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Abstract: In the present research work, a neural network model has been developed to predict the
exhaust emissions and performance of a compression ignition engine. The significance and novelty of
the work, with respect to existing literature, is the application of sensitivity analysis and an artificial
neural network (ANN) simultaneously in order to predict the engine parameters. The inputs of the
model were engine load (0, 25, 50, 75 and 100%), engine speed (1700, 2100, 2500 and 2900 rpm) and
the percent of biodiesel fuel derived from waste cooking oil in diesel fuel (B0, B5, B10, B15 and B20).
The relationship between the input parameters and engine cylinder performance and emissions can
be determined by the network. The global sensitivity analysis results show that all the investigated
factors are effective on the created model and cannot be ignored. In addition, it is found that the most
emissions decreased while using biodiesel fuel in the compression ignition engine.

Keywords: ANN; emission; MLP; sensitivity analysis; waste cooking oil biodiesel; performance

1. Introduction

Energy has been one of the most challengeable demands of human beings in all of history. In the
20th century, due to industrialization, this issue became more problematic. The increase in the price
of common energy sources, especially in recent years, has forced human to use alternative sources of
energy [1]. In addition, the spread of pollution caused by fossil fuel consumption signals the necessity
to develop renewable energy sources with fewer effects on the environment such as biodiesel.

Recently the usage of biodiesel in internal combustion engines has been accepted as a reliable
source of energy [2]. The similarity of the biodiesel fuel characteristics to diesel fuel is the most
important property of biodiesel fuel. Application of the biodiesel fuel in compression ignition engines
is convenient due to this similarity. Biodiesel fuel is a renewable source of energy and can be used
without any concern about its supply ending. In addition, the main sources of production for this fuel
are waste materials and this provides a worthy way to recycle used materials [3,4].

In Iran the percentage of waste cooking oil is about 20%, which is approximately 0.24 million tons.
This wasted oil is a suitable source of biodiesel production [3].

There are a lot of studies on different aspects of this type of energy source. Generally speaking,
there are two different categories of studies on biodiesel. The first are those studies which have
investigated biodiesel production from different raw materials [5]. The other type of studies are
concerned with the application of these produced biodiesels [6]. Although engine revision is not
required in order to use biodiesel, this fuel has some characteristics that are a little different than
standard diesel. These differences may alter the engine specifications. Due to this problem in most
cases biodiesel has been used as a blend with standard diesel fuel.
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Engine performance, emission and combustion features would be affected due to use of biodiesel,
so many researchers have considered the results of the application of various types of biodiesel
fuel in internal combustion engines [7–9]. The most important effective parameters which have
been studied were engine load and speed, the biodiesel percent in the diesel biodiesel blend and
different aftertreatment techniques. The parameters which show the effect of biodiesel have been
considered in three different categories: performance characteristics (such as power, torque, exhaust
gas temperature, specific fuel consumption (BSFC), tailpipe emissions (NOx, CO, soot, HC, CO2),
combustion characteristics (combustion pressure, heat release, ignition delay), etc.

These studies are similar in numerous aspects. In addition experiments on internal combustion
engines is very expensive and time consuming, so recently different methods have been used to
investigate the usage of biodiesel in engines without performing lots of experiments [10,11]. One of
these methods involves using artificial intelligence methods such as artificial neural networks (ANNs).
ANNs are a convenient way to model performance, especially when the development of the model
involves inadequate data and complex conditions. In addition they are resistant to artifacts [12].

ANN has been used in some engine research. Dehkiani et al. [13] studied the use of a
backpropagation ANN to calculate exhaust emissions and performance of an SI engine. They stated
that that the artificial neural network using an ANN offers advantages compared to numerical and
mathematical methods. Similar experiments and results have been presented by Yuanwang et al. [14].

In another study, Uzun [15] used the ANN method to execute studies to explore the influence
of injection advance, engine speed and load on brake specific fuel consumption. They stated that
the created model was a robust way to predict of brake specific fuel use. Ghazikhani and Mirzaei
developed an ANN model to predict the soot emissions of a diesel engine [16]. In addition, some other
researchers have used the BP ANN algorithm to evaluate engine parameters [17–20]. Most of them
stated that ANN models can be used in internal combustion studies and development.

According to the abovementioned studies and their results, it is found that there is a lack of
the information about the importance of the input parameters to create an ANN model for engine
parameter prediction. The knowledge about this problem could help the developers choose appropriate
input parameters, so in this study, different blends of diesel biodiesel (B0, B5, B10, B15 and B20)
made from waste cooking oil have been used in an air cooled 4-stroke engine at various engine
speeds (1700, 2100, 2500 and 2900 rpm) and loads (0, 25, 50, 75 and 100%). Then, the effects of these
factors on the engine have been evaluated by its performance features (engine power, torque, specific
fuel consumption (BSFC) and exhaust gas temperature) and emission (CO, CO2, HC, NOx, k value)
parameters. A BP-structured ANN was proposed to determine the engine emission and performance
characteristics using the mentioned group of engine operating factors as the ANN inputs. In addition,
a sensitivity analysis was carried out on the created ANN model. Generally, the aim of this study is to
evaluate the engine in different operating conditions and fuels, then propose a robust ANN model to
predict the engine behavior for further study of the considered parameters and finding the degree of
the importance for input parameters of the developed model.

