discontinuous velocity at the edges resulted the phase wrapping. The 

tracker in this experiment was able to track the moving sound source all the time and 

eventually hit the target. Figure  5.15 shows the tracking errors Xe, Ye, Ψe. The sign of 

Ψe flip at about 50 seconds, which is due to the phase wrapping when the angle gets 

larger than 180
o
. If the source speed is reduced, the tracker will be able to hit the 

target before the source finishes moving one cycle along the square path. The speed 

of the tracking robot can be adjusted according to the requirements of the application 

and the goal to be achieved. 

 

Figure Trajectory of the robot tracking a source with a square path by using the nonlinear 

controller. 

-3 -2 -1 0 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

X (m)

Y
 (

m
)



 

162 

 

 

Figure  5.16: Translational velocity history of robot tracking a source with a square path by using 

the nonlinear controller. 

 

Figure  5.17: Angular velocity history of robot tracking a source with a square path by using the 

nonlinear controller. 
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Figure  5.18: Tracking errors for robot tracking a source with a square path by using the 

nonlinear controller. 

 

 5.2.2.2 Quadratic-linear Controller  
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Figure  5.22, the tracking errors Xe, Ye, Ψe are plotted. The X and Y tracking errors do 

not go to zero due to the robot centers in the VICON system. 
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Figure  5.19: Trajectory of the robot tracking a source with a straight path by using the 

quadratic-linear controller. 

 

Figure  5.20: Translational velocity history of robot tracking a source with a straight path by 

using the quadratic-linear controller. 
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Figure  5.21: Angular velocity history of robot tracking a source with a straight path by using the 

quadratic-linear controller. 

 

Figure  5.22: Tracking errors for robot tracking a source with a straight path by using the 

quadratic-linear controller. 
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provided in Figure  5.24 and Figure  5.25, respectively. Figure  5.26 shows the tracking 

errors Xe, Ye, Ψe. These results are similar to those obtained with the nonlinear 

controller for tracking of a moving source with a square path.  

 

Figure  5.23: Trajectory of the robot tracking a source with a square path by using the quadratic-

linear controller. 

 

Figure  5.24: Translational velocity history of robot tracking a source with a square path by using 

the quadratic-linear controller. 
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Figure  5.25: Angular velocity history of robot tracking a source with a square path by using the 

quadratic-linear controller. 

 

Figure  5.26: Tracking errors for robot tracking a source with a square path by using the 

quadratic-linear controller. 
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 Summary 5.3

     In this chapter, implementation of nonlinear and quadratic-linear controllers on a 

mobile robotic platform for localization of a single stationary and tracking of a 

moving sound source was carried out. The robot was equipped with a two 

microphone array. A LabView block diagram was constructed, which can be used to 

do the following: i) acquire the microphone signals, ii) calculate the phase difference 

between the signals for estimation of the angle of arrival of the sound source, and iii) 

control the tracking robot based on the estimated incident angle. 

     For localizing a stationary source (i.e., the homing problem), the source robot was 

fixed in an initial position and the tracking robot was oriented initially at 45
o
 and 90

o
. 

By using both the nonlinear and quadratic-linear controllers developed in the previous 

chapter, the robot was able to localize the source by following a nonlinear path.  

     For tracking of a moving source, the source was controlled to move in a straight 

path and a square shaped path. In the tracking experiments, by using both the 

nonlinear and quadratic-linear controllers, the tracking robot was able to track the 

source and hit the target. For the square path experiment, the trajectory of the robot 

using the quadratic-linear controller showed less oscillation than that using the 

nonlinear controller. However, this may simply due to the testing conditions and 

angle measurement errors during the experiments.  

     The purpose of this chapter is to experimentally implement the different types of 

controllers and to validate the ability of using these controllers in robotic sound 

localization and tracking.  Simulations in the previous chapter showed that using the 

quadratic-linear controller the control efforts are less than that using the nonlinear 
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controller. However, in the experiments, since the acoustic measurements can be 

greatly affected by the surrounding environment, the testing conditions can hardly be 

kept the same to ensure a fair comparison between different experiments.   It is 

suggested that future experiments should be conducted in quite room by using mobile 

platforms with less vibrations and noise, which can help improve the accuracy on the 

sound incident angle estimation.  
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Chapter 6    Conclusions and Future Work 

  

 Summary of the Dissertation Work 6.1

    In this dissertation, theoretical and experimental investigations into sound source 

localization and tracking using bio-inspired acoustic sensor have been carried out. 

