2,883 research outputs found

    Minors and dimension

    Full text link
    It has been known for 30 years that posets with bounded height and with cover graphs of bounded maximum degree have bounded dimension. Recently, Streib and Trotter proved that dimension is bounded for posets with bounded height and planar cover graphs, and Joret et al. proved that dimension is bounded for posets with bounded height and with cover graphs of bounded tree-width. In this paper, it is proved that posets of bounded height whose cover graphs exclude a fixed topological minor have bounded dimension. This generalizes all the aforementioned results and verifies a conjecture of Joret et al. The proof relies on the Robertson-Seymour and Grohe-Marx graph structure theorems.Comment: Updated reference

    On the Duality of Semiantichains and Unichain Coverings

    Full text link
    We study a min-max relation conjectured by Saks and West: For any two posets PP and QQ the size of a maximum semiantichain and the size of a minimum unichain covering in the product P×QP\times Q are equal. For positive we state conditions on PP and QQ that imply the min-max relation. Based on these conditions we identify some new families of posets where the conjecture holds and get easy proofs for several instances where the conjecture had been verified before. However, we also have examples showing that in general the min-max relation is false, i.e., we disprove the Saks-West conjecture.Comment: 10 pages, 3 figure

    Hereditary properties of combinatorial structures: posets and oriented graphs

    Full text link
    A hereditary property of combinatorial structures is a collection of structures (e.g. graphs, posets) which is closed under isomorphism, closed under taking induced substructures (e.g. induced subgraphs), and contains arbitrarily large structures. Given a property P, we write P_n for the collection of distinct (i.e., non-isomorphic) structures in a property P with n vertices, and call the function n -> |P_n| the speed (or unlabelled speed) of P. Also, we write P^n for the collection of distinct labelled structures in P with vertices labelled 1,...,n, and call the function n -> |P^n| the labelled speed of P. The possible labelled speeds of a hereditary property of graphs have been extensively studied, and the aim of this paper is to investigate the possible speeds of other combinatorial structures, namely posets and oriented graphs. More precisely, we show that (for sufficiently large n), the labelled speed of a hereditary property of posets is either 1, or exactly a polynomial, or at least 2^n - 1. We also show that there is an initial jump in the possible unlabelled speeds of hereditary properties of posets, tournaments and directed graphs, from bounded to linear speed, and give a sharp lower bound on the possible linear speeds in each case.Comment: 26 pgs, no figure
    corecore