2. Materials and Methods

The biodiesel fuel was produced from waste cooking oil by the transesterification method. An
ultrasonic device was utilized in a pre-treatment stage to increase the rate of biodiesel production.
Different fuel mixtures of diesel and biodiesel (with 0, 5, 10, 15 and 20 mix percentages by the volume
ratio method) were evaluated. A four-stroke air-cooled single-cylinder diesel engine was selected for
conducting the experiments. The performance of the engine in terms of BSFC, fuel consumption and
output power was explored under various engine loads and speeds, using an engine dynamometer.
Fuel consumption was measured according to ASTM D7589 standard. Measurement of the different
parameters for each operating point have done in three replicates. In Figure 1a flowchart depicting the
research steps used for developing the model are shown.
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Figure 1. Flow chart of the study steps.

Biodiesel fuel was provided by the Renewable Energy Laboratory of Tarbiat Modares University.
Diesel No. 2 which is the commercial fuel used in diesel engines in Iran has been used for comparison
of the biodiesel fuel effects on the engine. Some significant features of the fuels, standard methods used
for measuring the fuel characteristics and allowable ranges of these characteristics are presented in
Table 1. These characteristics were measured according to the mentioned standards at the Renewable
Energy Laboratory of Tarbiat Modares University.

Table 1. Some important properties of the fuels.

Specification Standard Test Method Acceptable Range Biodiesel Diesel Unit

Kinematic viscosity EN 14214 3.5–5 4.72 4.03 mm2/s
Density EN 14214 - 0.862 0.840 g/cm3

Cloud point ASTM D-2500 - 272 275 K
Pour point ASTM D-97 - 269 273 K

Water and sediment ASTM D-2709 <0.05 0.05 - %Vol
Flash point ASTM D-92 >130 450 334 K

Cetane number ASTM-D613 - 62 57 -
Lower heating value ASTM-D240 - 38,730 42,930 kJ/kg

Copper strip corrosion ASTM-D130 - 1a 1a -
Oxygen content Element analyzer - 10.23 - wt.%

An eddy current dynamometer (Schenk, Darmstadt, Germany) has been used to measure engine
power, torque and revelation speed of the engine. The limitations of the dynamometer were 80 Nm
engine torque, 10,000 rpm engine speed and 15.66 kW engine power with 0.5–1% accuracy range.
Specifications of the engine is presented in the Table 2. A schematic of the test setup is presented in
Figure 2.

For measuring the engine fuel consumption, a system including pipes, tank, volume sensor,
thermal sensors and pressure sensor has been used. The accuracy of this measurement system was
±1 cc/h. The returned fuel from the engine is cooled by a cooling system and returned to the tank.
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Engine emissions have measured by an AVL DITEST GAS 1000 exhaust gas analyzer (AVL, Graz,
Austria) and AVL DISmoke 480 BT smoke opacimeter (AVL, Graz, Austria). The gas analyzer was
able to determine the amount of CO, CO2, and HC using infrared technology. The quantities of O2

and NOx gases are determined by this device using chemical sensors. The measurement accuracy and
other features of these instruments are shown in the Table 3. For measuring the emissions, during each
test, after reaching desired engine speed stability level, the analyzing probe was put into the engine
exhaust chamber. Then, the emission indices could be recorded and displayed on the monitor.
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Table 2. Engine characteristics.

Model 3LD 510

Manufacturer Lombardini, Italy
NO. Cylinder 1
Piston stroke 90 mm

Cylinder diameter 85 mm
Cylinder volume 510 cm3

Maximum power (at 3000 rpm) 9 kW
Maximum torque (at 1800 rpm) 33 Nm

Table 3. The resolution and accuracies of the emission measurement sensors.

Measured Resolution Accuracy

CO 0.01%vol.
<10.0% vol.: ±0.02% vol.

≥10.0% vol:

CO2 0.01%vol.
<16.0% vol.: ±0.3% vol.

≥16.0% vol.

HC ≤2.000:1 ppm vol.
<2000 ppm vol.: ±4 ppm vol.

≥5000 ppm vol.
≥10,000 ppm vol.

O2 0.01%vol. ±0.02% vol.
NOx 1 ppm vol. ±5 ppm vol.

Absorption (k-Value) 0.01 L/m Measuring range: 0 . . . 99.9%

The tests were performed during a short period of time with the aim of comparing the engine
emissions and performance characteristics. The comparisons were made between different mixtures of
diesel and biodiesel fuels. The controlled variables during the experiments were load applied to the
engine by dynamometer, engine speed and type of fuels (Table 4).
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Table 4. Matrix of experiments.

Parameter Unit Level 1 Level 2 Level 3 Level 4 Level 5

Engine load % 0 25 50 75 100
Engine speed rpm 1700 2100 2500 2900 -
Type of fuel - B0 B5 B10 B15 B20

The steps of the experiments were as follows:

• Starting up the central control unit of dynamometer;
• Engine warming up;
• Applying load under engine steady state condition (for each fuel mixture, five loads including 0,

25, 50, 75 and 100% were applied to engine at different speeds of 1700, 2100, 2500 and 2900 rpm);
• Measurement of torque and calculation of power;
• Measurement of fuel consumption. For this purpose, during each test, signals were sent from

volumetric flow sensor to the control system. The fuel measuring device was equipped with fuel
temperature control and fuel pressure compensation systems.

• Measurement of pollutants. The emission sensor was placed in the engine exhaust path and
the amounts of emissions were therefore recorded from the system screen. Before each test, the
sensor of emissions measurement were cleaned to preventing any effect of the exhaust soot on the
accuracy of measurements.

Generally, ANN includes input, hidden and output layers which contain artificial neurons [21].
One of the most important part of an ANN model is its learning algorithm. The backpropagation
(BP) method is a most popular learning algorithm. This algorithm is a powerful learning algorithm
in artificial neural networks which has been used in many conducted engine parameter modeling
studies [12,13,22,23]. Training of all forms of a training data set is called an epoch. BP is a type of
gradient descent algorithm. With this algorithm the performance of the artificial neural network is
improved by decreasing of the error of the created model. This has been done by changing the weights
as well as the gradient [12].