The sensor was previously developed, which was inspired by the tiny ear of the fly 

Ormia. The two ear membranes are mechanically coupled, which helps significantly 

amplify the directional cues that can be obtained by the eardrums. In this work, to 

achieve an enhanced understanding of the performance of the fly-ear inspired sensor 

for sound source localization, the performance of the fly ear sensor has been 

compared to a conventional two-microphone array by evaluating the Cramer Rao 

Lower Bound (CRLB). It is found that the fly-ear inspired sensor configuration can 

achieve a much lower (100 times lower) CRLB compared to the conventional two-

microphone array. In addition, since it is found that an estimator that can achieve the 

CRLB does not exist, the variance of estimating the sound incident angle by using the 

mIPD information is evaluated through numerical. It is found that by using the fly-ear 

inspired sensor a lower variance in estimating the incident angle can be achieved, 

compared with that using a conventional microphone pair. These results indicate that 

the mechanical coupling not only helps amplify the directional cues, but in addition, it 

helps the fly to estimate the sound direction with a much improved accuracy.  

     Furthermore, in order to better use the fly-ear inspired sensors, since the 

directional cues as a function of sound source incident angle is nonlinear and 

frequency dependent, two novel approaches have been investigated to estimate the 
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sound incident angle from directional cues of the fly-ear inspired sensor. The first one 

is an optimization approach based on model free gradient descent method. The 

directional cue from the sensor, namely the mIPD, is used to define an objective 

function and the sound incident angle is determined from minimizing the objective 

function in an iterative process. The main drawback of this approach is that a number 

of iterations are needed to pinpoint the sound source.  

     In another approach, a fuzzy logic model is constructed to map the directional cue 

at the different frequencies to the incident angle. Two different models have been 

constructed. One model makes use of the data obtained from the two-degree-of-

freedom (2DOF) model as the training data set and while the other model utilizes the 

experimental data obtained from the sensor as the training data set. It has been found 

that the model trained by using the experimental data was able to model the senor 

more accurately. Later, in the experiment, this model has been used along with the 

sensor for localization of a stationary sound and tracking of a moving sound source. 

For localization of a stationary source, the experimental results have been compared 

with those obtained by using the least square error (LSE) method and the saturation 

function method in terms of several defined performance metrics, including settling 

time, overshoot, error band, and root mean square error (RMSE). The experiments 

lead to the conclusion that the fuzzy model has a better performance than the 

saturation function method in terms of the settling time, overshoot, and the RMSE. 

Compared to the LSE method, the fuzzy model exhibits less performance fluctuations 

due to the fact that fuzzy model takes into consideration the uncertainties in the 

measurements. In addition, LSE method requires searching a 2D array for 
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determination of the incident angle. This means that the accuracy of the LSE method 

depends on the array size; the larger the array the better the accuracy.  However, a 

larger array means a longer searching time, which can be a problem for a mobile 

platform with limited memory and computational capabilities. For tracking of a 

moving source, the experimental results have been compared with those obtained by 

using the least square error (LSE) method and the saturation function method at 

different speed ratios. Since the performance in this experiment differs from that for 

the localization of a stationary sound, the relative and absolute RMSEs are used as the 

performance metrics for comparison. It is found that using the fuzzy model, a smaller 

RMSE can be obtained, compared with that obtainable with the LSE and saturation 

function methods. The fuzzy model is also shown to overcome the performance 

fluctuations that the LSE method suffers from due to its capability of addressing 

uncertainties. In addition, the fuzzy model also overcomes the linear range limitation 

in the saturation function method.      

     In addition, two novel controllers, the nonlinear and quadratic-linear controllers 

have been designed and implemented to control a mobile robot equipped with 

acoustic sensors for localization of a stationary source as well as tracking a moving 

source.  The nonlinear controller is designed based on the Lyapunov approach with 

only the information from the acoustic sensor for both localization and tracking. The 

quadratic-linear controller, motivated by the nonlinear controller nature and bounded 

values, is designed by inspection. In simulations, both controllers have been 

demonstrated to have good performance in controlling the robot kinematics for sound 

source localization and tracking. The simulations results have also shown that adding 
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a PID controller to control the robot wheels, for both controllers, will result in delays 

in the homing and tracking the sound due to the speed limit of the PID controller 

loop. Further, the performance of sound localization and tracking using these two 

controllers has been compared to that using a PID controller. The PID controller has 

been shown to exhibit more oscillations in the control efforts, which may result in 

high power consumption for the robot platform, especially for miniature robots. 

Experimental investigation of nonlinear and quadratic-linear controllers have also 

been conducted for localizing and tracking a sound source by using two iRobot 

platforms (a source platform and a tracking platform). Successful localization and 

tracking have been demonstrated with both controllers.  

 Summary of Contributions 6.2

The original contributions of this dissertation work can be summarized as follows.   

1. Enhanced understanding of the influence of the mechanical coupling on the 

fly-ear sensor performance for sound localization has been achieved based on 

investigating the Cramer Rao lower bound and estimation of the variance of 

the sound incident angle.  

2. Two novel approaches have been developed to determine the sound incident 

angle from the output (i.e., interaural phase difference) of the fly-ear inspired 

sensor. The first one is an iterative optimization approach based on the model-

free gradient descent method. Two dimensional localization of a sound source 

without ambiguity has been demonstrated. The second approach is based on 
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constructing a fuzzy logic model of the sensor. Simulations and experiments 

showed the capability to localize and track a single sound source.  

