38,976 research outputs found

    Structural Variability from Noisy Tomographic Projections

    Full text link
    In cryo-electron microscopy, the 3D electric potentials of an ensemble of molecules are projected along arbitrary viewing directions to yield noisy 2D images. The volume maps representing these potentials typically exhibit a great deal of structural variability, which is described by their 3D covariance matrix. Typically, this covariance matrix is approximately low-rank and can be used to cluster the volumes or estimate the intrinsic geometry of the conformation space. We formulate the estimation of this covariance matrix as a linear inverse problem, yielding a consistent least-squares estimator. For nn images of size NN-by-NN pixels, we propose an algorithm for calculating this covariance estimator with computational complexity O(nN4+κN6logN)\mathcal{O}(nN^4+\sqrt{\kappa}N^6 \log N), where the condition number κ\kappa is empirically in the range 1010--200200. Its efficiency relies on the observation that the normal equations are equivalent to a deconvolution problem in 6D. This is then solved by the conjugate gradient method with an appropriate circulant preconditioner. The result is the first computationally efficient algorithm for consistent estimation of 3D covariance from noisy projections. It also compares favorably in runtime with respect to previously proposed non-consistent estimators. Motivated by the recent success of eigenvalue shrinkage procedures for high-dimensional covariance matrices, we introduce a shrinkage procedure that improves accuracy at lower signal-to-noise ratios. We evaluate our methods on simulated datasets and achieve classification results comparable to state-of-the-art methods in shorter running time. We also present results on clustering volumes in an experimental dataset, illustrating the power of the proposed algorithm for practical determination of structural variability.Comment: 52 pages, 11 figure

    Block-adaptive Cross Approximation of Discrete Integral Operators

    Get PDF
    In this article we extend the adaptive cross approximation (ACA) method known for the efficient approximation of discretisations of integral operators to a block-adaptive version. While ACA is usually employed to assemble hierarchical matrix approximations having the same prescribed accuracy on all blocks of the partition, for the solution of linear systems it may be more efficient to adapt the accuracy of each block to the actual error of the solution as some blocks may be more important for the solution error than others. To this end, error estimation techniques known from adaptive mesh refinement are applied to automatically improve the block-wise matrix approximation. This allows to interlace the assembling of the coefficient matrix with the iterative solution

    Improved scaling of Time-Evolving Block-Decimation algorithm through Reduced-Rank Randomized Singular Value Decomposition

    Full text link
    When the amount of entanglement in a quantum system is limited, the relevant dynamics of the system is restricted to a very small part of the state space. When restricted to this subspace the description of the system becomes efficient in the system size. A class of algorithms, exemplified by the Time-Evolving Block-Decimation (TEBD) algorithm, make use of this observation by selecting the relevant subspace through a decimation technique relying on the Singular Value Decomposition (SVD). In these algorithms, the complexity of each time-evolution step is dominated by the SVD. Here we show that, by applying a randomized version of the SVD routine (RRSVD), the power law governing the computational complexity of TEBD is lowered by one degree, resulting in a considerable speed-up. We exemplify the potential gains in efficiency at the hand of some real world examples to which TEBD can be successfully applied to and demonstrate that for those system RRSVD delivers results as accurate as state-of-the-art deterministic SVD routines.Comment: 14 pages, 5 figure
    corecore