BP networks are known for their capability to generalize well in different problems. Due to
this advantage of BP networks, they have been used in a very wide range of applications. These
artificial neural networks are known as supervised type. In these networks, both input and outputs are
introduced to the networks. The primary group of neural network designs is the one where each layer
is linked to the directly preceding layer. Usually, just with three layers (input, hidden, and output layer)
of neurons most problems can be handled. A BP network with this structure with normal connections
is sufficient for nearly all problems. However, contingent on the problem features different network
architectures can be used (one, two or three hidden layers). The networks with more than five layers
are not useful and will have not any advantage [12]. Thus, in this study different topologies of back
propagation ANNs have tested with two and three hidden layers.

The number of the input neurons are equal to the input parameters in the study. Then, a learning
algorithm should be chosen to train the network. In this study the BP algorithm has been used. The
number of neurons in the hidden layer is a way to improve the BP learning algorithm. When the number
of the neurons in this algorithm is too large, the network will memorize the data instead of learning the
pattern. In networks with insufficient hidden neurons the pattern may not be properly learned by the
network [12], so the right number of hidden neurons was determined by trial and error [15].

The activation function is a part of the ANN which provides a relationship between its different
layers. One important part of developing an ANN model is to choose an appropriate activation
function because this element has a significant effect on the network performance [24].

The Statistica Neural Networks software version 10 (Stat Soft .Inc, Tulsa, OK, USA) [25] was used
to create the ANN model. The software applied different transfer functions and neuron numbers for
the hidden layer. The number of neurons in the input layer is same as the number of inputs (three
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neurons) and the number of neurons in the output layer (nine neurons) is the same as the number of
outputs of the model. The best model according to the lowest error in prediction of the experimental
data has eight neurons in the hidden layer.

The weights of the ANN model can be determined by different learning algorithms. The BP
algorithm is one of the most popular methods to do this task. In this method, the weights of the model
have been updated in terms of differences between the target and output of the network. Various
training functions such as gradient descent with adaptive learning rule, Bayesian regularization, scaled
conjugate gradient and Levenberg-Marquardt gradient descent with momentum have been used in
different studies [21]. The Levenberg-Marquardt method is widely used in developing ANNs to
predict engine parameters and it shows more capability to predict different parameters [19,21,22,26],
so in this study this training function was applied in developing the ANN model. To achieve the best
result and as much as possible the closest values of the ANN output to the experimental data, the
neurons in the hidden layer were determined by software.

One of the most effective parameters in back propagations and capability of the ANN model is
the scaling of the input and output data. The transfer function used in this study is the logistic sigmoid
function. This function just can produce a value between 0 and 1. Usually, and also in this study, the
problem data is normalized before training and testing the model. This can be done by an equation
(Equation (1)) and the data will be between 0 and 1 [27]:

Xn =
Xi − Xmin

Xmax − Xmin
(1)

where Xi is the actual data, Xn is the normalized data, Xmin is the minimum of the actual data and
Xmax is the maximum of the actual data.

The data set were classified into three categories as training, test and validation data set. Through
training, the network was tested in contradiction of the test data set to control correctness and training
stopped when the mean average error remained constant for a number of epochs. This is done in order
to avoid overfitting, it means that, the network learns faultlessly the training patterns but it cannot
predict the target when an unfamiliar training set is introduced to it [12].

The other effective parameters in the performance of the ANN model are the percentage and
amounts of data used for training and testing. Different percentages of the data have been used
in various studies such as 80%:20% [28], 75%:25% [29], 70%:30% [17,30,31] for training and testing,
respectively, although, training and testing data percentage ratios of 70%:30% are most common. Thus,
in this context, the ratio for training and testing data was selected as 70%:30%. The steps of determining
the best ANN model to predict the engine performance and emission parameters are given as follows:

1. To have a simple BP neural network architecture, only one hidden layer will be used. The
accuracy of the network has been improved by selecting appropriate numbers of neurons in
hidden layer.

2. The proper objective error alongside with the primary weights and biases of the model can be
chosen by training the model using the training samples. Different numbers of hidden neurons
have been used in the model while training the network. Then the proper number of hidden
neurons has been selected by observing the training errors. The number of hidden neurons can be
selected according to the following three principles: (1) the expected goal errors must be reached
within the given training numbers; (2) the architecture of the network is not too complicated;
(3) after training the network with the training samples, the network can reflect well the sample
change laws and have higher prediction accuracy. If the number of hidden neurons is too small,
the network does not reach the expected goal error, or if the number of the neurons is too large,
the network is too complicated. Considering the architecture and prediction accuracy of the
network, 10 hidden neurons was the appropriate number for our network.

The back propagation learning algorithm is a gradient descent algorithm. In this algorithm the
total error is minimized by altering the weights through the slope of the algorithm and this will try
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to enhance the performance and accuracy of the network. The stop point of the network training is
the time which in the root mean square error of the network for tested values stops reducing and
starts to increase. In this step, to understand whether the ANN model is work properly and making
good calculations, the testing data which are not introduced to the network, are applied and the
consequences are checked [21].

In this study a statistical method has been used to evaluate the results of the ANN model.
The coefficient of determination (R2) which shows the degree of association between predicted and
experimental values has been applied as seen in Equation (2) [7]:

R2 = 1 − ∑N
i=1(Yiobsereved − Yiestimate)

2

∑N
i=1(Yiestimate)

2 (2)

where Yestimate is the predicted data, Yobserved is the experimental data. These statistical measures
provide information about the strength of the linear relationship between the predicted and the
experimental data. If the model is “perfect”, R2 is 1. If the model is a total failure, R2 is zero.