3. Nonlinear and quadratic-linear controllers have been developed based on the 

Lyapunov approach to control the kinematics of a robotic platform. The 

controllers that make use of only the estimated source angle information to 

achieve homing and tracking of a single stationary or moving sound source, 

have been demonstrated in simulations to have superior performance than a 

PID controller.  

4. The nonlinear controller has successfully been implemented with a mobile 

platform for sound source localization and tracking.  

 Future Work 6.3

 Design of a Small Size, Standalone, and High Speed Data Acquisition 6.3.1

Board 

          In this work, since the signal from fly-ear inspired sensor was detected by using 

a large scale optical system, implementation of the sensor on the mobile platform 

cannot be performed. In the future work, a small size, wireless data acquisition and 

signal processing device for the fly-ear inspired sensor should be developed, which 

can be integrated with a mobile robot for sound source localization.  Some efforts 

have been undertaken to develop a small optical wireless sensor network node with a 

built-in optical system to detect the diaphragm deflections of the fly-ear inspired 

sensor, as shown in Figure  6.1. 
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Figure  6.1: Fully integrated wireless sensor network node [76]. 

 

 Robotic Sound Source Homing and Tracking Using Fuzzy Logic 6.3.2

     Control of a robot equipped with the fly-ear inspired acoustic sensor using fuzzy 

logic has not been investigated yet. The fuzzy models presented in this dissertation 

work can be extended to a multi input multi output (MIMO) instead of multi input 

single output (MISO). Two separate models can be used in a cascaded system: one to 

estimate the sound incident angle and the other to decide the translational and angular 

velocities of the robot. In this way, the first fuzzy model will take care of the 

uncertainties of the measurements and the second model will consider the 

uncertainties of the estimated incident angle from the previous model. Furthermore, a 

Kalman filter will be used to reduce the incorrect measurements effect on the homing 

and tracking performance. 

 3D Robotic Sound Source Homing and Tracking 6.3.3

     As an extension of this dissertation work, using a fly ear inspired sensor with three 

coupled diaphragms reviewed in Section  1.2.3, along with a quad rotor, 3D robotic 

sound source localization and tracking can be studied.  The quad rotors equipped with 
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this sensor can also be used to navigation and exploration, for example, explore 

hazardous environment and perform search and rescue of survivals. Fuzzy logic can 

also be used to control the quad rotor with the cascaded system explained in the 

previous suggested future work. The Kalman filter will be investigated to find out 

whether it can be used to address the issues associated with the measurement errors 

and help improve the localization and tracking performance. 
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   Cramer-Rao Lower Bound (CRLB) Appendix A

 

     In this appendix, the background of the CRLB is explained briefly (form more 

information refer to [48]). CRLB is a lower bound on the variance of any unbiased 

estimator that allows to confirm that an estimator is the minimum variance unbiased 

(MVU) estimator if the estimator attains the bound for all the unknown parameters 

values. Furthermore, any unbiased estimator cannot be lower than this bound. 

Accordingly, the CRLB is the criteria to which the performance of any unbiased 

estimator can be compared. CRLB is usually used in signal processing applications 

such as sonar, radar, robotics, econometrics, spectrometry, and speech. 

     CRLB can be calculated by getting the inverse of the Fisher Information Matrix 

(FIM) which is derived from the Probability Density Function (PDF) in which the 

unknown parameters are embedded. The more the PDF depends on the unknown 

parameter the more accurate is the parameter estimation. To have more insight on 

what this does mean, consider observing a simple sample as follows: 

  [0] [0]= +x A w  (A.1) 

where w[0] is Gaussian noise with zero mean and σ
2

 variance, and it is required to 

estimate the parameter A. A good unbiased estimator for this case is 23 = x[0] with a 

σ
2 

variance. The estimation accuracy increases as the variance decreases. The PDF of 

this example is defined as 

 2

22

1 1
( ; ) .exp[ ( [0] ) ]

22
= − −p x A x A

σπσ
. (A.2) 
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 If this PDF is viewed as a function of the unknown parameter it can be called the 

likelihood function. The sharpness of this function indicates how accurate the 

parameter can be estimated. The sharpness is measured by the negative of the second 

derivative of the natural logarithm of the likelihood function which is also called the 

curvature of the likelihood function at the peak. Taking the natural logarithm of the 

PDF, gives 

 
2 2

2

1
ln ( [0]; )  - ln 2 ( [0] )

2
= − − p x A  x Aπσ

σ
. (A.3) 

Taking the first derivative of Eq. (A.3), gives 

 
2

ln ( [0]; ) 1
( [0] )

∂
= −

∂

 p x A
x A

A σ
. (A.4) 

Then taking the negative of the second derivative of Eq. (A.4), leads to 

 
2

2 2

ln ( [0]; ) 1∂
− =

∂

 p x A

A σ
. (A.5) 

According to Eq. (A.5), the curvature decreases as σ
2
 increases. Knowing that the 

estimator 23 = x[0] has a variance σ
2
, then the variance of estimating the unknown 

parameter A is 

 �
2

2

1
var( )

ln ( [0]; )
=

∂
−

∂

A
 p x A

A

, (A.6) 

where the variance of the estimator increases as the curvature decreases.  

