50,274 research outputs found

    Ultrasound-induced acoustophoretic motion of microparticles in three dimensions

    Get PDF
    We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 um and 5.33 um. The 3D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic energy density is calibrated in situ based on measurements of the radiation dominated motion of large 5-um-diam particles, allowing for quantitative comparison between theoretical predictions and measurements of the streaming induced motion of small 0.5-um-diam particles.Comment: 13 pages, 8 figures, Revtex 4.

    Commissioning and Prospects for Early Physics with ALICE

    Full text link
    The ALICE detector has been commissioned and is ready for taking data at the Large Hadron Collider. The first proton-proton collisions are expected in 2009. This contribution describes the current status of the detector, the results of the commissioning phase and its capabilities to contribute to the understanding of both pp and PbPb collisionsComment: 8 pages, 7 figures, To appear in the proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse

    Analysis of Granular Flow in a Pebble-Bed Nuclear Reactor

    Full text link
    Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6cm-diameter spheres draining in a cylindrical vessel of diameter 3.5m and height 10m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.Comment: 18 pages, 21 figure

    Helioseismology of Sunspots: Confronting Observations with Three-Dimensional MHD Simulations of Wave Propagation

    Get PDF
    The propagation of solar waves through the sunspot of AR 9787 is observed using temporal cross-correlations of SOHO/MDI Dopplergrams. We then use three-dimensional MHD numerical simulations to compute the propagation of wave packets through self-similar magneto-hydrostatic sunspot models. The simulations are set up in such a way as to allow a comparison with observed cross-covariances (except in the immediate vicinity of the sunspot). We find that the simulation and the f-mode observations are in good agreement when the model sunspot has a peak field strength of 3 kG at the photosphere, less so for lower field strengths. Constraining the sunspot model with helioseismology is only possible because the direct effect of the magnetic field on the waves has been fully taken into account. Our work shows that the full-waveform modeling of sunspots is feasible.Comment: 21 pages, Accepted in Solar Physic

    A complex ray-tracing tool for high-frequency mean-field flow interaction effects in jets

    No full text
    This paper presents a complex ray-tracing tool for the calculation of high-frequency Green’s functions in 3D mean field jet flows. For a generic problem, the ray solution suffers from three main deficiencies: multiplicity of solutions, singularities at caustics, and the determining of complex solutions. The purpose of this paper is to generalize, combine and apply existing stationary media methods to moving media scenarios. Multiplicities are dealt with using an equivalent two-point boundary-value problem, whilst non-uniformities at caustics are corrected using diffraction catastrophes. Complex rays are found using a combination of imaginary perturbations, an assumption of caustic stability, and analytic continuation of the receiver curve. To demonstrate this method, the ray tool is compared against a high-frequency modal solution of Lilley’s equation for an off-axis point source. This solution is representative of high-frequency source positions in real jets and is rich in caustic structures. A full utilization of the ray tool is shown to provide excellent results<br/

    Closed-Loop Control of a Piezo-Fluidic Amplifier

    Full text link
    Fluidic valves based on the Coand\u{a} effect are increasingly being considered for use in aerodynamic flow control applications. A limiting factor is their variation in switching time, which often precludes their use. The purpose of this paper is to demonstrate the closed-loop control of a recently developed, novel piezo-fluidic valve that reduces response time uncertainty at the expense of operating bandwidth. Use is made of the fact that a fluidic jet responds to a piezo tone by deflecting away from its steady state position. A control signal used to vary this deflection is amplitude modulated onto the piezo tone. Using only a pressure measurement from one of the device output channels, an output-based LQG regulator was designed to follow a desired reference deflection, achieving control of a 90 m/s jet. Finally, the controller's performance in terms of disturbance rejection and response time predictability is demonstrated.Comment: 31 pages, 23 figures. Published in AIAA Journal, 4th May 202
    • …
    corecore