There is a lack of information about the importance of the engine parameters on its performance
and exhaust emissions. In this study, the global sensitivity analysis has been used to evaluate the
importance and to measure the effect of the engine parameters on the engine performance and exhaust
emissions. In this method the relative importance of the input ANN model parameters has been
determined by checking the variation of the ANN model to changes of the each one of the input
parameters. In this analysis, the dataset is introduced to the network repetitively, with each variable
in turn replaced with its mean value calculated from the training sample, and the resulting network
error is recorded. If an important variable changed in this technique, the error will rise greatly; if an
unimportant variable is concerned, the error will not increase too much. Then, the error of the ANN
model in each condition, by omitting each input parameters, is compared with initial ANN network
error. The result of the analysis is a ratio. If the ratio is lower than the 1 for a parameters it can be
ignored and higher value of this ratio is a signal of the higher importance of that parameter [25].

3. Results and Discussion

3.1. Correlation Coefficients Table

At the first step of data analysis, the correlations among different parameters have been
investigated (Table 5).

Table 5. Evaluated parameter correlations (R).

FB ES EL T P BSFC k CO CO2 HC ET NOx

FT 1.00 −0.03 −0.05 −0.03 −0.09 0.03 0.01 −0.01 −0.07 −0.06 −0.02 −0.08
ES −0.03 1.00 −0.08 −0.21 0.15 0.05 0.08 0.10 0.02 0.12 0.41 −0.61
EL −0.05 −0.08 1.00 0.92 0.91 −0.70 0.86 0.85 0.92 0.83 0.79 0.60
T −0.03 −0.21 0.92 1.00 0.89 −0.73 0.77 0.76 0.81 0.75 0.77 0.59
P −0.09 0.15 0.91 0.89 1.00 −0.73 0.80 0.80 0.85 0.79 0.91 0.39

BSFC 0.03 0.05 −0.70 −0.73 −0.73 1.00 −0.45 −0.43 −0.68 −0.47 −0.66 −0.58
k 0.01 0.08 0.86 0.77 0.80 −0.45 1.00 0.97 0.85 0.96 0.79 0.31

CO −0.01 0.10 0.85 0.76 0.80 −0.43 0.97 1.00 0.85 0.97 0.78 0.28
CO2 −0.07 0.02 0.92 0.81 0.85 −0.68 0.85 0.85 1.00 0.88 0.77 0.63
HC −0.06 0.12 0.83 0.75 0.79 −0.47 0.96 0.97 0.88 1.00 0.79 0.33
ET −0.02 0.41 0.79 0.77 0.91 −0.66 0.79 0.78 0.77 0.79 1.00 0.17

NOx −0.08 −0.61 0.60 0.59 0.39 −0.58 0.31 0.28 0.63 0.33 0.17 1.00

FB: Fuel Blend, ES: Engine speed (rpm), EL: Engine load, T: Engine torque (Nm), P: Engine power (Kw), BSFC:
Specific fuel consumption (gr/Kwh), ET: Exhaust gas temperature (K), K: smoke opacity (1/m), CO: Carbon
monoxide (%), CO2: Carbon dioxide (%), HC: Hydrocarbons (ppm), NOx: Nitrogen oxides (ppm).

Correlation is defined as a measure of the relation between two or more parameters. The
correlation coefficient which is used here is Pearson coefficient (R) which is in range of −1.0 to
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+1.0. The correlation coefficient equal to −1.0 means an absolute negative relationship between two
variables, +1.0 for this quantity means an absolute positive relationship between variables and 0 means
no relationship between variables.

As can be seen in this table, there is some interesting information about the correlations among
them. The highest correlations are related to engine load, so it can be seen in the following sections that
the most effective parameter for the engine performance and emissions characteristics is the engine
load. The highest correlation coefficient among the parameters is related to engine load, so it can be
stated that the most effective parameter on engine performance and emissions parameters is engine
load. The engine speed and biodiesel diesel blends are the next most effective parameters. Although,
the effect of the increase in biodiesel blends with diesel fuel is not very considerable (here up to 20%
biodiesel), but it can be seen that the value of engine emissions except k, decreased with an increase in
biodiesel percentage. The details of the performance and engine emissions behavior will be discussed
in detail in the following sections, but here some information which can be derived from the correlation
coefficient table has been discussed.

The smoke opacity (k) exhaust emission is related with the carbon content of the exhaust
emissions [32,33], so as can be seen in Table 5, there is a very strong positive correlation coefficient
between the k values and carbon-containing emissions (0.97, 0.85 and 0.96 for CO, CO2 and HC,
respectively), while there is a poor positive correlation between k and NOx emissions (0.31).

CO emissions are the result of incomplete fuel combustion in the cylinder. Incomplete combustion
is referred to the combustion under nonstoichiometric conditions [34]. In this case, the amount of the
air which is mixed with fuel is not sufficient, so the product of the combustion would not be CO2 and
the production of CO and HC is increased. The very strong correlation between HC and CO in the
Table 5 is a signal of this phenomenon.

Among the emissions, the highest correlation for the NOx is with CO2 (0.63). The required
condition to forming the NOx in cylinder are high temperature and availability of oxygen [35]. This
condition, especially the high oxygen in cylinder, would improve the combustion quality and thus
increasing of CO2 production too. The exhaust gas temperature has a strong positive correlation
coefficient with most of engine emissions except NOx. Increased exhaust gas temperature is a sign that
the most part of the combustion cycle have been in latest crank angle of combustion stroke while the
production of the NOx in the cylinder is dependent on the peak temperature in the cylinder. Under
this condition the time which the high temperature blends spends in the cylinder is not sufficient to
produce NOx emissions.