A better representation of the curvature is the average curvature of the log-likelihood 

function. Mathematically, the average can be taken as the expectation of the negative 

of the second derivative of the log-likelihood function which result in a function with 
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the unknown parameter only. From this explanation the CRLB theorem for scalar and 

vector parameters are stated as follows: 

(i) Cramer-Rao lower bound Theorem - Scalar parameter 

It is assumed that the PDF p(x; θ) satisfies the “regularity” condition  

 ln ( ; ) 0
∂ 

= ∂ 
E  p x for allθ θ

θ
 (A.7) 

where the expectation is taken with respect to p(x; θ). Then, the variance of any 

unbiased estimator #! must satisfy 

 �
2

2

1
var( )

ln ( ; )

≥
 ∂

−  ∂ 
E  p x

θ

θ
θ

 (A.8) 

  

where the derivative is evaluated at the true value of θ and the expectation is taken 

with respect to p(x, θ). Furthermore, an unbiased estimator can be found that attains 

the bound for all θ if and only if 

 ln ( ; ) ( ) ( ( ) )
∂

= × −
∂

 p x I g xθ θ θ
θ

 (A.9) 

for some functions g(.) and I (.). The estimator, which is the MVU estimator, is 

� ( )g xθ = , and the minimum variance 1/ I(θ). 

 

(ii) Cramer-Rao lower bound Theorem - Vector parameter 

It is assumed that the PDF p(x; θ) satisfies the “regularity” condition  

 ln ( ; ) 0
∂ 

= ∂ 
E  p x for allθ θ

θ
 (A.10) 
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where the expectation is taken with respect to p(x; θ). Then, the covariance matrix of 

any unbiased estimator #!	satisfies 

 �

1( ) 0−− ≥C I
θ

θ  (A.11) 

where ≥ 0 is interpreted as meaning that the matrix is positive semi definite. The 

Fisher information matrix I(θ) is given as 

 
2

[ ( )] ln ( ; )
 ∂

= −  
∂ ∂  

ij

i j

I E  p xθ θ
θ θ

 (A.12) 

where the derivatives are evaluated at the true value of θ and the expectation is taken 

with respect to p(x, θ). Furthermore, an unbiased estimator can be found that attains 

the bound in that �

1( )C I
θ

θ−= if and only if 

 ln ( ; ) ( ) ( ( ) )
∂

= × −
∂

p x I g xθ θ θ
θ

 (A.13) 

for some p-dimensional function g and some p x p matrix I. The estimator, which is 

the MVU estimator, is � ( )g xθ = , and its covariance matrix is I
-1

(θ). 

 

From the CRLB - vector parameter theorem, the FIM is the term denoted as I(θ) 

where the matrix elements are defined by Eq. (A.12).  

 

The procedure of evaluating the CRLB can be summarized as follows: 

1. Taking the log of p(x; Θ) to get rid of the exponential part. 

2. Taking the partial derivative with respect to the unknown parameters 

3. If the observation parameter still appear in the second derivative, the 

expectation (E{.}) of the Eq. is calculated to get rid of it. 
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4. After evaluating all the FIM elements take the inverse of the matrix. 

5. The diagonal of the inverse matrix are the variance of estimating the unknown 

parameters. 
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   Equivalent 2-DOF Model for the Fly-ear Appendix B

 

     The 2-DOF model was proposed originally by Miles et al., 1995 [37]. As shown in 

Figure  B.1, the two tympana are modeled as two rigid bars connected by a torsion 

spring k3. The outer end of each bar is supported by a translational spring k1 or k2, 

which is equivalent to the tympanum stiffness. Dashpots c1, c2 and sc3 are added to 

account for the damping ratios of the system. All the parameters used to study the fly-

ear structure are listed in Table  2-1. 

 

Figure  B.1: Equivalent 2-DOF model of the fly-ear [37] 

 

The governing Eqs. of the coupled system can be obtained as follows: 

 
1 1 1 1

2 2
2 2

   
      

+ + =       
         

M C K

ii i

ii i

x Fx x

x F
x x

,

 (B.1) 

where 

 
0

0

 
=  
 

M
m

m
,

 (B.2) 
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1 3 3

3 2 3

c c c

c c c

+ 
=  + 

C

,

 (B.3) 

and 
1 3 3

3 2 3

k k k

k k k

+ 
=  + 

K

.

