3 research outputs found

    Prediction of diesel engine performance, emissions and cylinder pressure obtained using bioethanol-biodiesel-diesel fuel blends through an artificial neural network

    Get PDF
    The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. Engine power, torque, brake specific fuel consumption, NOx and cylinder inner pressure values were measured during the experiment. With the help of the obtained experimental data, an artificial neural network was created in MATLAB 2013a software by using back-propagation algorithm. Using the experimental data, predictions were made in the created artificial neural network. As a result of the study, the correlation coefficient was found as 0.98. In conclusion, it was seen that artificial neural networks approach could be used for predicting performance and emission values in internal combustion engines

    Prediction of diesel engine performance, emissions and cylinder pressure obtained using bioethanol-biodiesel-diesel fuel blends through an artificial neural network

    Get PDF
    The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. Engine power, torque, brake specific fuel consumption, NOx and cylinder inner pressure values were measured during the experiment. With the help of the obtained experimental data, an artificial neural network was created in MATLAB 2013a software by using back-propagation algorithm. Using the experimental data, predictions were made in the created artificial neural network. As a result of the study, the correlation coefficient was found as 0.98. In conclusion, it was seen that artificial neural networks approach could be used for predicting performance and emission values in internal combustion engines

    Artificial neural network modeling and sensitivity analysis of performance and emissions in a compression ignition engine using biodiesel fuel

    Get PDF
    In the present research work, a neural network model has been developed to predict the exhaust emissions and performance of a compression ignition engine. The significance and novelty of the work, with respect to existing literature, is the application of sensitivity analysis and an artificial neural network (ANN) simultaneously in order to predict the engine parameters. The inputs of the model were engine load (0, 25, 50, 75 and 100%), engine speed (1700, 2100, 2500 and 2900 rpm) and the percent of biodiesel fuel derived from waste cooking oil in diesel fuel (B0, B5, B10, B15 and B20). The relationship between the input parameters and engine cylinder performance and emissions can be determined by the network. The global sensitivity analysis results show that all the investigated factors are effective on the created model and cannot be ignored. In addition, it is found that the most emissions decreased while using biodiesel fuel in the compression ignition engine
    corecore