3.2. Engine Performance Parameters

In the following sections the performance parameter variation details under different loads,
speeds and fuel blends have been considered. These parameters include: engine power (kW), engine
torque (Nm), BSFC (g/kwh) and exhaust gas temperature (K).

3.2.1. Engine Power

As can be seen in Figure 3, there is an initial increase in engine power with the increase in engine
speed, then it reaches a peak and after that it starts to fall with any further increase of engine speed.
This can be seen for all the kinds of fuels. Although the power of the engine difference for diesel and
B5 fuels, especially in maximum engine power, is not noticeable, the engine power for B10 and B15
blends are higher than that of the diesel fuel. The maximum increase in engine power for B10 and B15
fuels is 4.54 and 2.35%, respectively. The maximum reduction in engine power for B20 fuel is 3.92%.
The reason for this is the lower heating value of the waste cocking oil [36]. Finally it can be stated that
the addition of biodiesel to diesel fuel increases the power in a small amount but the engine power
will be reduced by adding more biodiesel. For instance, the engine power for the B10 fuel blend, 2100
rpm engine speed and 75 engine load has been increased by 28.67%. This trend is also reported by
other researchers [36,37]. The higher viscosity and density of biodiesel fuel than diesel fuel and higher
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oxygen content are proposed as possible reasons for this behavior. The quality of the combustion has
improved and compensates for a lack of oxygen in the rich zone of the combustion chamber. Fuel flow
rate is increased due to the higher density and lower leakage of fuel in the fuel sending high pressure
pipes due to the higher dynamic viscosity of the biodiesel fuel than diesel fuel [38]. This will increase
the engine power.
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3.2.2. Engine Torque

Maximum torque was obtained at 1700 rpm for each fuel blend (Figure 5). The torque of the
B5 fuel is higher than that of diesel fuel, but there is a reduction in engine torque for the B10, B15
and B20 fuels, and the highest torque drop is between diesel fuel and B20 fuel (9.55%). An effective
parameter in the increase of the engine torque when using biodiesel fuel are its higher surface tension
and viscosity which reduces fuel leakage in the fueling pipes. The reduction of the engine torque is
due to the lower heating value of the biodiesel blend [37], so it can conclude that in biodiesel fuel
blends with lower biodiesel content the effect of viscosity and surface tension are more significant
and in blends with higher contents of biodiesel the effect of the oxygen content is more significant.
The torques of the engine under different engine loads, engine speeds and fuel blends are shown in
Figure 6.
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3.2.3. Engine BSFC

The brake specific fuel consumption (BSFC) for all fuel blends was raised with the increase in
engine speed (Figure 7). The BSFC of fuel blends are lower than that at 1700 and 2900 rpm and is
higher at 2100 and 2500 rpm. The most decrease and increase in BSFC is for B10 in 2500 rpm and
1700 rpm, respectively. Overall it can be stated that the amount of BSFC of the engine while using
biodiesel blends is decreased because the value of increase in the BSFC is higher than its decrease for
all biodiesel fuel blends. BSFCs of the engine under different engine loads, engine speeds and fuel
blend percentages are shown in Figure 8.
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The increase of the engine BSFC due to using biodiesel fuel is reported by most studies. Lower
LHV of the biodiesel is stated as the main reason for the reduction of the engine BSFC when fueled
by biodiesel. Some other effective parameters which cause a reduction in BSFC are changes in the
combustion timing (ignition delay) due to its higher cetane number and injection timing because
of its different viscosity and density [36]. However, a slight decrease in BSFC is reported by some
studies [36].

3.3. Engine Exhaust Gas Temperature

The temperature of exhaust gas for all fuel blends increased with increased engine speed (Figure 9).
Overall it can be stated that the exhaust gas temperature for most fuel blends was lower than that of
diesel fuel (B0). This reduction in exhaust gas temperature can be seen clearly at lower engine speed
(1700 rpm). The most decrease in the exhaust gas temperature is 3.66% at 1700 rpm engine speed for
the B5 fuel blend. The exhaust gas temperature while using B5 and B20 fuel blends at all engine speeds
is lower than that for B0, but the exhaust gas temperatures of the engine while using B10 and B15 were
greater than that of B0. The maximum exhaust gas temperature was 910.25 K (3.77% more than B0 at
2500 rpm). Exhaust gas temperature of the engine for different engine loads, engine speed and fuel
blend percentages are shown in Figure 10.

Generally, different effects of using of biodiesel on exhaust gas temperature have been reported.
Some researchers have stated that the exhaust gas temperature was increased using biodiesel [39,40]
and also a reduction of exhaust gas temperature due to the use of biodiesel has been observed by some
other researchers [41].
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Density, viscosity, lower heating value and oxygen content of the biodiesel fuel are parameters
that affect the exhaust gas temperature [41–43]. A signal of lower engine loss is the reduction of the
exhaust gas temperature [44,45], so one of the advantages of biodiesel fuel is its lower exhaust gas
temperature when used in an engine [42]. The other parameter affecting the exhaust gas temperature
is the ignition delay. Ignition delay is the time between start of the injection to start of the combustion.
Ignition delay is affected by the CN of the fuel and a higher CN will result in a shorter ignition delay.
As can be seen in the Table 2, the CN of the biodiesel fuel is higher than that of diesel fuel and this
means a shorter ignition delay for biodiesel fuel combustion than diesel fuel. This shorter ignition
delay causes shifting of the combustion to the start of the combustion stroke. This will increase the
residual time of the burning mixture and cooling down of the gases inside the cylinder [43]. Finally
regarding the waste cooking oil and this experiment it can be stated that in lower engine speed effect
of shorter ignition delay and oxygen content of biodiesel was more than that of its injection parameters
(viscosity) while at higher engine speed the effect of injection parameters is more significant.