 (B.4) 

In the case of free vibration, the natural frequencies and mode shapes of the 

system can be found as: 

 ( )1 1 2 1 3/ , 2 /= = +k m k k mω ω
,
 (B.5) 

 1 2

1 1
,

1 1

   
= =   

−   
v v

.

 (B.6) 

The two diaphragms move out of phase in the first mode, and in phase in the 

second mode. 

In terms of modal coordinates, the acting force vector can be written as 

 ( )
sin /2

1

0 0 1 1 2sin /2
2

j d c

j t j t

j d c

F e
p s e p s e p p

F e

ω θ
ω ω

ω θ−

    
= ⋅ = ⋅ +   

    
2v v

,

 (B.7) 

where  

 ( ) ( )1 2sin sin / 2 , cos sin / 2p j d c p d cω θ ω θ= =
.
 (B.8) 

 

By using modal analysis (Meirovitch, 1996) [77], the modal coordinates of the 

response can be obtained as 

 0 01 2
1 22 2 2

1 1 1 1

,
1 2 2

p s p sp p
u u

k j k jξ η η γξ
= =

− Ω + Ω − Ω + Ω ,

 (B.9) 

where 

 1 2 1 3 1/ , / 1 2 , /k k k kω ω η ω ω χ χΩ = = = + =
,
 (B.10) 
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 and ( ) ( ) ( )1 1 1 2 1 3 2 2 1/ , 2 / , /c m c c mξ ω ξ ω γ ξ ξ= = + =
.
 (B.11) 

In terms of physical coordinates of the two DOFs, the responses are 

 
( )

( )
1 1 0

2

2 2 1 1

tan / 2cos

1 2 tan / 2

j t j t
jx A p s

e e
x A k j j

ω ω
φφ

ξ φ

Γ +      
= = ⋅     

− Ω + Ω Γ −       ,

 (B.12) 

where 

 
2

1

2 2

1

1 2
, 2 sin ,

2

j d

j
λ λ

ξ
φ πχ θ χ

η ηγξ λ

− Ω + Ω
Γ = = =

− Ω + Ω
.

 (B.13) 

The ratio of modal forces p1 and p2 defined in (B.8) can be written as 

 ( )1 2/ tan / 2p p j φ= . (B.14) 

Here, Γ represents the relative contribution of the two modes subject to unit modal 

force, which is dependent on the natural frequency ratio η (or equivalently the 

stiffness ratio χk), the damping factors (ξ1 and ratio γ), and the normalized excitation 

frequency Ω. φ represents the phase difference of the incident sound field applied to 

the two mass-spring systems, which is related to the ratio of modal forces, as seen in 

Eq. (B.14).  

Consequently, mIID and mIPD can be obtained as 

 
( )
( )

1

10 10

2

tan / 2
20log 20log

tan / 2

A j
mIID

A j

φ

φ

Γ +
= =

Γ −
,

 (B.15) 

 and 
( )
( )

1

2

tan / 2

tan / 2

jA
mIPD

A j

φ

φ

Γ +
= ∠ = ∠

Γ −
,

 (B.16) 

where mIPD ranges from -π to π. mITD can be calculated via mIPD; that is, 

 
2

mIPD
mITD

π
=

Ω .
 (B.17)  
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mIPD and mIID can also be interpreted in the complex plane. In Figure  B.2, the 

trajectory of Γ is first drawn, and a point D is selected for any given frequencyΩ. 

When the azimuth θ increases from 0° to 90°, point B and C moves along the vertical 

axis from the origin to the farthest point possible. Consequently, mIPD can be 

interpreted as the angle between vectors DC and DB, and mIID as the magnitude ratio 

of them. It can be proved that as θ increases, mIPD increases monotonically. 

However, mIID achieves maximum when DC  is perpendicular to DB, i.e., mIPD is 

equal to 90°. 

 

Figure  B.2: Interpretation of mIPD and mIID in complex plane. 

Let 

 
( )tan / 2

,
φ

τ α= = ∠Γ
Γ

.

   (B.18) 

(B.15) and (B.16) can be rewritten as: 

O 

Point D 

 

 

Real 

Image 

Point B:  jtan(φ/2) 

Point C:  jtan(φ/2) 

B’ 

C’ 

Trajectory of  Γ  

α 
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2

10 102

1 2 sin 4sin
20log 20log 1

11 2 sin
2sin

mIID
τ τ α α

τ τ α τ α
τ

+ +
= = +

+ − + −
,

 (B.19) 

 

( )

2
1

2
2 2 2

1
cos

1 4 cos

mIPD
τ

τ τ α

− −
=

− +
.

 (B.20) 

It can be readily verified that when 1τ = , mIPD is equal to 90° and mIID  reaches 

maximum: 

 max
10

1 sin
10 log

1 sin
mIID

α

α

+
=

−
. (B.21)  
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   MatLab Codes Appendix C

C.1 Sound Localization Using Two Rotational Stages 
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C.2 mIPD vs. the Incident Azimuth Angle 
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C.3 Testing the Two Proposed Fuzzy Models 
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   Nonlinear Controllers Simulations Appendix D

D.1 Testing the Nonlinear Controller Performance Using the Polar 

Coordinates 
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D.2 Testing the Nonlinear Controller Performance Using the 

Cartesian Coordinates 

D.2.i) Using the ODE45 Function 
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D.2.ii) Using Euler Method  

To add the measurement noise just change the zero multiplied by the random function 

in line 32 
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   ANFIS and Fuzzy Toolbox GUI’s Appendix E
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   Fuzzy models incident angle estimation  Appendix F

F.1 Theoretical model 

 
Figure  F.1: Estimated vs. Experimental and 

Theoretical incident angle θ at f = 1 kHz 

 
Figure  F.2: Estimated vs. Experimental and 

Theoretical incident angle θ at f = 1.5 kHz 

 
Figure  F.3: Estimated vs. Experimental and 

Theoretical incident angle θ at f = 2.5 kHz 

 
Figure  F.4: Estimated vs. Experimental and 

Theoretical incident angle θ at f = 3.5 kHz 

 
Figure  F.5: Estimated vs. Experimental and 

Theoretical incident angle θ at f = 2 kHz 

 
Figure  F.6: Estimated vs. Experimental and 

Theoretical incident angle θ at f = 4 kHz 
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Figure  F.7: Estimated vs. Experimental and 

Theoretical incident angle θ at f = 4.5 kHz 

 
Figure  F.8: Estimated vs. Experimental and 

Theoretical incident angle θ at f = 5 kHz 

 
Figure  F.9: Estimated vs. Experimental and 

Theoretical incident angle θ at f = 5.2 kHz 

 
Figure  F.10: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 5.4 

kHz 

 
Figure  F.11: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 5.5 

kHz 

 
Figure  F.12: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 5.6 

kHz 
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Figure  F.13: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 5.8 

kHz 

 
Figure  F.14: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 6 

kHz 

 
Figure  F.15: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 6.2 

kHz 

 
Figure  F.16: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 6.4 

kHz 

 
Figure  F.17: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 6.5 

kHz 

 
Figure  F.18: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 6.6 

kHz 
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Figure  F.19: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 6.8 

kHz 

 
Figure  F.20: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 7 

kHz 

 
Figure  F.21: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 7.2 

kHz 

 
Figure  F.22: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 7.4 

kHz 

 
Figure  F.23: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 7.5 

kHz 

 
Figure  F.24: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 7.6 

kHz 
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Figure  F.25: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 7.8 

kHz 

 
Figure  F.26: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 8 

kHz 

 
Figure  F.27: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 8.2 

kHz 

 
Figure  F.28: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 8.4 

kHz 

 
Figure  F.29: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 8.5 

kHz 

 
Figure  F.30: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 8.6 

kHz 
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Figure  F.31: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 8.8 

kHz 

 
Figure  F.32: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 9 

kHz 

 
Figure  F.33: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 9.2 

kHz 

 
Figure  F.34: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 9.4 

kHz 

 
Figure  F.35: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 9.5 

kHz 

 
Figure  F.36: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 9.8 

kHz 
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Figure  F.37: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 10 

kHz 

 
Figure  F.38: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 10.2 

kHz 

 
Figure  F.39: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 10.4 

kHz 

 
Figure  F.40: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 10.5 

kHz 

 
Figure  F.41: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 10.6 

kHz 

 
Figure  F.42: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 10.8 

kHz 
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Figure  F.43: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 11 

kHz 

 
Figure  F.44: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 11.5 

kHz 

 
Figure  F.45: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 12 

kHz 

 
Figure  F.46: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 12.5 

kHz 

 
Figure  F.47: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 13 

kHz 

 
Figure  F.48: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 13.5 

kHz 
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Figure  F.49: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 14 

kHz 

 
Figure  F.50: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 14.5 

kHz 

 
Figure  F.51: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 15 

kHz 

 
Figure  F.52: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 15.5 

kHz 

 
Figure  F.53: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 16 

kHz 

 
Figure  F.54: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 16.5 

kHz 
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Figure  F.55: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 17 

kHz 

 
Figure  F.56: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 17.5 

kHz 

 
Figure  F.57: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 18 

kHz 

 
Figure  F.58: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 18.5 

kHz 

 
Figure  F.59: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 19 

kHz 

 
Figure  F.60: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 19.5 

kHz 
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Figure  F.61: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 20 