3.4. Emissions

These emissions are CO (%), CO2(%), HC (ppm), NOx (ppm), K (1/m). Each one of these
parameters are discussed in the following sections.

3.4.1. CO

One of the products of the incomplete combustion is carbon monoxide (CO) [34]. At all engine
speeds the CO emissions are lower than for diesel (Figure 11). This is in agreement with the results
of other studies [46] and may be due to the oxygen content of the biodiesel. It was observed that the
CO emissions increased with the increase of engine speed, from 1700 to 2500 rpm. The highest CO
emission of 3.25% was measured for diesel fuel at 2500 rpm.
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CO formation during the diesel engine combustion process is affected by various parameters. In
one hand, as stated before CO emission is a consequence of the incomplete combustion of the fuel
which may come from an insufficiency of oxygen in the cylinder, so the oxygen content of the biodiesel
fuel can provide extra oxygen to react with fuel and enhance the combustion quality. In the other
hand, higher viscosity and density of the biodiesel fuel may have a negative effect on the injection
and atomization of the sprayed fuel and reduces the combustion quality, especially under high load
conditions [43]. The CO emissions of the engine under different engine loads, engine speeds and fuel
blend percentages are shown in Figure 12.
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3.4.2. CO2

This emission is not one of the tail pipe pollutants and is not regulated in engine emission
regulations but it can be dangerous for human health at high concentration [47] and it is a greenhouse
gas which may be a reason for ozone formation and global warming [47]. In addition, higher amounts
of CO2 emission are a signal of a more complete combustion process.

The CO2 emission of all fuels has the tendency to increase with increasing engine speed for
fueling with all percentages of diesel biodiesel blends fuels (Figure 13). The CO2 emissions are lower
when the engine is fueled by diesel biodiesel blends than when fueled by standard diesel in the
1700–2100 rpm engine speed range. The CO2 emission decreased for all diesel biodiesel blends fuel in
the 2100–2500 rpm range. Increase of CO2 in the exhaust emissions is an indication of the complete
combustion of fuel and this is due to the higher oxygen content of biodiesel [43,48]. As can be seen in
Figure 8, the best percentage of diesel biodiesel blend regarding CO2 emissions is B15, which causes
the highest increase in CO2 emissions. In addition by increasing the percentage of the biodiesel in
diesel fuel, the CO2 increased up to B15, but for B20 the value of this emission decreased again. This
may be a consequence of the lower viscosity of that biodiesel blend [49]. CO2 emissions of the engine
for different engine loads, engine speeds and fuel blend percentages are shown in Figure 14.

Energies 2018, 11, x FOR PEER REVIEW  13 of 24 

 

which may come from an insufficiency of oxygen in the cylinder, so the oxygen content of the 
biodiesel fuel can provide extra oxygen to react with fuel and enhance the combustion quality. In the 
other hand, higher viscosity and density of the biodiesel fuel may have a negative effect on the 
injection and atomization of the sprayed fuel and reduces the combustion quality, especially under 
high load conditions [43]. The CO emissions of the engine under different engine loads, engine speeds 
and fuel blend percentages are shown in Figure 12. 

 
Figure 12. CO emission of the engine under different engine loads, speeds and biodiesel percentages. 

3.4.2. CO2 

This emission is not one of the tail pipe pollutants and is not regulated in engine emission 
regulations but it can be dangerous for human health at high concentration [47] and it is a greenhouse 
gas which may be a reason for ozone formation and global warming [47]. In addition, higher amounts 
of CO  emission are a signal of a more complete combustion process. 

The CO  emission of all fuels has the tendency to increase with increasing engine speed for 
fueling with all percentages of diesel biodiesel blends fuels (Figure 13). The CO  emissions are lower 
when the engine is fueled by diesel biodiesel blends than when fueled by standard diesel in the 1700–
2100 rpm engine speed range. The CO  emission decreased for all diesel biodiesel blends fuel in the 
2100–2500 rpm range. Increase of CO  in the exhaust emissions is an indication of the complete 
combustion of fuel and this is due to the higher oxygen content of biodiesel [43,48]. As can be seen in 
Figure 8, the best percentage of diesel biodiesel blend regarding CO  emissions is B15, which causes 
the highest increase in CO  emissions. In addition by increasing the percentage of the biodiesel in diesel 
fuel, the CO  increased up to B15, but for B20 the value of this emission decreased again. This may be 
a consequence of the lower viscosity of that biodiesel blend [49]. CO  emissions of the engine for 
different engine loads, engine speeds and fuel blend percentages are shown in Figure 14. 

 
 

Figure 13. Variation of CO2(%) for different engine speeds and diesel biodiesel blends at full load. Figure 13. Variation of CO2 (%) for different engine speeds and diesel biodiesel blends at full load.



Energies 2018, 11, 2410 14 of 24
Energies 2018, 11, x FOR PEER REVIEW  14 of 24 

 

 
Figure 14. CO  emissions of the engine under different engine loads, speeds and biodiesel 
percentages. 

Different and conflicting results have been presented by various researchers about the effect of 
biodiesel fuel on CO  production by internal combustion engines. In one hand it was found that 
when using biodiesel in internal combustion engines it results in a rise of CO  emission production 
[50] and on the other hand, a decrease in CO  emissions due to the use of this fuel is reported [48]. In 
addition, plants would use the CO  emitted by the engine during photosynthesis process [51]. 