kHz 

 
Figure  F.62: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 20.5 

kHz 

 
Figure  F.63: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 21 

kHz 

 
Figure  F.64: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 21.5 

kHz 

 
Figure  F.65: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 22 

kHz 

 
Figure  F.66: Estimated vs. Experimental 

and Theoretical incident angle θ at f = 22.5 

kHz
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F.2 Experimental Model 

 
Figure  F.67: Estimated vs. Experimental 

incident angle θ at f = 1.5 kHz 

 
Figure  F.68: Estimated vs. Experimental 

incident angle θ at f = 2.5 kHz 

 
Figure  F.69: Estimated vs. Experimental 

incident angle θ at f = 3.5 kHz 

 
Figure  F.70: Estimated vs. Experimental 

incident angle θ at f = 5.2 kHz 

 
Figure  F.71: Estimated vs. Experimental 

incident angle θ at f = 5.8 kHz 

 
Figure  F.72: Estimated vs. Experimental 

incident angle θ at f = 6.2 kHz 
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Figure  F.73: Estimated vs. Experimental 

incident angle θ at f = 6.5 kHz 

 
Figure  F.74: Estimated vs. Experimental 

incident angle θ at f = 6.8 kHz 

 
Figure  F.75: Estimated vs. Experimental 

incident angle θ at f = 7.2 kHz 

 

 

 

 
Figure  F.76: Estimated vs. Experimental 

incident angle θ at f = 7.5 kHz 

 
Figure  F.77: Estimated vs. Experimental 

incident angle θ at f = 8.5 kHz 

 
Figure  F.78: Estimated vs. Experimental 

incident angle θ at f = 8.8 kHz 
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Figure  F.79: Estimated vs. Experimental 

incident angle θ at f = 9.2 kHz 

 
Figure  F.80: Estimated vs. Experimental 

incident angle θ at f = 10.6 kHz 

 
Figure  F.81: Estimated vs. Experimental 

incident angle θ at f = 11 kHz 

 
Figure  F.82: Estimated vs. Experimental 

incident angle θ at f = 12 kHz 

 
Figure  F.83: Estimated vs. Experimental 

incident angle θ at f = 13 KHz 

 
Figure  F.84: Estimated vs. Experimental 

incident angle θ at f = 15 kHz 
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Figure  F.85: Estimated vs. Experimental 

incident angle θ at f = 16 kHz 

 
Figure  F.86: Estimated vs. Experimental 

incident angle θ at f = 17 kHz 

 

 
Figure  F.87: Estimated vs. Experimental 

incident angle θ at f = 18 kHz 

 
Figure  F.88: Estimated vs. Experimental 

incident angle θ at f = 19 kHz 
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   SIMULINK Codes Simulating the Moving Appendix G

Sound Localization and Tracking Problem 

 

Figure  G.1: Stationary sound localization using the Nonlinear Controller. 
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Figure  G.2: Stationary sound localization using the Quadratic-linear Controller. 
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Figure  G.3: Moving sound tracking using the Nonlinear Controller. 

 

 

 

Figure  G.4: Moving sound tracking using the Quadratic-linear Controller. 
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Figure  G.5: Moving sound tracking using the Nonlinear Controller and wheels PID Controller. 
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Figure  G.6: Moving sound tracking using the Quadratic-linear Controller and wheels PID 

Controller. 
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Figure  G.7: Nonlinear Controller model. 

 

 

Figure  G.8: Translational and Angular velocities to Left and Right motors Angular velocities 

map. 

 

Figure  G.9: Wheels PID Controller model. 
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Figure  G.10: Nonlinear Controller model. 

 

 

Figure  G.11: Left Rights wheels speed to final translational and angular velocities map (after 

PID control). 
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Figure  G.12: Two-wheeled robot kinematics model. 

 

 

 

Figure  G.13: Angle wrapping. 
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Figure  G.14: Moving sound source model and heading error angle calculation. 
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   LabView Program for Signal Processing and Appendix H

Decision Making 

 

Figure  H.1: Front panel of data acquisition and decision making VI. 

 

H.1 Description and Instructions 

 

This VI program acquires the signals from the two microphones then process the 

signals (filter) to extract useful information about the phase difference between the 

two signals that can be used to estimate the AOA of the sound source. Original 

signals can be saved as required but the history of the decision making is saved and 

can be plotted later to show the behavior of the robot while localizing and tracking 

the sound source. 

Instructions: 
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1) Enter the DAQ setting to acquire the signals from the channels the 

microphones are connected to. The values showed are compatible with the 

DAQ parameters values, i.e. sampling rate, maximum and minimum measured 

voltages…etc. 

2) Initialize the data needed to estimate the sound AOA, the wireless 

communication port, the controllers gains, robot wheel radius, robot base line 

length, sound frequency (can be estimated as well), and the controller type 

(nonlinear/quadratic-linear controller). 

3) Choose the path to which the data need to be saved. 

4) Tracking can be start after running the program by the start localization 

button, the tracking platform can be stopped by the stop the robot button, and 

the program can be completely stopped by the STOP button. 

5) The data can be acquired without moving the tracking robot by pressing the 

start localization button (become green) and the stop the robot button (become 

green). To move the robot again, press the stop the robot button again 

(become red). 

6) To save the original microphone signals press the write button. The data will 

be saved in the directory specified in (3). 