3.4.3. HC 

The recorded HC emission levels for all biofuel blends are lower than that of diesel alone (Figure 
15). The highest reduction of HC is for B10 fuel at 1700 rpm (52.37%). The B5 and B10 biodiesel diesel 
blends have had same HC value. but the B15 fuel has a higher value than these two. The lowest 
reduction trend in HC value is for B20 fuel. Overall, a higher amount of biodiesel in diesel biodiesel 
blends decrease the combustion quality and increases HC emissions due to changing of the injection 
and atomization of the fuel into the cylinder while a lower amount of biodiesel enhanced the quality 
of combustion and reduces HC emissions due to its higher oxygen content. This behavior is also 
reported by other researchers [45,52]. The next reason for reduction of the HC emissions is the higher 
CN of biodiesel fuel which increases the premix combustion phase [49]. HC emissions of the engine 
for different engine loads, engine speeds and fuel blend percentages are shown in Figure 16. 

 
 

Figure 15. Variation of HC (ppm) for different engine speeds and diesel biodiesel blends at full load. 

Figure 14. CO2 emissions of the engine under different engine loads, speeds and biodiesel percentages.

Different and conflicting results have been presented by various researchers about the effect of
biodiesel fuel on CO2 production by internal combustion engines. In one hand it was found that when
using biodiesel in internal combustion engines it results in a rise of CO2 emission production [50] and
on the other hand, a decrease in CO2 emissions due to the use of this fuel is reported [48]. In addition,
plants would use the CO2 emitted by the engine during photosynthesis process [51].

3.4.3. HC

The recorded HC emission levels for all biofuel blends are lower than that of diesel alone
(Figure 15). The highest reduction of HC is for B10 fuel at 1700 rpm (52.37%). The B5 and B10
biodiesel diesel blends have had same HC value. but the B15 fuel has a higher value than these two.
The lowest reduction trend in HC value is for B20 fuel. Overall, a higher amount of biodiesel in diesel
biodiesel blends decrease the combustion quality and increases HC emissions due to changing of the
injection and atomization of the fuel into the cylinder while a lower amount of biodiesel enhanced the
quality of combustion and reduces HC emissions due to its higher oxygen content. This behavior is
also reported by other researchers [45,52]. The next reason for reduction of the HC emissions is the
higher CN of biodiesel fuel which increases the premix combustion phase [49]. HC emissions of the
engine for different engine loads, engine speeds and fuel blend percentages are shown in Figure 16.
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3.4.4. NOX

The NOx emissions decrease with increasing engine speed (Figure 17). At all engine speeds the
NOx emissions of diesel biodiesel blends are lower or at least same as that of diesel fuel. Similar
trends have been reported by Aydin and Bayindir [53,54]. Reduction of the NOx emissions while using
biodiesel fuel instead of the diesel fuel is also reported by Geng et al., [55]. The most decrease in NOx

emission corresponds to B5 at 2900 rpm (94.55%). NOx emissions of the engine for different engine
loads, engine speeds and fuel blend percentages are shown in Figure 18.
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The higher cetane number (CN) of biodiesel can be a reason for the decreasing NOx emissions. The
premixed combustion is increased by increasing in cetane number due to the decrease in the ignition
delay. Due to this reduction in premixed combustion the pressure of combustion rises more slowly and
the time for cooling comes from heat transfer and dilution will decrease local gas temperature [54].

3.4.5. Smoke Opacity (k Value)

This emission is lower for biodiesel fuel than diesel fuel (Figure 19). The highest value of k value
reduction is for B5 fuel blends (44.29%) at 1700 rpm. Overall it can be stated that the k value for all
the fuel blends at 1700 rpm have been decreased considerably compared to B0 (44.29, 40.21, 31.79 and
33.60% for B5, B10, B15 and B20, respectively). The reduction of the soot due to the use of biodiesel fuel
was also reported by Yusop et al., [56]. As discussed in the above section about correlation between
the k value and amount of CO, CO2 and HC, the order of fuel blends for k value is same as that in
the mentioned emissions, so the main reason for the reduction of k value while using biodiesel diesel
fuel blends is its oxygen content. This added oxygen improves the quality of combustion and hence
decreases the HC and CO emissions. Increases in the k value of biodiesel blends may be due to their
higher viscosity and density than diesel fuel, which may decrease the injection and mixing of fuel
in the cylinder. The result of this variation in injection and mixing is a low quality combustion and
production of CO, HC and finally smoke. Similar results were reported by other researchers [36]. The k
value of the engine under different engine loads, engine speeds and fuel blend percentages are shown
in Figure 20.
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3.5. ANN

The ANN model has been developed by using experimental data in order to predict BSFC, engine
power, exhaust gas temperature, torque, CO2, HC, CO, NOx, k value according to engine LOA and
speed and fuel type. The results of the prediction by this model showed a good capability and
correlation between the output of the model and experimental data. So, application of this model in
order to predict such a parameter is recommended.

In consequence of trials, the best network architecture for prediction of effective power became
3-8-9 after 150 epochs (Figure 21). Considering the architecture and prediction accuracy of the network,
8 hidden neurons had been selected. The ANN has been used in prediction of the emission and
performance parameters of the engine. The network has three input parameters: engine load and
speed and percent of biodiesel blend. Correlation between predicted data and experimental data is
considered in term of R2. This is done to evaluate the model. As can be seen in the Figures 22 and 23
the R2 is close to 1 for considered parameters.