7) Four representations of the signals are displayed simultaneously. The time 

domain signal before and after filtering, the frequency domain signal 

magnitude and phase. 
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H.2 iRobot Commands 

Start 
Starts the OI. Should be always sent before sending any other commands 

to the OI. 

Baud 
Sets the baud rate in bits per second (bps).  

The default baud rate at power up is 57600 bps. 

Safe Puts the OI into Safe mode, enabling user control of Create. 

Full 

Gives the user complete control over Create by putting the OI into Full 

mode, and turning off the cliff, wheel-drop and internal charger safety 

features. 

Demo Starts the requested built-in demo. 

Demo - Cover Starts the Cover demo. 

Demo - Cover and Dock Starts the Cover and Dock demo. 

Demo - Spot Starts the Spot Cover demo. 

Drive 

Controls Create’s drive wheels. It takes four data bytes, interpreted as two 

16-bit signed values using two’s complement. The first two bytes specify 

the average velocity of the drive wheels (mm/s), with the high byte being 

sent first. The next two bytes specify the radius (mm) at which Create will 

turn.  

Drive Direct 

Lets the user control the forward and backward motion of Create’s drive 

wheels independently. It takes four data bytes, which are interpreted as two 

16-bit signed values using two’s complement. The first two bytes specify 

the velocity of the right wheel (mm/s), with the high byte sent first. The 

next two bytes specify the velocity of the left wheel, in the same format.  

LEDs Controls the LEDs on Create. 

Digital Outputs 
Controls the state of the 3 digital output pins on the 25 pin Cargo 

 Bay Connector. 

PWM Low Side Drivers 
Lets the user control the three low side drivers with variable 

power. 

Low Side Drivers Lets the user control the three low side drivers. 

Send IR 
Sends the requested byte out of low side driver 1 (pin 23 on the Cargo Bay 

Connector), using the format expected by iRobot Create’s IR receiver. 

Song 
Lets the user specify up to sixteen songs to the OI that can be  

played at a later time. 

Play Song 
Lets the user select a song to play from the songs added to iRobot 

Create using the Song command. 

Sensors Requests the OI to send a packet of sensor data bytes. 

Quesy List Lets the user ask for a list of sensor packets. 

Stream Starts a continuous stream of data packets. 
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Pause/Resume Stream 
Lets the user stop and restart the steam without clearing the list of  

requested packets. 

Script Specifies a script to be played later. 

Play Script 
Loads a previously defined OI script into the serial input queue  

for playback. 

Show Script 

Returns the values of a previously stored script, starting with the  

number of bytes in the script and followed by the script’s  

commands and data bytes. 

Wait Time Causes Create to wait for the specified time. 

Wait Distance 
Causes iRobot Create to wait until it has traveled the specified  

distance in mm. 

Wait Angle 
Causes Create to wait until it has rotated through specified angle in 

degrees. 

Wait Event Causes Create to wait until it detects the specified event. 

 

Table  H-1: iRobot commands opcodes 

Item # Command Opcode Item # Command Opcode 

1 Start 128 16 Send IR 151 

2 Baud 129 17 Song 140 

3 Control  130 18 Play Song 141 

4 Safe 131 19 Sensors 142 

5 Full 132 20 Quesy List 149 

6 Demo 136 21 Stream 148 

7 Demo - Cover 135 22 Pause/Resume Stream 150 

8 Demo - Cover and Dock 143 23 Script 152 

9 Demo - Spot 134 24 Play Script 153 

10 Drive 137 25 Show Script 154 

11 Drive Direct 145 26 Wait Time 155 

12 LEDs 139 27 Wait Distance 156 

13 Digital Outputs 147 28 Wait Angle 157 

14 PWM Low Side Drivers 144 29 Wait Event 158 

15 Low Side Drivers 138 30 --- --- 
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Figure  H.2: Block diagram of the VI (left hand side). 
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Figure  H.3: Block diagram of the VI (right hand side).  
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   Stationary Sound Source Appendix I

I.1 Nonlinear Controller (initial heading 45
o
) 
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I.2 Nonlinear Controller (initial heading 90
o
) 
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I.3 Quadratic-linear Controller (initial heading 45
o
) 

 

 

 

 

 

 

 

 

 
 

 

t = 0.03 (s)

t = 3.37 (s)

t = 6.71 (s)

t = 10.04 (s)

t = 13.38 (s)

t = 16.72 (s)

t = 23.39 (s)

t = 25.06 (s)

t = 0 (s) t = 14 (s) 

t = 4 (s) t = 16 (s) 

t = 6 (s) t = 24 (s) 

t = 10 (s) t = 26 (s) 



 

240 

 

I.4 Quadratic-linear Controller (initial heading 90
o
) 
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   Moving Sound Source Appendix J

J.1 Nonlinear Controller (straight path) 
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J.2 Nonlinear Controller (square path) 
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J.3 Quadratic-linear Controller (straight path) 
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J.4 Quadratic-linear Controller (square path) 
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