In Figure 12, the capability of created ANN model to predict of performance parameters of the
engine is shown. The coefficient of determination (R2) between predicted and real value of each
parameters are shown in this figure. As it can be seen, the R2 value for all performance parameters
is very close to 1. The highest and lowest values of R2 are 0.98 and 0.93 for torque and exhaust gas
temperature of the engine, respectively.

The goodness of emission prediction of developed ANN model is shown in Figure 14. As it can
be seen in this figure, the determination coefficients (R2) for prediction of emissions of the engine are
lower than that in prediction of performance parameter of the engine, e.g., the highest and lowest
values of the R2 are 0.94 and 0.80 for CO and K, respectively. The same result can be seen in the other
studies [7,13].
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One reason for these differences may be due to the quantity characteristics which have been
measured. The capability of ANN model to predict a quantity is dependent on the data which is
trained by them. Here measurement of the emission parameters may include more noisy data than
performance parameters. In addition selection of the input parameter for each model to predict an
output parameter is crucial. From the results of the determination coefficient in this study, it can be
concluded that there may be some effective parameters which are effective on predicted parameters
but not included as input parameters.
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3.6. Sensitivity Analysis

The result of the global sensitivity analysis is shown in Table 6. As it can be seen the parameter
that most affects the outputs is engine load and the engine speed and percent of biodiesel in diesel
biodiesel blends have a lower effect on the outputs. This also can be seen in the different graphs shown,
which show the variations of output parameter with inputs.

Table 6. The sensitivity analysis of inputs.

Engine Load (%) Engine Speed (RPM) Biodiesel Percent Blend Fuel

3.53 1.97 1.31

In summary, it can be generally stated that application of sensitivity analysis for the ANN model
of the engine parameters can help distinguish the importance of the input parameters of the model. In
addition, it should be noticed that this is extremely helpful when there are numerous input parameters
for the ANN model. The advantages of the present study in comparison with the previous studies [7,13]
is the application of the sensitivity analysis to determine the importance of the input parameters of the
ANN model which is created for engine performance and emission modeling, although, a lack of the
information about the combustion parameters may be a deficiency of the developed model which will
be the topic of future study by the authors.

4. Conclusions

The performance and emissions of an air cooled single cylinder diesel engine have been
investigated in this study. The engine was run under different operating conditions and fueled
with different biodiesel diesel blends. The main findings of this research are as follows:

• Almost all engine exhaust emissions were decreased while using biodiesel diesel blends.
• The highest reduction for CO, CO2, HC, NOx and smoke emissions were 47.25, 48.23, 52.7, 94.55

and 44.29%, respectively.
• Reduction of engine emissions has a penalty which was a reduction of the performance parameters

of the engine at higher biodiesel blend percentages.
• The lower biodiesel blends (B5) did not have any considerable negative effect on the

engine performance.
• The higher viscosity and density of the biodiesel cause some undesirable effects on the engine

performance and emission parameters, especially at higher percentages of biodiesel diesel blend
(B15 and B20).

• The best architecture of ANN to predict the engine parameters was one input layer with three
neurons, one hidden layer with eight hidden neurons and one output layer with nine neurons
(3-8-9).

• It was evident that the ANN predicted data matched the experimental data with high overall
accuracy with determination coefficient (R2) values very close to 1

• According to the sensitivity analysis of the inputs of the model, engine load, engine speed and
fuel type were the most important input parameters of the model, respectively.

Lack of the information about the combustion parameters was the biggest limitation in this work
and it is subject of the future research work of the authors to include these parameters in a new ANN
model. One remaining aspect to reflect upon is developing an ANN model and sensitivity analysis for
the prediction of engine combustion parameters.
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Abbreviations

ANN Artificial neural network
BP Backpropagation
BSFC Specific fuel consumption (gr/kWh)
cc/h Cubic centimeter per hour
CI Compression ignition
CO2 Carbon dioxide (%)
CO Carbon monoxide (%)
EL Engine load
ES Engine speed (rpm)
ET Exhaust gas temperature (K)
FB Fuel Blend
K Smoke opacity (1/m)
kW Kilowatt
LHV Lower heating value
lit/s Liter per second
MLP Multilayer perceptron
Nm Newton meter
NOX Oxides of nitrogen
P Engine power (kW)
ppm Particles per millions
R2 R-Squared
rpm Revolutions per minute
T Engine torque (Nm)
Xi Actual data
Xmax Maximum of actual data
Xmin Minimum of actual data
Xn Normalized data
Yestimate Predicted data
Yobserved Experimental data
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21. Çay, Y.; Çiçek, A.; Kara, F.; Sağiroğlu, S. Prediction of engine performance for an alternative fuel using
artificial neural network. Appl. Therm. Eng. 2012, 37, 217–225. [CrossRef]

22. Rahimi-Ajdadi, F.; Abbaspour-Gilandeh, Y. Artificial neural network and stepwise multiple range regression
methods for prediction of tractor fuel consumption. Measurement 2011, 44, 2104–2111. [CrossRef]

23. Gölcü, M.; Sekmen, Y.; Erduranlı, P.; Sahir Salman, M. Artificial neural-network based modeling of variable
valve-timing in a spark-ignition engine. Appl. Energy 2005, 81, 187–197. [CrossRef]

24. Kröse, B.; Krose, B.; van der Smagt, P.; Smagt, P. An Introduction to Neural Networks; University of Amsterdam:
Amsterdam, The Netherlands, 1996.

25. StatSoft. Statistica (Data Analysis Software System); Version 6; StatSoft Electronic Statistics: Tulsa, OK, USA,
2001; Volume 150.

26. Yap, W.K.; Karri, V. Emissions predictive modelling by investigating various neural network models.
Expert Syst. Appl. 2012, 39, 2421–2426. [CrossRef]
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